Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Translation Options

- Look up possible phrase translations
 - many different ways to segment words into phrases
 - many different ways to translate each phrase

Dhillian Manha Halimaniko af Ediakona

4 4

Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Hypothesis Expansion

Maria	no	dio	una	bofetada	a	la	bruja	verde	
Mary	not did not	_give_		slap	by	the	_witch_ green	green_ witch	
					to				
					the				
slap					the witch				

- Pick translation option
- Create hypothesis
 - e: add English phrase Mary
 - f: first foreign word covered

- p: probability 0.534

16

Philipp Koehn, University of Edinburgh

10

Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

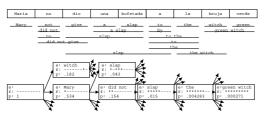
Hypothesis Expansion

| Mary | not | give | a | slap | to | the | witch | green | slap | to | the | witch | green | slap | to | the | witch | green | slap | to | the | witch | green | slap | to | the | witch | green | slap | to | the | witch | green | slap | to | the | witch | green | slap | to | the | witch | green | slap | to | the | witch | green | slap | the | witch | green | the | witch | the | witch | green | the | witch |

• Further hypothesis expansion

Dhillian Manha Halisasaiks of Ediahssash

_


S

E

F

Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Hypothesis Expansion

- Adding more hypothesis
- \Rightarrow Explosion of search space

Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Hypothesis Expansion

- Start with empty hypothesis
 - e: no English words
 - f: no foreign words covered
 - p: probability 1

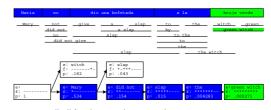
Philipp Koehn, University of Edinburgh

15

F

Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Hypothesis Expansion


• Add another hypothesis

Philipp Koehn University of Edinburgh

18

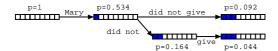
Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Hypothesis Expansion

- ... until all foreign words covered
 - find best hypothesis that covers all foreign words
 - backtrack to read off translation

Dhilles Mache Halisasaks of Ediahssa

-00


Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Explosion of Search Space

- Number of hypotheses is exponential with respect to sentence length
- \Rightarrow Decoding is NP-complete [Knight, 1999]
- \Rightarrow Need to reduce search space
 - risk free: hypothesis recombination
 - risky: histogram/threshold pruning

Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

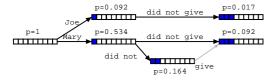
Hypothesis Recombination

• Different paths to the same partial translation

Philipp Koehn, University of Edinburgh

23

F


S

_

S

Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)

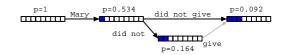
Dhiling Macha Hairmaik, of Ediahrosah

٥r

Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Pruning

- Hypothesis recombination is not sufficient
- ⇒ Heuristically discard weak hypotheses
- Organize Hypothesis in stacks, e.g. by
 - same foreign words covered
 - same number of foreign words covered (Pharaoh does this)
 - same number of English words produced
- Compare hypotheses in stacks, discard bad ones
 - histogram pruning: keep top n hypotheses in each stack (e.g., n=100)
 - threshold pruning: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., α = 0.001)

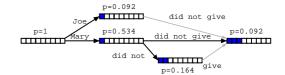

Philipp Koehn, University of Edinburgh

27

F

Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Hypothesis Recombination


- Different paths to the same partial translation
- \Rightarrow Combine paths
 - drop weaker hypothesis
 - keep pointer from worse path

Philipp Koehn University of Edinburgh

24

Statistical Machine Translation — Lecture 2: Theory and Praxis of Decoding

Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)
- ⇒ Combine paths

Dhillian Manha Thiringaist, of Ediah, sah