
Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Do We Need Recursion?

Vítězslav Švejdar

Dept. of Logic, College of Arts, Charles University in Prague
http://www.cuni.cz/~svejdar/

Logica 19, Hejnice, June 24–28, 2019

Vítek Švejdar, Prague Do We Need Recursion? 1/11

http://www1.cuni.cz/~svejdar/

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Outline

Recursion in various situations. Is its use necessary?

The expressive power of bounded conditions and formulas

Arithmetization of syntactic notions without recursion

Vítek Švejdar, Prague Do We Need Recursion? 2/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Primitive recursion, course-of-values recursion

The equations z0 = 1 and zx+1 = zx · z derive
the exponential function [x , z] 7→ zx by primitive recursion
from g and h where g(z) = 1 and h(v , x , z) = v · z.

The equation f (x) = g(µv(g(v) /∈ {f (0), . . , f (x − 1)}))
derives f from g by course-of-values recursion
(and minimization). If Rng(g) is infinite, then f is one-to-one
and Rng(f) = Rng(g).

Consider the definition: t is a term in the arithmetic language
if t is the constant 0, or t is a variable, or t has one of the forms
S(t1), +(t1,t2) or ⋅(t1,t2) where t1 and t2 are terms.

Vítek Švejdar, Prague Do We Need Recursion? 3/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Primitive recursion, course-of-values recursion

The equations z0 = 1 and zx+1 = zx · z derive
the exponential function [x , z] 7→ zx by primitive recursion
from g and h where g(z) = 1 and h(v , x , z) = v · z.

The equation f (x) = g(µv(g(v) /∈ {f (0), . . , f (x − 1)}))
derives f from g by course-of-values recursion
(and minimization). If Rng(g) is infinite, then f is one-to-one
and Rng(f) = Rng(g).

Consider the definition: t is a term in the arithmetic language
if t is the constant 0, or t is a variable, or t has one of the forms
S(t1), +(t1,t2) or ⋅(t1,t2) where t1 and t2 are terms.

Vítek Švejdar, Prague Do We Need Recursion? 3/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Primitive recursion, course-of-values recursion

The equations z0 = 1 and zx+1 = zx · z derive
the exponential function [x , z] 7→ zx by primitive recursion
from g and h where g(z) = 1 and h(v , x , z) = v · z.

The equation f (x) = g(µv(g(v) /∈ {f (0), . . , f (x − 1)}))
derives f from g by course-of-values recursion
(and minimization). If Rng(g) is infinite, then f is one-to-one
and Rng(f) = Rng(g).

Consider the definition: t is a term in the arithmetic language
if t is the constant 0, or t is a variable, or t has one of the forms
S(t1), +(t1,t2) or ⋅(t1,t2) where t1 and t2 are terms.

Vítek Švejdar, Prague Do We Need Recursion? 3/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Primitive recursion, course-of-values recursion

The equations z0 = 1 and zx+1 = zx · z derive
the exponential function [x , z] 7→ zx by primitive recursion
from g and h where g(z) = 1 and h(v , x , z) = v · z.

The equation f (x) = g(µv(g(v) /∈ {f (0), . . , f (x − 1)}))
derives f from g by course-of-values recursion
(and minimization). If Rng(g) is infinite, then f is one-to-one
and Rng(f) = Rng(g).

Consider the definition: t is a term in the arithmetic language
if t is the constant 0, or t is a variable, or t has one of the forms
S(t1), +(t1,t2) or ⋅(t1,t2) where t1 and t2 are terms.

Once variables are defined (say, as strings like v1011), a
programmer can write a procedure that decides what is and
what is not a term by making calls to itself.

Vítek Švejdar, Prague Do We Need Recursion? 3/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Primitive recursion, course-of-values recursion

The equations z0 = 1 and zx+1 = zx · z derive
the exponential function [x , z] 7→ zx by primitive recursion
from g and h where g(z) = 1 and h(v , x , z) = v · z.

The equation f (x) = g(µv(g(v) /∈ {f (0), . . , f (x − 1)}))
derives f from g by course-of-values recursion
(and minimization). If Rng(g) is infinite, then f is one-to-one
and Rng(f) = Rng(g).

Consider the definition: t is a term in the arithmetic language
if t is the constant 0, or t is a variable, or t has one of the forms
S(t1), +(t1,t2) or ⋅(t1,t2) where t1 and t2 are terms.

Coding of syntactic objects: the term +(v1,0) is the number
43·1286+40·1285+118·1284+49·1283+44·1282+48·128+41.
The codes 43, 40, 118, . . . are taken from modified ascii table.

Vítek Švejdar, Prague Do We Need Recursion? 3/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Primitive recursion, course-of-values recursion

The equations z0 = 1 and zx+1 = zx · z derive
the exponential function [x , z] 7→ zx by primitive recursion
from g and h where g(z) = 1 and h(v , x , z) = v · z.

The equation f (x) = g(µv(g(v) /∈ {f (0), . . , f (x − 1)}))
derives f from g by course-of-values recursion
(and minimization). If Rng(g) is infinite, then f is one-to-one
and Rng(f) = Rng(g).

Consider the definition: t is a term in the arithmetic language
if t is the constant 0, or t is a variable, or t has one of the forms
S(t1), +(t1,t2) or ⋅(t1,t2) where t1 and t2 are terms.

If terms are (identified with) natural numbers, then the above
definition is an application of course-of-values recursion.

Vítek Švejdar, Prague Do We Need Recursion? 3/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

So where do we meet recursion?

1. In some nice proofs, or in programming languages
like in the proof that every infinite recursively enumerable set is
the range of a one-to-one recursive function.

2. In the basic definitions in computability theory:
A function is primitive recursive if it can be derived from three
initial functions using primitive recursion and composition.
A function is partial recursive if it can be derived from the same
initial functions using primitive recursion, composition
and minimization.

3. In the definitions of syntactic notions in logic:
terms, formulas, free and bound occurrences of variables,
substitutability of terms, the substitution operation itself.

Vítek Švejdar, Prague Do We Need Recursion? 4/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

So where do we meet recursion?

1. In some nice proofs, or in programming languages
like in the proof that every infinite recursively enumerable set is
the range of a one-to-one recursive function.

2. In the basic definitions in computability theory:
A function is primitive recursive if it can be derived from three
initial functions using primitive recursion and composition.
A function is partial recursive if it can be derived from the same
initial functions using primitive recursion, composition
and minimization.

3. In the definitions of syntactic notions in logic:
terms, formulas, free and bound occurrences of variables,
substitutability of terms, the substitution operation itself.

Vítek Švejdar, Prague Do We Need Recursion? 4/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

So where do we meet recursion?

1. In some nice proofs, or in programming languages
like in the proof that every infinite recursively enumerable set is
the range of a one-to-one recursive function.

2. In the basic definitions in computability theory:
A function is primitive recursive if it can be derived from three
initial functions using primitive recursion and composition.
A function is partial recursive if it can be derived from the same
initial functions using primitive recursion, composition
and minimization.

3. In the definitions of syntactic notions in logic:
terms, formulas, free and bound occurrences of variables,
substitutability of terms, the substitution operation itself.

Vítek Švejdar, Prague Do We Need Recursion? 4/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

How to get rid of recursion in definitions? Why?
If f is derived from g by minimization, f (x) = µv(g(x , v) = 0),
then y = f (x) ⇔ g(x , y) = 0 & ∀v<y (g(x , v) 6= 0).

If f is derived from g and h by composition, f = h ◦ g, then
y = f (x) ⇔ ∃v(g(x) = v & h(v) = y).
However there is nothing in the arithmetic language (in logic)
that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])
If the set of initial functions (normally consisting of x 7→ x + 1,
x 7→ 0 and [x1, . . , xk] 7→ xj)

is extended by adding
[x , y] 7→ x + y , [x , y] 7→ x · y and e
where e(x , y) = 1 if x = y and e(x , y) = 0 otherwise,
then primitive recursion can be dropped from the definition.

Another option
Using ∆0 conditions.

Vítek Švejdar, Prague Do We Need Recursion? 5/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

How to get rid of recursion in definitions? Why?
If f is derived from g by minimization, f (x) = µv(g(x , v) = 0),
then y = f (x) ⇔ g(x , y) = 0 & ∀v<y (g(x , v) 6= 0).
If f is derived from g and h by composition, f = h ◦ g, then
y = f (x) ⇔ ∃v(g(x) = v & h(v) = y).

However there is nothing in the arithmetic language (in logic)
that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])
If the set of initial functions (normally consisting of x 7→ x + 1,
x 7→ 0 and [x1, . . , xk] 7→ xj)

is extended by adding
[x , y] 7→ x + y , [x , y] 7→ x · y and e
where e(x , y) = 1 if x = y and e(x , y) = 0 otherwise,
then primitive recursion can be dropped from the definition.

Another option
Using ∆0 conditions.

Vítek Švejdar, Prague Do We Need Recursion? 5/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

How to get rid of recursion in definitions? Why?
If f is derived from g by minimization, f (x) = µv(g(x , v) = 0),
then y = f (x) ⇔ g(x , y) = 0 & ∀v<y (g(x , v) 6= 0).
If f is derived from g and h by composition, f = h ◦ g, then
y = f (x) ⇔ ∃v(g(x) = v & h(v) = y).
However there is nothing in the arithmetic language (in logic)
that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])
If the set of initial functions (normally consisting of x 7→ x + 1,
x 7→ 0 and [x1, . . , xk] 7→ xj)

is extended by adding
[x , y] 7→ x + y , [x , y] 7→ x · y and e
where e(x , y) = 1 if x = y and e(x , y) = 0 otherwise,
then primitive recursion can be dropped from the definition.

Another option
Using ∆0 conditions.

Vítek Švejdar, Prague Do We Need Recursion? 5/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

How to get rid of recursion in definitions? Why?
If f is derived from g by minimization, f (x) = µv(g(x , v) = 0),
then y = f (x) ⇔ g(x , y) = 0 & ∀v<y (g(x , v) 6= 0).
If f is derived from g and h by composition, f = h ◦ g, then
y = f (x) ⇔ ∃v(g(x) = v & h(v) = y).
However there is nothing in the arithmetic language (in logic)
that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])
If the set of initial functions (normally consisting of x 7→ x + 1,
x 7→ 0 and [x1, . . , xk] 7→ xj)

is extended by adding
[x , y] 7→ x + y , [x , y] 7→ x · y and e
where e(x , y) = 1 if x = y and e(x , y) = 0 otherwise,
then primitive recursion can be dropped from the definition.

Another option
Using ∆0 conditions.

Vítek Švejdar, Prague Do We Need Recursion? 5/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

How to get rid of recursion in definitions? Why?
If f is derived from g by minimization, f (x) = µv(g(x , v) = 0),
then y = f (x) ⇔ g(x , y) = 0 & ∀v<y (g(x , v) 6= 0).
If f is derived from g and h by composition, f = h ◦ g, then
y = f (x) ⇔ ∃v(g(x) = v & h(v) = y).
However there is nothing in the arithmetic language (in logic)
that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])
If the set of initial functions (normally consisting of x 7→ x + 1,
x 7→ 0 and [x1, . . , xk] 7→ xj) is extended by adding
[x , y] 7→ x + y , [x , y] 7→ x · y and e
where e(x , y) = 1 if x = y and e(x , y) = 0 otherwise,

then primitive recursion can be dropped from the definition.

Another option
Using ∆0 conditions.

Vítek Švejdar, Prague Do We Need Recursion? 5/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

How to get rid of recursion in definitions? Why?
If f is derived from g by minimization, f (x) = µv(g(x , v) = 0),
then y = f (x) ⇔ g(x , y) = 0 & ∀v<y (g(x , v) 6= 0).
If f is derived from g and h by composition, f = h ◦ g, then
y = f (x) ⇔ ∃v(g(x) = v & h(v) = y).
However there is nothing in the arithmetic language (in logic)
that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])
If the set of initial functions (normally consisting of x 7→ x + 1,
x 7→ 0 and [x1, . . , xk] 7→ xj) is extended by adding
[x , y] 7→ x + y , [x , y] 7→ x · y and e
where e(x , y) = 1 if x = y and e(x , y) = 0 otherwise,
then primitive recursion can be dropped from the definition.

Another option
Using ∆0 conditions.

Vítek Švejdar, Prague Do We Need Recursion? 5/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

How to get rid of recursion in definitions? Why?
If f is derived from g by minimization, f (x) = µv(g(x , v) = 0),
then y = f (x) ⇔ g(x , y) = 0 & ∀v<y (g(x , v) 6= 0).
If f is derived from g and h by composition, f = h ◦ g, then
y = f (x) ⇔ ∃v(g(x) = v & h(v) = y).
However there is nothing in the arithmetic language (in logic)
that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])
If the set of initial functions (normally consisting of x 7→ x + 1,
x 7→ 0 and [x1, . . , xk] 7→ xj) is extended by adding
[x , y] 7→ x + y , [x , y] 7→ x · y and e
where e(x , y) = 1 if x = y and e(x , y) = 0 otherwise,
then primitive recursion can be dropped from the definition.

Another option
Using ∆0 conditions.

Vítek Švejdar, Prague Do We Need Recursion? 5/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;

∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);

a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);

∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b).

Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.
If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas),

then ∆0 = ∆N
0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.
If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.
If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.
If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?
Is the set { y ; ∃x(y = 2x) } bounded?

Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.
If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?
Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to

∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.
If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?
Is the set { y ; ∃x(y = 2x) } bounded? Answer: ∃x(y = 2x) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Exponentiation, i.e. the condition y = zx

x︷ ︸︸ ︷
1101 0000000110 00011 01 uy︷ ︸︸ ︷

110000101001111010011 1011011001 11011 11 v

1
↑

r2

000000000000000000001
↑

r1

0000000001 00001 01 w

Let ExpW(y , x , z,u, v ,w) be a formula (which obviously is ∆0)
that describes this date structure. It says that if an item in u is t
and the corresponding item in v is s, then either the next items
are 2t and s2, or they are 2t + 1 and s2 · z, etc. Then the
formula

∃u∃v∃w ExpW(y , x , z,u, v ,w) ∨
∨ (x = 0 & y = 1) ∨ (x 6= 0 & z < 2 & y = z)

expresses that y = zx . The number w does not exceed y3.

Vítek Švejdar, Prague Do We Need Recursion? 7/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Exponentiation, i.e. the condition y = zx

x︷ ︸︸ ︷
1101 0000000110 00011 01 uy︷ ︸︸ ︷

110000101001111010011 1011011001 11011 11 v
1
↑

r2

000000000000000000001
↑

r1

0000000001 00001 01 w

Let ExpW(y , x , z,u, v ,w) be a formula (which obviously is ∆0)
that describes this date structure. It says that if an item in u is t
and the corresponding item in v is s, then either the next items
are 2t and s2, or they are 2t + 1 and s2 · z, etc. Then the
formula

∃u∃v∃w ExpW(y , x , z,u, v ,w) ∨
∨ (x = 0 & y = 1) ∨ (x 6= 0 & z < 2 & y = z)

expresses that y = zx . The number w does not exceed y3.

Vítek Švejdar, Prague Do We Need Recursion? 7/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Exponentiation, i.e. the condition y = zx

x︷ ︸︸ ︷
1101 0000000110 00011 01 uy︷ ︸︸ ︷

110000101001111010011 1011011001 11011 11 v
1
↑

r2

000000000000000000001
↑

r1

0000000001 00001 01 w

Let ExpW(y , x , z,u, v ,w) be a formula (which obviously is ∆0)
that describes this date structure. It says that if an item in u is t
and the corresponding item in v is s, then either the next items
are 2t and s2, or they are 2t + 1 and s2 · z, etc.

Then the
formula

∃u∃v∃w ExpW(y , x , z,u, v ,w) ∨
∨ (x = 0 & y = 1) ∨ (x 6= 0 & z < 2 & y = z)

expresses that y = zx . The number w does not exceed y3.

Vítek Švejdar, Prague Do We Need Recursion? 7/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Exponentiation, i.e. the condition y = zx

x︷ ︸︸ ︷
1101 0000000110 00011 01 uy︷ ︸︸ ︷

110000101001111010011 1011011001 11011 11 v
1
↑

r2

000000000000000000001
↑

r1

0000000001 00001 01 w

Let ExpW(y , x , z,u, v ,w) be a formula (which obviously is ∆0)
that describes this date structure. It says that if an item in u is t
and the corresponding item in v is s, then either the next items
are 2t and s2, or they are 2t + 1 and s2 · z, etc. Then the
formula

∃u∃v∃w ExpW(y , x , z,u, v ,w) ∨
∨ (x = 0 & y = 1) ∨ (x 6= 0 & z < 2 & y = z)

expresses that y = zx .

The number w does not exceed y3.

Vítek Švejdar, Prague Do We Need Recursion? 7/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Exponentiation, i.e. the condition y = zx

x︷ ︸︸ ︷
1101 0000000110 00011 01 uy︷ ︸︸ ︷

110000101001111010011 1011011001 11011 11 v
1
↑

r2

000000000000000000001
↑

r1

0000000001 00001 01 w

Let ExpW(y , x , z,u, v ,w) be a formula (which obviously is ∆0)
that describes this date structure. It says that if an item in u is t
and the corresponding item in v is s, then either the next items
are 2t and s2, or they are 2t + 1 and s2 · z, etc. Then the
formula

∃u∃v∃w ExpW(y , x , z,u, v ,w) ∨
∨ (x = 0 & y = 1) ∨ (x 6= 0 & z < 2 & y = z)

expresses that y = zx . The number w does not exceed y3.
Vítek Švejdar, Prague Do We Need Recursion? 7/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

More ∆0-formulas, strings

NPB(x) = y , the number of positive bits in the binary
expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

Length of a string w : the least z such that w < 128z .

Concatenation of two strings:

Number of occurrences of a character: if w is the number
83·1286+40·1285+83·1284+40·1283+48·1282+41·128+41,
then NOcc(48,w) = 1 and NOcc(41,w) = 2. We can also write
NOcc(0, S(S(0))) = 1 and NOcc(), S(S(0))) = 2.

Vítek Švejdar, Prague Do We Need Recursion? 8/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

More ∆0-formulas, strings

NPB(x) = y , the number of positive bits in the binary
expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

Length of a string w : the least z such that w < 128z .

Concatenation of two strings:

Number of occurrences of a character: if w is the number
83·1286+40·1285+83·1284+40·1283+48·1282+41·128+41,
then NOcc(48,w) = 1 and NOcc(41,w) = 2. We can also write
NOcc(0, S(S(0))) = 1 and NOcc(), S(S(0))) = 2.

Vítek Švejdar, Prague Do We Need Recursion? 8/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

More ∆0-formulas, strings

NPB(x) = y , the number of positive bits in the binary
expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

Length of a string w : the least z such that w < 128z .

Concatenation of two strings:

Number of occurrences of a character: if w is the number
83·1286+40·1285+83·1284+40·1283+48·1282+41·128+41,
then NOcc(48,w) = 1 and NOcc(41,w) = 2. We can also write
NOcc(0, S(S(0))) = 1 and NOcc(), S(S(0))) = 2.

Vítek Švejdar, Prague Do We Need Recursion? 8/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

More ∆0-formulas, strings

NPB(x) = y , the number of positive bits in the binary
expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

Length of a string w : the least z such that w < 128z .

Concatenation of two strings: w1 · 128Lh(w1) + w2.

Number of occurrences of a character: if w is the number
83·1286+40·1285+83·1284+40·1283+48·1282+41·128+41,
then NOcc(48,w) = 1 and NOcc(41,w) = 2. We can also write
NOcc(0, S(S(0))) = 1 and NOcc(), S(S(0))) = 2.

Vítek Švejdar, Prague Do We Need Recursion? 8/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

More ∆0-formulas, strings

NPB(x) = y , the number of positive bits in the binary
expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

Length of a string w : the least z such that w < 128z .

Concatenation of two strings: w1 · 128Lh(w1) + w2.

Number of occurrences of a character: if w is the number
83·1286+40·1285+83·1284+40·1283+48·1282+41·128+41,
then NOcc(48,w) = 1 and NOcc(41,w) = 2.

We can also write
NOcc(0, S(S(0))) = 1 and NOcc(), S(S(0))) = 2.

Vítek Švejdar, Prague Do We Need Recursion? 8/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

More ∆0-formulas, strings

NPB(x) = y , the number of positive bits in the binary
expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

Length of a string w : the least z such that w < 128z .

Concatenation of two strings: w1 · 128Lh(w1) + w2.

Number of occurrences of a character: if w is the number
83·1286+40·1285+83·1284+40·1283+48·1282+41·128+41,
then NOcc(48,w) = 1 and NOcc(41,w) = 2. We can also write
NOcc(0, S(S(0))) = 1 and NOcc(), S(S(0))) = 2.

Vítek Švejdar, Prague Do We Need Recursion? 8/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

More ∆0-formulas, strings

NPB(x) = y , the number of positive bits in the binary
expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

Length of a string w : the least z such that w < 128z .

Concatenation of two strings: w1 · 128Lh(w1) + w2 = w1w2.

Number of occurrences of a character: if w is the number
83·1286+40·1285+83·1284+40·1283+48·1282+41·128+41,
then NOcc(48,w) = 1 and NOcc(41,w) = 2. We can also write
NOcc(0, S(S(0))) = 1 and NOcc(), S(S(0))) = 2.

Vítek Švejdar, Prague Do We Need Recursion? 8/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Terms (in the arithmetic language)
A string w is balanced if Lh(w) ≥ 2, NOcc((,w) = NOcc(),w),
and NOcc((,u) > NOcc(),u) for any proper initial segment u
of w . Example: (()()). Non-examples: v1011 and ()().

Quasiterm is any variable, the single-letter string 0, or any
string of the form S(w), +(w) or ⋅(w) where (w) is a balanced
string. Examples: +((0)) and S(()()()).

A quasiterm t is a term (abbreviated Term(t)) if every balanced
substing (w) of t is either immediately preceded by the letter S
and w is a quasiterm, or it is immediately preceded by + or ⋅
and w has the form u,v where u and v are quasiterms.

Properties of terms provable in PA: Any variable and the
string 0 are terms. If t1 and t2 are terms, then S(t1), +(t1,t2)
and ⋅(t1,t2) are terms. Any term has one the forms
S(t1), +(t1,t2) or ⋅(t1,t2) unless it is a variable or the string 0.

Vítek Švejdar, Prague Do We Need Recursion? 9/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Terms (in the arithmetic language)
A string w is balanced if Lh(w) ≥ 2, NOcc((,w) = NOcc(),w),
and NOcc((,u) > NOcc(),u) for any proper initial segment u
of w . Example: (()()). Non-examples: v1011 and ()().

Quasiterm is any variable, the single-letter string 0, or any
string of the form S(w), +(w) or ⋅(w) where (w) is a balanced
string. Examples: +((0)) and S(()()()).

A quasiterm t is a term (abbreviated Term(t)) if every balanced
substing (w) of t is either immediately preceded by the letter S
and w is a quasiterm, or it is immediately preceded by + or ⋅
and w has the form u,v where u and v are quasiterms.

Properties of terms provable in PA: Any variable and the
string 0 are terms. If t1 and t2 are terms, then S(t1), +(t1,t2)
and ⋅(t1,t2) are terms. Any term has one the forms
S(t1), +(t1,t2) or ⋅(t1,t2) unless it is a variable or the string 0.

Vítek Švejdar, Prague Do We Need Recursion? 9/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Terms (in the arithmetic language)
A string w is balanced if Lh(w) ≥ 2, NOcc((,w) = NOcc(),w),
and NOcc((,u) > NOcc(),u) for any proper initial segment u
of w . Example: (()()). Non-examples: v1011 and ()().

Quasiterm is any variable, the single-letter string 0, or any
string of the form S(w), +(w) or ⋅(w) where (w) is a balanced
string. Examples: +((0)) and S(()()()).

A quasiterm t is a term (abbreviated Term(t)) if every balanced
substing (w) of t is either immediately preceded by the letter S
and w is a quasiterm, or it is immediately preceded by + or ⋅
and w has the form u,v where u and v are quasiterms.

Properties of terms provable in PA: Any variable and the
string 0 are terms. If t1 and t2 are terms, then S(t1), +(t1,t2)
and ⋅(t1,t2) are terms. Any term has one the forms
S(t1), +(t1,t2) or ⋅(t1,t2) unless it is a variable or the string 0.

Vítek Švejdar, Prague Do We Need Recursion? 9/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Terms (in the arithmetic language)
A string w is balanced if Lh(w) ≥ 2, NOcc((,w) = NOcc(),w),
and NOcc((,u) > NOcc(),u) for any proper initial segment u
of w . Example: (()()). Non-examples: v1011 and ()().

Quasiterm is any variable, the single-letter string 0, or any
string of the form S(w), +(w) or ⋅(w) where (w) is a balanced
string. Examples: +((0)) and S(()()()).

A quasiterm t is a term (abbreviated Term(t)) if every balanced
substing (w) of t is either immediately preceded by the letter S
and w is a quasiterm, or it is immediately preceded by + or ⋅
and w has the form u,v where u and v are quasiterms.

Properties of terms provable in PA: Any variable and the
string 0 are terms. If t1 and t2 are terms, then S(t1), +(t1,t2)
and ⋅(t1,t2) are terms. Any term has one the forms
S(t1), +(t1,t2) or ⋅(t1,t2) unless it is a variable or the string 0.

Vítek Švejdar, Prague Do We Need Recursion? 9/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

Appendix: the number of positive bits
Work with a summation tree w for a number x :

0 0 0 0 0 0 0

x︷ ︸︸ ︷
1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0

00 00 00 01 01 10 00 01 10 01 01 10 10 00 10 10 1
000 001 011 001 011 011 010 100 2

0001 0100 0110 0110 3
00101 01100 4

10001 5

where the bits (of the single number w) are split to several lines
for better readability. It can be checked that y = NPB(x) is a
∆0-formula.
In the above example, the summation tree witnesses the fact
that the number of positive bits in the number 24 308 687 is 17.

Vítek Švejdar, Prague Do We Need Recursion? 10/11

Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

References

J. H. Bennet. On Spectra. Dissertation, Princeton
University, Princeton, NJ, 1962.

S. Feferman. Arithmetization of metamathematics in a
general setting. Fundamenta Mathematicae, 49:35–92,
1960.

P. Hájek and P. Pudlák. Metamathematics of First Order
Arithmetic. Springer, 1993.

P. Odifreddi. Classical Recursion Theory. North-Holland,
1989.

P. Pudlák. A definition of exponentiation by a bounded
arithmetical formula. Comm. Math. Univ. Carolinae,
24(4):667–671, 1983.

Vítek Švejdar, Prague Do We Need Recursion? 11/11

http://dml.cz/handle/10338.dmlcz/106264
http://dml.cz/handle/10338.dmlcz/106264
http://www.karlin.mff.cuni.cz/cmuc/cmucemis/cmucemis.html

	Recursion in various situations. Is its use necessary?
	The expressive power of bounded conditions and formulas
	Arithmetization of syntactic notions without recursion

