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Outline

Recursion in various situations. Is its use necessary?

The expressive power of bounded conditions and formulas

Arithmetization of syntactic notions without recursion
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Primitive recursion, course-of-values recursion

The equations z0 = 1 and zx+1 = zx · z derive
the exponential function [x , z] 7→ zx by primitive recursion
from g and h where g(z) = 1 and h(v , x , z) = v · z.

The equation f (x) = g(µv(g(v) /∈ {f (0), . . , f (x − 1)}))
derives f from g by course-of-values recursion
(and minimization). If Rng(g) is infinite, then f is one-to-one
and Rng(f ) = Rng(g).

Consider the definition: t is a term in the arithmetic language
if t is the constant 0, or t is a variable, or t has one of the forms
S(t1), +(t1,t2) or ⋅(t1,t2) where t1 and t2 are terms.
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Consider the definition: t is a term in the arithmetic language
if t is the constant 0, or t is a variable, or t has one of the forms
S(t1), +(t1,t2) or ⋅(t1,t2) where t1 and t2 are terms.

Once variables are defined (say, as strings like v1011), a
programmer can write a procedure that decides what is and
what is not a term by making calls to itself.
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Consider the definition: t is a term in the arithmetic language
if t is the constant 0, or t is a variable, or t has one of the forms
S(t1), +(t1,t2) or ⋅(t1,t2) where t1 and t2 are terms.

Coding of syntactic objects: the term +(v1,0) is the number
43·1286+40·1285+118·1284+49·1283+44·1282+48·128+41.
The codes 43, 40, 118, . . . are taken from modified ascii table.
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Consider the definition: t is a term in the arithmetic language
if t is the constant 0, or t is a variable, or t has one of the forms
S(t1), +(t1,t2) or ⋅(t1,t2) where t1 and t2 are terms.

If terms are (identified with) natural numbers, then the above
definition is an application of course-of-values recursion.
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So where do we meet recursion?

1. In some nice proofs, or in programming languages
like in the proof that every infinite recursively enumerable set is
the range of a one-to-one recursive function.

2. In the basic definitions in computability theory:
A function is primitive recursive if it can be derived from three
initial functions using primitive recursion and composition.
A function is partial recursive if it can be derived from the same
initial functions using primitive recursion, composition
and minimization.

3. In the definitions of syntactic notions in logic:
terms, formulas, free and bound occurrences of variables,
substitutability of terms, the substitution operation itself.
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How to get rid of recursion in definitions? Why?
If f is derived from g by minimization, f (x) = µv(g(x , v) = 0),
then y = f (x) ⇔ g(x , y) = 0 & ∀v<y (g(x , v) 6= 0).

If f is derived from g and h by composition, f = h ◦ g, then
y = f (x) ⇔ ∃v(g(x) = v & h(v) = y).
However there is nothing in the arithmetic language (in logic)
that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])
If the set of initial functions (normally consisting of x 7→ x + 1,
x 7→ 0 and [x1, . . , xk ] 7→ xj )

is extended by adding
[x , y ] 7→ x + y , [x , y ] 7→ x · y and e
where e(x , y) = 1 if x = y and e(x , y) = 0 otherwise,
then primitive recursion can be dropped from the definition.

Another option
Using ∆0 conditions.
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∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;

∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x ) } bounded? Answer: ∃x(y = 2x ) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11



Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);

a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x ) } bounded? Answer: ∃x(y = 2x ) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11



Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);

∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x ) } bounded? Answer: ∃x(y = 2x ) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11



Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b).

Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x ) } bounded? Answer: ∃x(y = 2x ) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11



Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x ) } bounded? Answer: ∃x(y = 2x ) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11



Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.

If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x ) } bounded? Answer: ∃x(y = 2x ) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11



Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.
If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas),

then ∆0 = ∆N
0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x ) } bounded? Answer: ∃x(y = 2x ) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11



Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.
If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x ) } bounded? Answer: ∃x(y = 2x ) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11



Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.
If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?

Is the set { y ; ∃x(y = 2x ) } bounded? Answer: ∃x(y = 2x ) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).

Vítek Švejdar, Prague Do We Need Recursion? 6/11



Recursion in various situations Bounded formulas (∆0-formulas) Syntactic notions without recursion

∆0 conditions, ∆0-formulas
Examples of ∆0 conditions (bounded conditions)
∃d≤b (d · a = b), can be written as a | b;
∀d≤(a + b)(d | a & d | b ⇒ d = 1);
a > 1 & ∀d<a(d | a ⇒ d = 1), can be written as Prime(a);
∃r<b (a = b · q + r) ∨ (b = 0 & q = 0) expresses
that q = Div(a,b). Saying that r = Mod(a,b) is similar.

∆0 conditions: a link between computability and logic
RE sets are exactly the projections of ∆0 conditions.
If ∆0-formulas are introduced (defined as a subclass of all
arithmetic formulas), then ∆0 = ∆N

0 .

The expressive power of ∆0-formulas
Is the condition y = zx bounded?
Is the set { y ; ∃x(y = 2x ) } bounded?

Answer: ∃x(y = 2x ) is
equivalent to ∀v≤y (v | y → (v = 1 ∨ 2 | v)).
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Exponentiation, i.e. the condition y = zx

x︷ ︸︸ ︷
1101 0000000110 00011 01 uy︷ ︸︸ ︷

110000101001111010011 1011011001 11011 11 v

1
↑

r2

000000000000000000001
↑

r1

0000000001 00001 01 w

Let ExpW(y , x , z,u, v ,w) be a formula (which obviously is ∆0)
that describes this date structure. It says that if an item in u is t
and the corresponding item in v is s, then either the next items
are 2t and s2, or they are 2t + 1 and s2 · z, etc. Then the
formula

∃u∃v∃w ExpW(y , x , z,u, v ,w) ∨
∨ (x = 0 & y = 1) ∨ (x 6= 0 & z < 2 & y = z)

expresses that y = zx . The number w does not exceed y3.
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More ∆0-formulas, strings

NPB(x) = y , the number of positive bits in the binary
expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

Length of a string w : the least z such that w < 128z .

Concatenation of two strings:

Number of occurrences of a character: if w is the number
83·1286+40·1285+83·1284+40·1283+48·1282+41·128+41,
then NOcc(48,w) = 1 and NOcc(41,w) = 2. We can also write
NOcc(0, S(S(0))) = 1 and NOcc(), S(S(0))) = 2.
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Terms (in the arithmetic language)
A string w is balanced if Lh(w) ≥ 2, NOcc((,w) = NOcc(),w),
and NOcc((,u) > NOcc(),u) for any proper initial segment u
of w . Example: (()()). Non-examples: v1011 and ()().

Quasiterm is any variable, the single-letter string 0, or any
string of the form S(w), +(w) or ⋅(w) where (w) is a balanced
string. Examples: +((0)) and S(()()()).

A quasiterm t is a term (abbreviated Term(t)) if every balanced
substing (w) of t is either immediately preceded by the letter S
and w is a quasiterm, or it is immediately preceded by + or ⋅
and w has the form u,v where u and v are quasiterms.

Properties of terms provable in PA: Any variable and the
string 0 are terms. If t1 and t2 are terms, then S(t1), +(t1,t2)
and ⋅(t1,t2) are terms. Any term has one the forms
S(t1), +(t1,t2) or ⋅(t1,t2) unless it is a variable or the string 0.
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Appendix: the number of positive bits
Work with a summation tree w for a number x :

0 0 0 0 0 0 0

x︷ ︸︸ ︷
1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0

00 00 00 01 01 10 00 01 10 01 01 10 10 00 10 10 1
000 001 011 001 011 011 010 100 2

0001 0100 0110 0110 3
00101 01100 4

10001 5

where the bits (of the single number w) are split to several lines
for better readability. It can be checked that y = NPB(x) is a
∆0-formula.
In the above example, the summation tree witnesses the fact
that the number of positive bits in the number 24 308 687 is 17.
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