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Abstract

Q
− is a weaker variant of Robinson arithmetic Q in which addition and

multiplication are partial functions, i.e. ternary relations that are graphs

of possibly non-total functions. We show that Q is interpretable in Q
−.

This gives an alternative answer to a question of A. Grzegorczyk whether

Q
− is essentially undecidable.

1 Introduction

Robinson arithmetic Q was introduced by Rafael Robinson at the 1950 Inter-
national Congress on Mathematics as an axiomatic theory formulated in the
language {0,S,+, ·} with a constant, a unary function symbol and two binary
function symbols. Its axiomatization consists of three axioms stipulating that
the successor symbol S represents a function that is one-one and with a range
containing all numbers except the number 0 (zero), and there are four other ax-
ioms about addition + and multiplication · saying that x+0 = x, that x ·0 = 0,
and that the sum x + S(y) and the product x · S(y) is naturally connected to
and uniquely determined by the sum x + y and the product x · y respectively,
see below. It is usually the book [8] by Tarski, Mostowski, and Robinson that
is now quoted as the canonical source containing the presentation of Robinson
arithmetic. Peano arithmetic PA is an extension of Q formulated in the same
language; it is obtained by adding the induction schema to the seven axioms
of Q. Nowadays it is more convenient to enrich the language of Robinson (and
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Peano) arithmetic by adding one or both of the symbols ≤ and < for unstrict
and strict ordering, and by adding some straightforward axioms about these
symbols, see e.g. [4]. Since these extensions are merely definitional extensions
of the original theory of Rafael Robinson, they are still called Robinson arith-
metic and denoted Q. The presence of one or both of the symbols ≤ and <

makes it easy to formulate the definition of bounded (i.e., ∆0) formula and to
define fragments of PA like I∆0, where the induction schema is restricted to
bounded formulas only, see [6], or [4] again.

Besides finite axiomatizability, an important property of Robinson arith-
metic Q is its essential undecidability : each consistent extension of Q is unde-
cidable. Recall that a theory S is an extension of a theory T if the language of T

is a subset of the language of S and if all theorems of T are provable in S. The
essential undecidability of Q is especially interesting in conjunction with the fact
that Q is a weak theory: even the most basic properties of + and · like com-
mutativity and associativity are unprovable in Q. Another important feature of
Robinson arithmetic is its capability to interpret theories. Hájek and Pudlák [4]
show a proof that I∆0, and even some extensions of I∆0, are interpretable in Q,
in the sense defined in [8] and mentioned below in some more details. The
method used in [4] for constructing an interpretation in Q is called shortening

of cuts and was invented by R. Solovay in the unpublished [7]. Note however
that the most technical part of the proof that Q interprets I∆0 is omitted in [4],
and the reader is referred to [5].

In connection with the project to base the explanation of incompleteness and
undecidability phenomena on axiomatic systems different from PA or Q, Andrzej
Grzegorczyk asked the following question. Let the function symbols + and · in
the language of Robinson arithmetic be replaced by ternary predicate symbols
A and M, and let Q− be a theory obtained from Q by replacing the axioms
about + and · by axioms saying that A and M represent graphs of binary
functions that may be non-total but do satisfy a natural reformulation of the
corresponding axioms of Q. So Q−, if enhanced by axioms asserting totality of
operations, would be almost the same as Q except that nesting of terms would
be restricted. Now Grzegorczyk’s question reads: is Q− essentially undecidable?

Petr Hájek presented Grzegorczyk’s question at the Prague-Vienna Work-
shop on Proof Theory and Proof Complexity in January 2006. He answered the
question positively by elaborating the Σ-completeness and self-reference theo-
rems for the theory Q−, and he then also generalized the result for the case
that the underlying logic is not the classical one, but a weak fuzzy logic, see [3].
After listening to P. Hájek’s talk about Grzegorczyk’s question, several peo-
ple (J. Kraj́ıček, J. Joosten, and the present author) conjectured that Q was
interpretable in Q−. Note that this represents an alternative approach to the
question about essential undecidability of Q−, because interpretability of an
essentially undecidable theory T in a theory S entails essential undecidability
of S (see [8]).
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Later it appeared that what Petr Hájek worked on was in fact his reasonable
interpretation of Grzegorczyk’s question: the “real” Grzegorczyk’s theory Q− is
weaker than the theory from P. Hájek’s talk at the Prague-Vienna Workshop.

In this paper we show that Robinson arithmetic Q is interpretable in the
theory Q−, and it is the case even if Q− has the meaning defined by A. Grze-
gorczyk. We also mention some connections and outline the Solovay’s method
of shortening of cuts.

It should be remarked that there exists a yet another way how to answer
a question about an essential incompleteness and undecidability of a theory,
namely use of Gödel Second Incompleteness Theorem. D. Willard in [9] men-
tions another Solovay’s unpublished theorem saying that the Second Incom-
pleteness Theorem is true for all reasonable extensions of Q even if addition and
multiplication are non-total; hence in our setting, is true for all reasonable ex-
tensions of Q−. Note that Willard’s papers, e.g. [9, 10], yield both positive and
negative results about validity of the Second Incompleteness Theorem in the
situations where the axiomatic theory is very weak, some or all of its functions
are non-total and the proof system varies.

2 Preliminaries

Before constructing an interpretation of Q in Q− we state the definition of the
theory Q− and we also make the notion of interpretability more precise.

The language of the theory Q− is {0,S,A,M,≤} where 0 is a constant, S is
a unary function, A and M are ternary relations, and ≤ is a binary predicate.
The axioms of Q− are the following:

A: ∀x∀y∀z1∀z2(A(x, y, z1) & A(x, y, z2) → z1 = z2),

M: ∀x∀y∀z1∀z2(M(x, y, z1) & M(x, y, z2) → z1 = z2),

Q1: ∀x∀y(S(x) = S(y) → x = y),

Q2: ∀x(S(x) 6= 0),

Q3: ∀x(x 6= 0 → ∃y(x = S(y))),

Q4: ∀xA(x, 0, x),

G5: ∀x∀y∀z(∃u(A(x, y, u) & z = S(u)) → A(x,S(y), z)),

Q6: ∀xM(x, 0, 0),

G7: ∀x∀y∀z(∃u(M(x, y, u) & A(u, x, z)) → M(x,S(y), z)),

Q8: ∀x∀y(x ≤ y ≡ ∃zA(z, x, y)).

Hájek’s variant of Q− has axioms H5 and H7 instead of G5 and G7, where

H5: ∀x∀y∀z(∃u(A(x, y, u) & z = S(u)) ≡ A(x,S(y), z)),

H7: ∀x∀y∀z(∃u(M(x, y, u) & A(u, x, z)) ≡ M(x,S(y), z)).
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As to omitting parentheses, the connective → has lower precedence than
& and ∨ , but higher than equivalence ≡ . The axiom G5 can also be written as
∀x∀y∀u(A(x, y, u)→A(x,S(x),S(u)). The axiom A ensures that for each x and y

there exists at most one z which is their sum, i.e. which satisfies A(x, y, z). We
will informally write x+y to denote such a z. We allow to write x+y regardless
whether x and y actually have a sum; so x+y can be undefined. We write !(x+y)
to indicate that x and y do have a sum, i.e. that x + y exists (is defined).
It should however be stressed that this convention does not mean a change
in the underlying logic, which is still the classical first-order predicate logic
where function symbols denote total functions. The same convention applies to
multiplication: !(x · y) says that x and y have a product x · y. We allow nesting,
i.e. we allow writing terms in the language {0,S,+, ·}. If a term t is defined
then all its subterms must be defined. For example, if !(z · y + x) then !(z · y).
We will also have to be careful when using the equality symbol =. The meaning
of t = s, where t and s are terms, is “both t and s exist and are equal”. So for
example, from (z + y) + x = u · v one can conclude that (z + y) + x is defined
(and thus !(z +y)) and also u ·v is defined. Using these conventions, the axioms
Q4, G5, Q6, and G7 can be rewritten as

Q4: ∀x(x + 0 = x),

G5: ∀x∀y(!(x + y) → x + S(y) = S(x + y)),

Q6: ∀x(x · 0 = 0),

G7: ∀x∀y(!(x · y + x) → x · S(y) = x · y + x),

while Hájek’s axioms H5 and H7 would be

H5: ∀x∀y(!(x + y) ∨ !(x + S(y)) → x + S(y) = S(x + y)),

H7: ∀x∀y(!(x · y + x) ∨ !(x · S(y)) → x · S(y) = x · y + x).

To make the exposition complete, the original axioms Q5 and Q7 of Robinson
arithmetic are ∀x∀y(x+S(y) = S(x+y)) and ∀x∀y(x·S(y) = x·y+x) respectively.
Observe that axiom G5 implies that if !(x+y) then !(x+S(y)), while H5 implies
that !(x+y) iff !(x+S(y)). As to multiplication, none of G7 and H7 guarantees
that !(x · S(y)) provided !(x · y). This is because if !(x · y) then the sum x · y + x

still may not exist.

A translation ∗ of formulas of a theory T to formulas of a theory S is deter-
mined by a definitional extension S′ of the theory S, a translation of symbols,
and a domain. A translation of symbols is a function ♯ which maps each sym-
bol H in the language of T to a symbol H♯ of the same arity and kind (function
or predicate) in the language of the definitional extension S′. A domain is a for-
mula δ(x) of S′ with one free variable used to relativize quantifiers in the given
translation ∗ of formulas: (∀xϕ)∗ is ∀x(δ(x)→ϕ∗) and (∃xϕ)∗ is ∃x(δ(x)&ϕ∗).
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Logical connectives are preserved by a translation of formulas. A translation ∗
of formulas is an interpretation of T in S if its domain δ(x) satisfies

S′ ⊢ ∃xδ(x) and S′ ⊢ ∀x1 . . ∀xn(δ(x1) & . . & δ(xn)→ δ(F ♯(x1, . . , xn)))

for each function symbol F in the language of T (i.e. the domain is provably
non-empty and closed under the interpreted functions), and if, moreover, S′ ⊢ ϕ∗

for each axiom ϕ of T . A theory T is interpretable in S if there exists an
interpretation of T in S.

So we consider the same interpretations as in [8]; to an expert, they can be
described as global one-dimensional non-parametrical interpretations. It is not
difficult to check that if ∗ is an interpretation of T in S then, for each theorem ϕ

of T , the sentence ϕ∗ is provable in the definitional extension S′ given by the
interpretation ∗; also if T is interpretable in S and S is consistent then T is
consistent, too.

3 An interpretation of Q in Q−

We write “1” as a shorthand for S(0). Instead of interpreting Q as it is, it
appears more convenient to interpret somewhat stronger theory than Q. So we
prove the following.

Theorem 1 Robinson arithmetic Q enhanced by axioms asserting associativity

of both operations, left distributivity, and axioms ∀x(0 + x = x), ∀x(1 · x = x),
∀x∀y∀z(y + x = z + x → y = z), is interpretable in the theory Q−.

Proof We choose Q− itself as its definitional extension (see our definition of
interpretability above), and we choose an identical mapping as the translation
of symbols. So the only non-trivial part of the interpretation we construct is
its domain, which we denote J(x). It will be useful to think of J as a “set”
of natural numbers, i.e. identify J with the collection { x ; J(x) }. Before
constructing J , we subsequently define five auxiliary formulas (sets) A, B, C,
K, and I. The purpose of A, B, and C is to restrict the universe to numbers
having nice properties, while K and I will be closed under certain operations.
Finally we will have to verify that addition and multiplication are total on J×J ,
the set J is closed under both of them, and all axioms of Q as well as the
additional axioms listed in our Theorem “are valid in Q− in the sense of J”, i.e.
their translations are provable if J is used to relativize quantifiers. Since the
symbol ≤ is introduced by a definition, we simply ignore it. Put

A = { x ; ∀y(S(y) + x = S(y + x)) & ∀y∀z(y + x = z + x → y = z) &

& ∀y∀z(!(z + y) → (z + y) + x = z + (y + x)) }.

Note that from S(y) + x = S(y + x) it follows that !(y + x). So an important
property of all elements of A is that they can be added to any number from
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the right. We claim that A is an inductive set, i.e. that Q− ⊢ 0 ∈ A and
Q− ⊢ ∀x(x ∈ A → S(x) ∈ A). Verification of 0 ∈ A is easy. Assume x ∈ A. Let
y be given. From S(y) + x = S(y + x) we have !(S(y) + x) and !(y + x). Then
axiom G5 yields S(y) + S(x) = S(S(y) + x) and S(y + S(x)) = S(S(y + x)). So
using S(y) + x = S(y + x) once again, we obtain S(y) + S(x) = S(y + S(x)). So
S(x) satisfies the first condition in the definition of A. Now let y and z such
that y + S(x) = z + S(x) be given. From x ∈ A we know !(y + x) and !(z + x).
So axiom G5 is applicable and yields S(y +x) = S(z +x). By Q1, y +x = z +x.
Then from x ∈ A we have y = z. So S(x) satisfies the second condition in the
definition of A. Verification that S(x) also satisfies the third condition is similar;
now from !(z+y) we have (z+y)+x = z+(y+x), and so !((z+y)+x), !(y+x) and
!(z+(y+x)), and using axiom G5 three times yields (z+y)+S(x) = z+(y+S(x)).
Thus indeed, A is an inductive set. Observe that each pair of elements of A

has a sum which, however, may lie outside A. Also observe that each pair x, y

of elements of A satisfies y + S(x) = S(y + x), i.e. satisfies the equality from
axiom Q5, and this is true despite the fact that only the weaker axiom G5 was
used to show the properties of A. However, A is not a domain of any interesting
interpretation because the axiom Q3 may be not true in the sense of A. Indeed,
it is not evident how to show x ∈ A provided S(x) ∈ A. Now let

B = { x ∈ A ; ∀z∈A∀u !(u + z · x) & ∀z∈A∀y(!(z · y) →

→ z · (y + x) = z · y + z · x) }.

It is easy to verify that 0 ∈ B. Assume x ∈ B. If z ∈ A then from the associative
property of z and from !(u + z · x) we have (u + z · x) + z = u + (z · x + z).
Then axiom G7 yields !(u + z · S(x)). Thus S(x) satisfies the first condition
in the definition of B. For the second condition, assume that z ∈ A and that
z · (y + x) = z · y + z · x, consider the equations

z · (y + S(x)) = z · S(y + x) = z · (y + x) + z,

z · y + z · S(x) = z · y + (z · x + z) = (z · y + z · x) + z,
(1)

and note that they follow from axioms of Q− and also that the assumption z ∈ A

is used twice: to conclude that !(z · (y + x) + z), and to shift the parentheses
in the second line. It follows from (1) that S(x) satisfies the second condition
in the definition of B. So S(x) ∈ B and thus B is an inductive set. We now
know that associativity of + holds for all elements of B for which it makes sense
(since B ⊆ A). Also left distributivity holds for all elements of B for which it
makes sense. Any two elements of B have both a sum and a product, which
however may lie outside B. Now we are able to define the third auxiliary set:

C = { x ∈ B ; ∀y∈B∀z∈B((z · y) · x = z · (y · x)) }.

From y ∈ B we have !(z · y) and so (z · y) · 0 = 0. Thus 0 ∈ C. To show
∀x(x ∈ C → S(x) ∈ C), assume that y ∈ B and z ∈ B, assume that !((z · y) ·x)
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and !(z · (y · x)), and consider the equations

(z · y) · S(x) = (z · y) · x + z · y,

z · (y · S(x)) = z · (y · x + y) = z · (y · x) + z · y.
(2)

Note that !((z ·y) ·x+z ·y) and !(z ·(y ·x)+z ·y) follow from y satisfying the first
condition in the definition of B. Also note that the distributivity rule, used in
the second line of (2), is legally used since the right addend in the parenthesis
(i.e. y) is in B and the factor to the left of the parenthesis (i.e. z) is in A; the
latter is true since B ⊆ A. The left addend in the parenthesis, i.e. y · x, can be
arbitrary. It easily follows from (2) that if x ∈ C then S(x) ∈ C. So C is an
inductive set which is a subset of B.

The rest is Solovay’s method of shortening of cuts with modifications designed
to make the method work for the weak theory Q−. Put

K = { x ; ∀u∀v∈C(u + v = x → u ∈ C) },

I = { x ; 0 + x = x & ∀y(y ∈ K ≡ y + x ∈ K) },

J = { x ; 1 · x = x & ∀y∈I(y · x ∈ I) }.

The meaning of y+x ∈ K is “the sum y+x exists and is an element of K”, and
similarly for y · x ∈ I. We enumerate and prove a series of properties of K, I,
and J .

(i) K ⊆ C. This is evident since from x ∈ K and x + 0 = x we have x ∈ C.

(ii) K is an inductive set. Assume u + v = 0 and v ∈ C. If u = 0 then u ∈ C.
Otherwise u = S(z) for some z. From S(z) + v = 0 and v ∈ C ⊆ A, and from
the first condition in the definition of A we obtain S(z + v) = 0, a contradiction
with axiom Q2. Observe that the usual construction, as described e.g. in [4],
dictates to take K = { x ; ∀y≤x(y ∈ C) } in this place. If we followed it, we
would end up in a serious problem of verifying that ∀u∀v(u + v = 0 → u = 0);
note that this sentence is easily proved in Hájek’s variant of Q−. Now assume
x ∈ K and let u and v be such that v ∈ C and u + v = S(x). Once again, if
u = 0 then u ∈ C and we are done. If u = S(z) then from v ∈ C ⊆ A we have
S(z +v) = S(x), so z +v = x. From x ∈ K we have z ∈ C. Since C is inductive,
we indeed have u = S(z) ∈ C.

(iii) ∀x(S(x) ∈ K → x ∈ K). Assume that S(x) ∈ K and let u and v be such
that v ∈ C and u + v = x. Then u + S(v) = S(x) and S(v) ∈ C, so S(x) ∈ K

yields u ∈ C.

(iv) I ⊆ K. If x ∈ I then the choice y := 0 yields 0 + x ∈ K; from this and
from 0 + x = x it follows that x ∈ K.

(v) I is inductive. Evidently 0 ∈ I. Assume x ∈ I. Then 0 + S(x) = S(x)
is evident. Also the implication → in ∀y(y ∈ K ≡ y + S(x) ∈ K) easily
follows from x ∈ I and K being inductive. To verify ←, assume y + S(x) ∈ K.
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From x ∈ I ⊆ A we know !(y + x). Thus S(y + x) = y + S(x) ∈ K. Now
property (iii) yields y + x ∈ K. So indeed, y ∈ K.

(vi) ∀x∈I∀y(y ∈ I ≡ y + x ∈ I). We have to show, for an x ∈ I, that

∀y(y ∈ I → 0 + (y + x) = y + x & ∀z(z ∈ K ≡ z + (y + x) ∈ K)), (3)

∀y(y + x ∈ I → 0 + y = y & ∀z(z ∈ K ≡ z + y ∈ K)). (4)

Assume y ∈ I. Then from 0+ y = y and x ∈ A we have 0+(y +x) = y +x. Let
z be given. From y ∈ I ⊆ A we know !(z +y) and thus (z +y)+x = z +(y +x).
If z ∈ K then y ∈ I yields z +y ∈ K, and then x ∈ I yields z +(y +x) ∈ K. On
the other hand, (z + y) + x ∈ K and x ∈ I yields z + y ∈ K, and this together
with y ∈ I yields z ∈ K. So (3) is true. To verify (4), assume y + x ∈ I. Look
at the definition of K: from y +x ∈ I ⊆ K and x ∈ I ⊆ C we have y ∈ C. Thus
y ∈ A, and !(z + y) for any z. From !(0 + y) and 0 + (y + x) = (y + x), and
from x satisfying the third and second condition in the definition of A, we have
0 + y = y. Let z be given. If z ∈ K then from z + (y + x) ∈ K, the associative
property of x and x ∈ I we have z + y ∈ K. On the other hand, if z + y ∈ K

then from x ∈ I we have (z + y) + x ∈ K and z + (y + x) ∈ K, and y + x ∈ I

yields z ∈ K. So (4) is also true. Observe that this property (vi) implies that I

is closed under addition.

(vii) J ⊆ I. This is obtained similarly as K ⊆ C above, now choosing y := 1.

(viii) J is an inductive set. Evidently 0 ∈ J . Assume x ∈ J . Then 1·S(x) = S(x)
follows from 1 · x = x using axiom G7. Let y ∈ I be given. From y · x ∈ I and
y ∈ I ⊆ A we have !(y ·x+ y), and so y ·S(x) = y ·x+ y. Since I is closed under
addition, we have y · S(x) ∈ I.

(ix) J is closed under addition. Assume x1, x2 ∈ J . To show x1 + x2 ∈ J ,
use the distributivity rule to observe that 1 · (x1 + x2) = x1 + x2, and use the
distributivity rule and the fact that I is closed under addition to observe that
∀y∈I(y · (x1 + x2) ∈ I).

(x) J is closed under multiplication. Assume x1, x2 ∈ J . Then 1·(x1·x2) = x1·x2

is evident. Let y ∈ I be given. From x1 ∈ J and y ∈ I we have y · x1 ∈ I, from
this and x2 ∈ J we have (y · x1) · x2 ∈ I, and the associative property of x2

yields y · (x1 · x2) ∈ I.

(xi) ∀x(S(x) ∈ J → x ∈ J). Assume S(x) ∈ J . From J ⊆ K and (iii) we have
x ∈ K ⊆ B, so !(1 · x) and hence 1 · S(x) = 1 · x + 1. Then from 1 · S(x) = S(x)
we have 1 · x = x. Assume y ∈ I. Similarly as above, from x ∈ K ⊆ B we have
!(y · x), and from y ∈ I ⊆ A we have !(y · x + y). So y · x + y = y · S(x) ∈ I, and
from the implication ← in (vi) we obtain y · x ∈ I.

To summarize, J is closed under all functions of Q, i.e. 0, S, +, and ·, and so J

is a domain of an interpretation. Axiom Q3 is valid in the sense of J because of
the property (xi). Axioms Q1, Q2, Q4–Q7 are valid in the sense of J because
they are universal sentences.
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Remark Let the theory from our Theorem, i.e. Q enhanced by both as-
sociativity rules, the left distributivity rule, left neutrality of 0 and 1 w.r.t.
+ and · respectively, and ∀x∀y∀z(y + x = z + x → y = z), be temporarily
called Q+. Once we have an interpretation of Q+ (in Q or in Q−), it is easy to
use the same but simplified method, see [4], to construct an interpretation of
some extension T of Q+ in Q+ (and thus in Q and in Q−).
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