The Limit Lemma in Fragments of Arithmetic

Vítězslav Švejdar*†

May 25, 2003

The original publication is available at CMUC.

Abstract

The recursion theoretic limit lemma, saying that each function with a Σ_{n+2} graph is a limit of certain function with a Δ_{n+1} graph, is provable in B Σ_{n+1} . **Keywords** Limit lemma, fragments of arithmetic, collection scheme. **AMS 2000 Subject Classification** 03F30, 03D55.

Let N be the set of all natural numbers and let a function $G : N^{k+1} \to N$ be such that for each x_1, \ldots, x_k the function $s \mapsto G(\underline{x}, s)$, where \underline{x} is a shorthand for x_1, \ldots, x_k , is eventually constant. Then we use $\lim_s G(\underline{x}, s)$ to denote the value the function $s \mapsto G(\underline{x}, s)$ assumes in each sufficiently large s. The *limit lemma* says that for each set $A \subseteq N^k$ such that $A \in \Delta_2$ there exists a recursive function $G : N^{k+1} \to N$ such that $\lim_s G(\underline{x}, s) = 1$ whenever $[x_1, \ldots, x_k] \in A$, and $\lim_s G(\underline{x}, s) = 0$ whenever $[x_1, \ldots, x_k] \notin A$. For the definition of Σ_n, Π_n , and Δ_n , where $n \ge 1$, see e.g. [5], and recall that a set is Δ_1 if and only if it is recursive, and that $\Delta_n = \Sigma_n \cap \Pi_n$. The version of the limit lemma for functions says that for each function $F : N^k \to N$ whose graph is Σ_2 there exists a recursive $G : N^{k+1} \to N$ such that $F(\underline{x}) = \lim_s G(\underline{x}, s)$ for each k-tuple $[x_1, \ldots, x_k]$. As can be seen e.g. from [4] and [2], the limit lemma is a useful tool in recursion theory.

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language $\{+, \cdot, 0, S, \leq, <\}$; its axioms can be described as a finite set of base axioms plus the induction scheme. For details see e.g. [3]. Bounded quantifiers are quantifiers of the form $\forall v \leq x, \exists v \leq x, \forall v < x, \text{ and } \exists v < x$. A bounded formula, or a Δ_0 -formula, is a formula all quantifiers of which are bounded. A Σ_n -formula is a formula having the form $\exists v_1 \forall v_2 \exists ... v_n \varphi$, with *n* alternating quantifiers, where the first quantifier is existential and the matrix φ is a Δ_0 -formula. A Π_n -formula is a formula of the form $\forall v_1 \exists v_2 \forall ... v_n \varphi$ where again $\varphi \in \Delta_0$. So $\Sigma_0 = \Pi_0 = \Delta_0$. The theory I\Gamma, where Γ is Σ_n or Π_n , is PA with the induction scheme restricted to Γ -formulas. The collection scheme is the scheme

$$\forall y \forall x (\forall v \leq x \exists z \varphi(v, z, y) \rightarrow \exists t \forall v \leq x \exists z \leq t \varphi(v, z, y)).$$

^{*}Charles University, Prague, vitezslavdotsvejdaratcunidotcz, http://www1.cuni.cz/~svejdar/. Palachovo nám. 2, 116 38 Praha 1, Czech Republic.

[†]This paper was supported by grant 401/01/0218 of the Grant Agency of the Czech Republic.

The theory $B\Gamma$, where again Γ is Σ_n or Π_n , is $I\Delta_0$ extended by the collection scheme restricted to Γ -formulas. It is known that for each n the theories $I\Sigma_n$ and Π_n are equivalent, and also $B\Pi_n$ and $B\Sigma_{n+1}$ are equivalent. $B\Sigma_{n+1}$ is a theory stronger than $I\Sigma_n$, but weaker than $I\Sigma_{n+1}$. For details and proofs, see again e.g. [3]. A useful property of $I\Sigma_n$ is that it proves induction for $\Sigma_0(\Sigma_n)$ -formulas, i.e. for formulas built up from Σ_n -formulas using logical connectives and bounded quantification. Also the least number principle for $\Sigma_0(\Sigma_n)$ -formulas is provable in $I\Sigma_n$. A useful property of $B\Sigma_{n+1}$ is that any formula obtained from Σ_{n+1} -formulas by bounded quantification is $B\Sigma_{n+1}$ -equivalent to a Σ_{n+1} -formula. This fact can be used to verify that each $\Sigma_0(\Sigma_n)$ -formula is $B\Sigma_{n+1}$ -equivalent to a Σ_{n+1} -formula. We will also use the fact that $\Sigma_0(\Sigma_n)$ -induction is provable in $B\Sigma_{n+1}$.

P. Hájek and A. Kučera show in [2] that the limit lemma for sets is provable in I Σ_1 . P. Clote in an earlier paper [1] uses a version of the limit lemma for Σ_{n+2} functions, saying that any function having a Σ_{n+2} graph is a limit of a function having a Δ_{n+1} graph, and proves this version in $B\Sigma_{n+2}$. I show that the results from [2] and [1] can be considerably improved: the limit lemma for Σ_{n+2} functions is provable already in $B\Sigma_{n+1}$.

Note that speaking about sets definable in a model, in the formulation of Lemma 1 and Theorem 1 below, is a way to overcome the difficulty that one cannot directly speak about sets and functions in the arithmetical language. In proofs of Lemma 1 and Theorem 1 we are less careful and ignore this difficulty. Recall that if $n \geq 1$ then a set is Σ_n if and only if it is Σ_n -definable in the standard model of arithmetic. So a set simultaneously Σ_n - and Π_n -definable in a model corresponds to a set which, on metamathematical level, is Δ_n .

Lemma 1 Let **M** be a model of $B\Sigma_{n+1}$ with domain M and let $A \subseteq M^k$ be simultaneously Σ_{n+2} - and Π_{n+2} -definable in **M**. Then there exists a function $G: M^{k+1} \to M$ with a graph $\Sigma_0(\Sigma_n)$ -definable in **M** such that $\lim_s G(\underline{x}, s) = 1$ whenever $[x_1, \ldots, x_k] \in A$ and $\lim_s G(\underline{x}, s) = 0$ whenever $[x_1, \ldots, x_k] \notin A$.

Proof Let the set A be as specified and let φ and ψ be Σ_n -formulas such that $A = \{ [x_1, \ldots, x_k]; \exists u \forall v \varphi(\underline{x}, u, v) \}$ and $\overline{A} = \{ [x_1, \ldots, x_k]; \exists u \forall v \psi(\underline{x}, u, v) \}$, where \overline{A} is the complement of A. Think of the k-tuple \underline{x} as fixed and think of φ and ψ as two zero-one tables unbounded in two directions, with u running down and v running to the right. One and only one of the two tables contains rows consisting entirely of ones. Let the function H be defined as follows:

$$H(\underline{x},s) = \begin{cases} 1 & \text{if } \forall u \leq s \, (\forall v \leq s \, \psi(\underline{x},u,v) \to \exists u' \leq u \, \forall v \leq s \, \varphi(\underline{x},u',v)) \\ 0 & \text{otherwise.} \end{cases}$$

Assume that $[x_1, \ldots, x_k] \notin A$. Then $\exists u \forall v \psi(\underline{x}, u, v)$ and $\forall u \exists v \neg \varphi(\underline{x}, u, v)$. Let u_0 be *some* number satisfying $\forall v \psi(\underline{x}, u_0, v)$; note that the existence of least such number is not guaranteed in $B\Sigma_{n+1}$. By $B\Sigma_{n+1}$ there exists a number s_0 such that $\forall u \leq u_0 \exists v \leq s_0 \neg \varphi(\underline{x}, u, v)$. We can assume $s_0 \geq u_0$. If $s \geq s_0$ then there

	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	1	0	0	
3	0	0	0	0	0	1	0	0	
4	0	0	1	1	0	1	0	0	
5	0	0	1	1	0	1	0	0	
6	0	0	0	1	0	1	0	0	
7	0	0	1	1	0	1	0	0	
8	0	0	1	1	0	1	0	0	

Figure 1: Computing scores

exists a number $u \leq s$, namely u_0 , such that $\forall v \leq s \psi(\underline{x}, u, v)$ and simultaneously $\forall u' \leq u \exists v \leq s \neg \varphi(\underline{x}, u', v)$. So $H(\underline{x}, s) = 0$ for all such s, i.e. $\lim_s H(\underline{x}, s) = 0$. The proof that $\lim_s H(\underline{x}, s) = 1$ whenever $[x_1, \ldots, x_n] \in A$ is similar. The graph of H is $\Sigma_0(\Sigma_n)$. So the function H is as desired. QED

Theorem 1 Let \mathbf{M} be a model of $B\Sigma_{n+1}$ with domain M and let $F: M^k \to M$ have a graph Σ_{n+2} -definable in \mathbf{M} . Then there exists a function $G: M^{k+1} \to M$ with a graph $\Sigma_0(\Sigma_n)$ -definable in \mathbf{M} such that $F(\underline{x}) = \lim_s G(\underline{x}, s)$ for each \underline{x} .

Proof Let $F \in \Sigma_{n+2}$ with k variables be given. It is clear that $F \in \Delta_{n+2}$ since for the complement of its graph we have $[\underline{x}, y] \notin F \Leftrightarrow \exists y'(y' \neq y\&[\underline{x}, y'] \in F)$. By Lemma 1 applied to the graph of F there exists a function $H \in \Sigma_0(\Sigma_n)$ such that $\lim_t H(\underline{x}, y, t) = 1$ whenever $F(\underline{x}) = y$ and $\lim_t H(\underline{x}, y, t) = 0$ whenever $F(\underline{x}) \neq y$. As in the proof of Lemma 1, let \underline{x} be fixed and think of the function H as a table with t running down and y running to the right. Let the score of a number y at stage s be defined as the length of maximal contiguous segment of ones which lies in column y, the bottom end of which is in row s and the top end of which is in a row $t \geq y$. If H is, for example, as in Fig. 1 then the scores of numbers 2, 3, and 5 at stage 5 are 2, 2, and 1 respectively, and the score of any other number at stage 5 is zero. The scores of numbers 2, 3, and 5 at stage 8 are 2, 5, and 4. Let $G(\underline{x}, s)$ be defined as the least y having maximal possible score at stage s. So in our example from Fig. 1 we have $G(\underline{x}, 5) = 2$ and $G(\underline{x}, 8) = 3$. It is evident that a score of a number $y \leq s$ at stage s is a number not exceeding $s + 1 - y \leq s + 1$ and that all y's greater than s have zero score at stage s. The formula

$$\exists u \leq s + 1 \left(z + u = s + 1 \& y \leq u \& \forall t \leq s \left(u \leq t \to H(\underline{x}, y, t) = 1 \right) \right),$$

i.e. the formula the score of y at stage s is at least z, is a $\Sigma_0(\Sigma_n)$ -formula. So by $\Sigma_0(\Sigma_n)$ -induction available in $B\Sigma_{n+1}$, there exists a greatest z satisfying this formula, and the score of a number y at stage s is correctly defined. Also, the formulas the number z is the maximal score at stage s and the number y is the least number having the maximal score at stage s are $\Sigma_0(\Sigma_n)$ -formulas. So

again by $\Sigma_0(\Sigma_n)$ -induction, the maximal score exists, and the function G is correctly defined. We have to verify that $\lim_s G(\underline{x}, s) = F(\underline{x})$. Let $y_0 = F(\underline{x})$. We know that $\lim_s H(\underline{x}, y_0, t) = 1$. So let the number t_0 be such that $t_0 \ge y_0$ and $\forall t(t \ge t_0 \to H(\underline{x}, y_0, t) = 1)$. We also know that $\lim_s H(\underline{x}, y, t) = 0$ for each $y \le t_0$ such that $y \ne y_0$. Thus

$$\forall y \leq t_0 \, (y \neq y_0 \to \exists t (t \geq t_0 \& H(\underline{x}, y, t) = 0)).$$

By Σ_{n+1} -collection (more precisely, by $\Sigma_0(\Sigma_n)$ -collection available in $B\Sigma_{n+1}$) there exists an s_0 such that

$$\forall y \leq t_0 (y \neq y_0 \rightarrow \exists t \leq s_0 (t \geq t_0 \& H(\underline{x}, y, t) = 0)).$$

This means that if $s \ge s_0$ then the score of all numbers $y \le t_0$ such that $y \ne y_0$ at stage s is lower than the score of y_0 . Since ones occuring in column y above the diagonal line do not count, the score of any $y > t_0$ at stage s is automatically lower than the score of y_0 . So $G(\underline{x}, s) = y_0$ for each $s \ge s_0$, and thus $\lim_s G(\underline{x}, s) = y_0$. QED

References

- P. Clote. Partition relations in arithmetic. In C. A. DiPrisco, editor, Methods in Mathematical Logic, volume 1130 of Lecture Notes in Mathematics, pages 32–68. Springer, 1985.
- [2] P. Hájek and A. Kučera. On recursion theory in IΣ₁. J. Symbolic Logic, 54:576–589, 1989.
- [3] P. Hájek and P. Pudlák. Metamathematics of First Order Arithmetic. Springer, 1993.
- [4] A. Kučera. An alternative, priority-free, solution to Post's problem. In J. Gruska, B. Rovan, and J. Wiedermann, editors, *Mathematical Foundations* of Computer Science 1986, Bratislava, Czechoslovakia, August 25–29, 1986, volume 233 of Lecture Notes in Computer Science, pages 493–500. Springer, 1986.
- [5] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.