The Limit Lemma in Fragments of Arithmetic

Vítězslav Švejdar*i

May 25, 2003
The original publication is available at CMUC.

Abstract

The recursion theoretic limit lemma, saying that each function with a Σ_{n+2} graph is a limit of certain function with a Δ_{n+1} graph, is provable in $\mathrm{B} \Sigma_{n+1}$. Keywords Limit lemma, fragments of arithmetic, collection scheme.

AMS 2000 Subject Classification 03F30, 03D55.

Let N be the set of all natural numbers and let a function $G: \mathrm{N}^{k+1} \rightarrow \mathrm{~N}$ be such that for each x_{1}, \ldots, x_{k} the function $s \mapsto G(\underline{x}, s)$, where \underline{x} is a shorthand for x_{1}, \ldots, x_{k}, is eventually constant. Then we use $\lim _{s} G(\underline{x}, s)$ to denote the value the function $s \mapsto G(\underline{x}, s)$ assumes in each sufficiently large s. The limit lemma says that for each set $A \subseteq \mathrm{~N}^{k}$ such that $A \in \Delta_{2}$ there exists a recursive function $G: \mathrm{N}^{k+1} \rightarrow \mathrm{~N}$ such that $\lim _{s} G(\underline{x}, s)=1$ whenever $\left[x_{1}, \ldots, x_{k}\right] \in A$, and $\lim _{s} G(\underline{x}, s)=0$ whenever $\left[x_{1}, . ., x_{k}\right] \notin A$. For the definition of Σ_{n}, Π_{n}, and Δ_{n}, where $n \geq 1$, see e.g. [5], and recall that a set is Δ_{1} if and only if it is recursive, and that $\Delta_{n}=\Sigma_{n} \cap \Pi_{n}$. The version of the limit lemma for functions says that for each function $F: \mathrm{N}^{k} \rightarrow \mathrm{~N}$ whose graph is Σ_{2} there exists a recursive $G: \mathrm{N}^{k+1} \rightarrow \mathrm{~N}$ such that $F(\underline{x})=\lim _{s} G(\underline{x}, s)$ for each k-tuple $\left[x_{1}, \ldots, x_{k}\right]$. As can be seen e.g. from [4] and [2], the limit lemma is a useful tool in recursion theory.

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language $\{+, \cdot, 0, \mathrm{~S}, \leq,<\}$; its axioms can be described as a finite set of base axioms plus the induction scheme. For details see e.g. [3]. Bounded quantifiers are quantifiers of the form $\forall v \leq x, \exists v \leq x, \forall v<x$, and $\exists v<x$. A bounded formula, or a Δ_{0}-formula, is a formula all quantifiers of which are bounded. A Σ_{n}-formula is a formula having the form $\exists v_{1} \forall v_{2} \exists \ldots v_{n} \varphi$, with n alternating quantifiers, where the first quantifier is existential and the matrix φ is a Δ_{0}-formula. A Π_{n}-formula is a formula of the form $\forall v_{1} \exists v_{2} \forall \ldots v_{n} \varphi$ where again $\varphi \in \Delta_{0}$. So $\Sigma_{0}=\Pi_{0}=\Delta_{0}$. The theory $\mathrm{I} \Gamma$, where Γ is Σ_{n} or Π_{n}, is PA with the induction scheme restricted to Γ-formulas. The collection scheme is the scheme

$$
\forall \underline{y} \forall x(\forall v \leq x \exists z \varphi(v, z, \underline{y}) \rightarrow \exists t \forall v \leq x \exists z \leq t \varphi(v, z, \underline{y})) .
$$

[^0]The theory $\mathrm{B} \Gamma$, where again Γ is Σ_{n} or Π_{n}, is $\mathrm{I} \Delta_{0}$ extended by the collection scheme restricted to Γ-formulas. It is known that for each n the theories $I \Sigma_{n}$ and $\mathrm{I} \Pi_{n}$ are equivalent, and also $\mathrm{B} \Pi_{n}$ and $\mathrm{B} \Sigma_{n+1}$ are equivalent. $\mathrm{B} \Sigma_{n+1}$ is a theory stronger than $\mathrm{I} \Sigma_{n}$, but weaker than $\mathrm{I} \Sigma_{n+1}$. For details and proofs, see again e.g. [3]. A useful property of $I \Sigma_{n}$ is that it proves induction for $\Sigma_{0}\left(\Sigma_{n}\right)$-formulas, i.e. for formulas built up from Σ_{n}-formulas using logical connectives and bounded quantification. Also the least number principle for $\Sigma_{0}\left(\Sigma_{n}\right)$-formulas is provable in $\mathrm{I} \Sigma_{n}$. A useful property of $\mathrm{B} \Sigma_{n+1}$ is that any formula obtained from Σ_{n+1}-formulas by bounded quantification is $\mathrm{B} \Sigma_{n+1}$-equivalent to a Σ_{n+1}-formula. This fact can be used to verify that each $\Sigma_{0}\left(\Sigma_{n}\right)$-formula is $\mathrm{B} \Sigma_{n+1}$-equivalent to a Σ_{n+1}-formula. We will also use the fact that $\Sigma_{0}\left(\Sigma_{n}\right)$-induction is provable in $\mathrm{B} \Sigma_{n+1}$.
P. Hájek and A. Kučera show in [2] that the limit lemma for sets is provable in $\mathrm{I} \Sigma_{1}$. P. Clote in an earlier paper [1] uses a version of the limit lemma for Σ_{n+2} functions, saying that any function having a Σ_{n+2} graph is a limit of a function having a Δ_{n+1} graph, and proves this version in $\mathrm{B} \Sigma_{n+2}$. I show that the results from [2] and [1] can be considerably improved: the limit lemma for Σ_{n+2} functions is provable already in $\mathrm{B} \Sigma_{n+1}$.

Note that speaking about sets definable in a model, in the formulation of Lemma 1 and Theorem 1 below, is a way to overcome the difficulty that one cannot directly speak about sets and functions in the arithmetical language. In proofs of Lemma 1 and Theorem 1 we are less careful and ignore this difficulty. Recall that if $n \geq 1$ then a set is Σ_{n} if and only if it is Σ_{n}-definable in the standard model of arithmetic. So a set simultaneously $\Sigma_{n^{-}}$and Π_{n}-definable in a model corresponds to a set which, on metamathematical level, is Δ_{n}.

Lemma 1 Let \mathbf{M} be a model of $\mathrm{B} \Sigma_{n+1}$ with domain M and let $A \subseteq M^{k}$ be simultaneously Σ_{n+2} - and Π_{n+2}-definable in \mathbf{M}. Then there exists a function $G: M^{k+1} \rightarrow M$ with a graph $\Sigma_{0}\left(\Sigma_{n}\right)$-definable in \mathbf{M} such that $\lim _{s} G(\underline{x}, s)=1$ whenever $\left[x_{1}, . ., x_{k}\right] \in A$ and $\lim _{s} G(\underline{x}, s)=0$ whenever $\left[x_{1}, . ., x_{k}\right] \notin A$.

Proof Let the set A be as specified and let φ and ψ be Σ_{n}-formulas such that $A=\left\{\left[x_{1}, \ldots, x_{k}\right] ; \exists u \forall v \varphi(\underline{x}, u, v)\right\}$ and $\bar{A}=\left\{\left[x_{1}, ., x_{k}\right] ; \exists u \forall v \psi(\underline{x}, u, v)\right\}$, where \bar{A} is the complement of A. Think of the k-tuple \underline{x} as fixed and think of φ and ψ as two zero-one tables unbounded in two directions, with u running down and v running to the right. One and only one of the two tables contains rows consisting entirely of ones. Let the function H be defined as follows:

$$
H(\underline{x}, s)= \begin{cases}1 & \text { if } \forall u \leq s\left(\forall v \leq s \psi(\underline{x}, u, v) \rightarrow \exists u^{\prime} \leq u \forall v \leq s \varphi\left(\underline{x}, u^{\prime}, v\right)\right) \\ 0 & \text { otherwise }\end{cases}
$$

Assume that $\left[x_{1}, \ldots, x_{k}\right] \notin A$. Then $\exists u \forall v \psi(\underline{x}, u, v)$ and $\forall u \exists v \neg \varphi(\underline{x}, u, v)$. Let u_{0} be some number satisfying $\forall v \psi\left(\underline{x}, u_{0}, v\right)$; note that the existence of least such number is not guaranteed in $\mathrm{B} \Sigma_{n+1}$. By $\mathrm{B} \Sigma_{n+1}$ there exists a number s_{0} such that $\forall u \leq u_{0} \exists v \leq s_{0} \neg \varphi(\underline{x}, u, v)$. We can assume $s_{0} \geq u_{0}$. If $s \geq s_{0}$ then there

0	1	2	3	4	5	6	7	8
	0	0	0	0	0	0	0	

$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \ldots\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \ldots\end{array}$
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots\end{array}$
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & \ldots\end{array}$
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots\end{array}$

Figure 1: Computing scores
exists a number $u \leq s$, namely u_{0}, such that $\forall v \leq s \psi(\underline{x}, u, v)$ and simultaneously $\forall u^{\prime} \leq u \exists v \leq s \neg \varphi\left(\underline{x}, u^{\prime}, v\right)$. So $H(\underline{x}, s)=0$ for all such s, i.e. $\lim _{s} H(\underline{x}, s)=0$. The proof that $\lim _{s} H(\underline{x}, s)=1$ whenever $\left[x_{1}, \ldots, x_{n}\right] \in A$ is similar. The graph of H is $\Sigma_{0}\left(\Sigma_{n}\right)$. So the function H is as desired. QED

Theorem 1 Let \mathbf{M} be a model of $\mathrm{B} \Sigma_{n+1}$ with domain M and let $F: M^{k} \rightarrow M$ have a graph Σ_{n+2}-definable in \mathbf{M}. Then there exists a function $G: M^{k+1} \rightarrow M$ with a graph $\Sigma_{0}\left(\Sigma_{n}\right)$-definable in \mathbf{M} such that $F(\underline{x})=\lim _{s} G(\underline{x}, s)$ for each \underline{x}.

Proof Let $F \in \Sigma_{n+2}$ with k variables be given. It is clear that $F \in \Delta_{n+2}$ since for the complement of its graph we have $[\underline{x}, y] \notin F \Leftrightarrow \exists y^{\prime}\left(y^{\prime} \neq y \&\left[\underline{x}, y^{\prime}\right] \in F\right)$. By Lemma 1 applied to the graph of F there exists a function $H \in \Sigma_{0}\left(\Sigma_{n}\right)$ such that $\lim _{t} H(\underline{x}, y, t)=1$ whenever $F(\underline{x})=y$ and $\lim _{t} H(\underline{x}, y, t)=0$ whenever $F(\underline{x}) \neq y$. As in the proof of Lemma 1, let \underline{x} be fixed and think of the function H as a table with t running down and y running to the right. Let the score of a number y at stage s be defined as the length of maximal contiguous segment of ones which lies in column y, the bottom end of which is in row s and the top end of which is in a row $t \geq y$. If H is, for example, as in Fig. 1 then the scores of numbers 2, 3, and 5 at stage 5 are 2,2 , and 1 respectively, and the score of any other number at stage 5 is zero. The scores of numbers 2,3 , and 5 at stage 8 are 2,5 , and 4 . Let $G(\underline{x}, s)$ be defined as the least y having maximal possible score at stage s. So in our example from Fig. 1 we have $G(\underline{x}, 5)=2$ and $G(\underline{x}, 8)=3$. It is evident that a score of a number $y \leq s$ at stage s is a number not exceeding $s+1-y \leq s+1$ and that all y 's greater than s have zero score at stage s. The formula

$$
\exists u \leq s+1(z+u=s+1 \& y \leq u \& \forall t \leq s(u \leq t \rightarrow H(\underline{x}, y, t)=1))
$$

i.e. the formula the score of y at stage s is at least z, is a $\Sigma_{0}\left(\Sigma_{n}\right)$-formula. So by $\Sigma_{0}\left(\Sigma_{n}\right)$-induction available in $\mathrm{B} \Sigma_{n+1}$, there exists a greatest z satisfying this formula, and the score of a number y at stage s is correctly defined. Also, the formulas the number z is the maximal score at stage s and the number y is the least number having the maximal score at stage s are $\Sigma_{0}\left(\Sigma_{n}\right)$-formulas. So
again by $\Sigma_{0}\left(\Sigma_{n}\right)$-induction, the maximal score exists, and the function G is correctly defined. We have to verify that $\lim _{s} G(\underline{x}, s)=F(\underline{x})$. Let $y_{0}=F(\underline{x})$. We know that $\lim _{s} H\left(\underline{x}, y_{0}, t\right)=1$. So let the number t_{0} be such that $t_{0} \geq y_{0}$ and $\forall t\left(t \geq t_{0} \rightarrow H\left(\underline{x}, y_{0}, t\right)=1\right)$. We also know that $\lim _{s} H(\underline{x}, y, t)=0$ for each $y \leq t_{0}$ such that $y \neq y_{0}$. Thus

$$
\forall y \leq t_{0}\left(y \neq y_{0} \rightarrow \exists t\left(t \geq t_{0} \& H(\underline{x}, y, t)=0\right)\right) .
$$

By Σ_{n+1}-collection (more precisely, by $\Sigma_{0}\left(\Sigma_{n}\right)$-collection available in $\mathrm{B} \Sigma_{n+1}$) there exists an s_{0} such that

$$
\forall y \leq t_{0}\left(y \neq y_{0} \rightarrow \exists t \leq s_{0}\left(t \geq t_{0} \& H(\underline{x}, y, t)=0\right)\right) .
$$

This means that if $s \geq s_{0}$ then the score of all numbers $y \leq t_{0}$ such that $y \neq y_{0}$ at stage s is lower than the score of y_{0}. Since ones occuring in column y above the diagonal line do not count, the score of any $y>t_{0}$ at stage s is automatically lower than the score of y_{0}. So $G(\underline{x}, s)=y_{0}$ for each $s \geq s_{0}$, and thus $\lim _{s} G(\underline{x}, s)=y_{0}$. QED

References

[1] P. Clote. Partition relations in arithmetic. In C. A. DiPrisco, editor, Methods in Mathematical Logic, volume 1130 of Lecture Notes in Mathematics, pages 32-68. Springer, 1985.
[2] P. Hájek and A. Kučera. On recursion theory in I_{1}. J. Symbolic Logic, 54:576-589, 1989.
[3] P. Hájek and P. Pudlák. Metamathematics of First Order Arithmetic. Springer, 1993.
[4] A. Kučera. An alternative, priority-free, solution to Post's problem. In J. Gruska, B. Rovan, and J. Wiedermann, editors, Mathematical Foundations of Computer Science 1986, Bratislava, Czechoslovakia, August 25-29, 1986, volume 233 of Lecture Notes in Computer Science, pages 493-500. Springer, 1986.
[5] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

[^0]: ${ }^{*}$ Charles University, Prague, vitezslavdotsvejdaratcunidotcz, http://www1.cuni.cz/~svejdar/. Palachovo nám. 2, 11638 Praha 1, Czech Republic
 ${ }^{\dagger}$ This paper was supported by grant 401/01/0218 of the Grant Agency of the Czech Republic.

