On Modal Systems with Rosser Modalities

Vítězslav Švejdar

Dept. of Logic, Charles University, www.cuni.cz/~svejdar

Logica 2005, Hejnice

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Outline

Introduction: self-reference and modal logic

The theory R of Guaspari and Solovay

An alternative theory with witness comparison modalities

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Prominent self-referential sentences

Gödel sentence

Gödel sentence of a theory T is a self-referential sentence ν saying I am not provable in T, i.e. satisfying $T \vdash \nu \equiv \neg \Pr(\overline{\nu})$.

Rosser sentence

of a theory T is a sentence ρ saying there exists a proof of my negation in T which is less that or equal to any possible proof of myself, i.e. satisfying $T \vdash \rho \equiv \exists y (\Pr(\neg \overline{\rho}, y) \& \forall v < y \neg \Pr(\overline{\rho}, v)).$

Notation

Prf(x, y) is a proof predicate, i.e. an arithmetical formula saying y is a proof of x in T.

Pr(x) is a provability predicate; defined as $\exists y Prf(x, y)$ and saying x is provable in T.

Prominent self-referential sentences

Gödel sentence

Gödel sentence of a theory T is a self-referential sentence ν saying I am not provable in T, i.e. satisfying $T \vdash \nu \equiv \neg \Pr(\overline{\nu})$.

Rosser sentence

of a theory T is a sentence ρ saying there exists a proof of my negation in T which is less that or equal to any possible proof of myself, i.e. satisfying $T \vdash \rho \equiv \exists y (\Prf(\neg \overline{\rho}, y) \& \forall v < y \neg \Prf(\overline{\rho}, v)).$

Notation

Prf(x, y) is a proof predicate, i.e. an arithmetical formula saying y is a proof of x in T.

Pr(x) is a provability predicate; defined as $\exists y Prf(x, y)$ and saying x is provable in T.

Prominent self-referential sentences

Gödel sentence

Gödel sentence of a theory T is a self-referential sentence ν saying I am not provable in T, i.e. satisfying $T \vdash \nu \equiv \neg \Pr(\overline{\nu})$.

Rosser sentence

of a theory T is a sentence ρ saying there exists a proof of my negation in T which is less that or equal to any possible proof of myself, i.e. satisfying $T \vdash \rho \equiv \exists y (\Pr(\neg \overline{\rho}, y) \& \forall v < y \neg \Pr(\overline{\rho}, v)).$

Notation

Prf(x, y) is a proof predicate, i.e. an arithmetical formula saying y is a proof of x in T. Pr(x) is a provability predicate; defined as $\exists y Prf(x, y)$ and saying

x is provable in T.

The importance of provability logic

Important difference

 $T \vdash \operatorname{Con}(T) \to \neg \operatorname{Pr}(\overline{\rho}) \& \neg \operatorname{Pr}(\overline{\neg \rho}).$ $T \vdash \operatorname{Con}(T) \to \neg \operatorname{Pr}(\overline{\nu}), \text{ but } T \nvDash \operatorname{Con}(T) \to \neg \operatorname{Pr}(\overline{\neg \nu})$

Provability logic GL GL $\vdash \Box(p \equiv \neg \Box p) \& \neg \Box \bot \rightarrow \neg \Box p.$

Important remark (and a definition)

The arithmetical interpretation of the modal formula $\Box A$, i.e. an arithmetical sentence of the form Pr(..), is a Σ -sentence. Σ -sentence results from a decidable formula by existential quantification.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

The importance of provability logic

Important difference $T \vdash \text{Con}(T) \rightarrow \neg \text{Pr}(\overline{\rho}) \& \neg \text{Pr}(\overline{\neg \rho}).$ $T \vdash \text{Con}(T) \rightarrow \neg \text{Pr}(\overline{\nu}), \text{ but } T \nvDash \text{Con}(T) \rightarrow \neg \text{Pr}(\overline{\neg \nu}).$

Provability logic GL GL $\vdash \Box(p \equiv \neg \Box p) \& \neg \Box \bot \rightarrow \neg \Box p.$

Important remark (and a definition)

The arithmetical interpretation of the modal formula $\Box A$, i.e. an arithmetical sentence of the form Pr(..), is a Σ -sentence. Σ -sentence results from a decidable formula by existential quantification.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

The importance of provability logic

Important difference $T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\rho}) \& \neg \operatorname{Pr}(\overline{\neg \rho}).$ $T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\nu}), \text{ but } T \nvDash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\neg \nu}).$

Provability logic GL GL $\vdash \Box(p \equiv \neg \Box p) \& \neg \Box \bot \rightarrow \neg \Box p.$

Important remark (and a definition)

The arithmetical interpretation of the modal formula $\Box A$, i.e. an arithmetical sentence of the form Pr(..), is a Σ -sentence. Σ -sentence results from a decidable formula by existential quantification.

The importance of provability logic

Important difference $T \vdash \text{Con}(T) \rightarrow \neg \text{Pr}(\overline{\rho}) \& \neg \text{Pr}(\overline{\neg \rho}).$ $T \vdash \text{Con}(T) \rightarrow \neg \text{Pr}(\overline{\nu}), \text{ but } T \nvDash \text{Con}(T) \rightarrow \neg \text{Pr}(\overline{\neg \nu}).$

Provability logic GL GL $\vdash \Box(p \equiv \neg \Box p) \& \neg \Box \bot \rightarrow \neg \Box p.$

Important remark (and a definition)

The arithmetical interpretation of the modal formula $\Box A$, i.e. an arithmetical sentence of the form Pr(..), is a Σ -sentence. Σ -sentence results from a decidable formula by existential quantification.

The importance of provability logic

Important difference $T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\rho}) \& \neg \operatorname{Pr}(\overline{\neg \rho}).$ $T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\nu}), \text{ but } T \nvDash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\neg \nu}).$

Provability logic GL GL $\vdash \Box(p \equiv \neg \Box p) \& \neg \Box \bot \rightarrow \neg \Box p.$

Important remark (and a definition)

The arithmetical interpretation of the modal formula $\Box A$, i.e. an arithmetical sentence of the form Pr(..), is a Σ -sentence. Σ -sentence results from a decidable formula by existential quantification.

The theory R of Guaspari and Solovay

Language

The usual modal language with propositional atoms, logical connectives, logical constants \top and \bot , and the modality \Box , plus two additional binary modalities \preceq and \prec which are applicable only to formulas starting with \Box .

Example

 $A \& \Box A \preceq \Box B \to \Box B$ is a shorthand for $(A \& (\Box A \preceq \Box B)) \to \Box B$. $(A \lor \Box B) \preceq \Box B$ is not a formula.

Arithmetical interpretation

The interpretation (and reading) of $\Box A \preceq \Box B$ and $\Box A \prec \Box B$ is *A* has a proof which is less than or equal to (or less than, respectively) any proof of *B*.

The theory R of Guaspari and Solovay

Language

The usual modal language with propositional atoms, logical connectives, logical constants \top and \bot , and the modality \Box , plus two additional binary modalities \preceq and \prec which are applicable only to formulas starting with \Box .

Example

 $A \& \Box A \preceq \Box B \rightarrow \Box B$ is a shorthand for $(A \& (\Box A \preceq \Box B)) \rightarrow \Box B$. $(A \lor \Box B) \preceq \Box B$ is not a formula.

Arithmetical interpretation

The interpretation (and reading) of $\Box A \preceq \Box B$ and $\Box A \prec \Box B$ is A has a proof which is less than or equal to (or less than, respectively) any proof of B.

The theory R of Guaspari and Solovay

Language

The usual modal language with propositional atoms, logical connectives, logical constants \top and \bot , and the modality \Box , plus two additional binary modalities \preceq and \prec which are applicable only to formulas starting with \Box .

Example

 $A \& \Box A \preceq \Box B \rightarrow \Box B$ is a shorthand for $(A \& (\Box A \preceq \Box B)) \rightarrow \Box B$. $(A \lor \Box B) \preceq \Box B$ is not a formula.

Arithmetical interpretation

The interpretation (and reading) of $\Box A \preceq \Box B$ and $\Box A \prec \Box B$ is *A* has a proof which is less than or equal to (or less than, respectively) any proof of *B*.

A2: $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$, MP: $A \rightarrow B, A / B$, A3: $\Box A \rightarrow \Box \Box A$. Nec: $A / \Box A$.

A4:
$$\Box(\Box A \rightarrow A) \rightarrow \Box A$$
,

A2: $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$, MP: $A \rightarrow B, A / B$, A3: $\Box A \rightarrow \Box \Box A$. Nec: $A / \Box A$.

A4:
$$\Box(\Box A \rightarrow A) \rightarrow \Box A$$
,

plus $\Box A / A$, plus the basic axioms about witness comparison:

B1:
$$\Box A \preceq \Box B \rightarrow \Box A$$
,

A2: $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$, MP: $A \rightarrow B, A / B$, A3: $\Box A \rightarrow \Box \Box A$. Nec: $A / \Box A$.

A4:
$$\Box(\Box A \rightarrow A) \rightarrow \Box A$$
,

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

plus $\Box A / A$, plus the basic axioms about witness comparison:

B1:
$$\Box A \preceq \Box B \rightarrow \Box A$$
,

- B2: $\Box A \prec \Box B \& \Box B \prec \Box C \rightarrow \Box A \prec \Box C$.
- B3: $\Box A \prec \Box B \equiv \Box A \prec \Box B \& \neg (\Box B \prec \Box A)$,
- B4: $\Box A \lor \Box B \to \Box A \prec \Box B \lor \Box B \prec \Box A$.

A2: $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$, MP: $A \rightarrow B, A / B$, A3: $\Box A \rightarrow \Box \Box A$. Nec: $A / \Box A$.

A4:
$$\Box(\Box A \rightarrow A) \rightarrow \Box A$$
,

(日)

plus $\Box A / A$, plus the basic axioms about witness comparison:

B1:
$$\Box A \preceq \Box B \rightarrow \Box A$$
,

- B2: $\Box A \prec \Box B \& \Box B \prec \Box C \rightarrow \Box A \prec \Box C$.
- B3: $\Box A \prec \Box B \equiv \Box A \prec \Box B \& \neg (\Box B \prec \Box A)$,
- B4: $\Box A \lor \Box B \to \Box A \prec \Box B \lor \Box B \prec \Box A$.

plus the two persistency axioms:

 $\mathsf{P}: \Box A \prec \Box B \to \Box (\Box A \prec \Box B), \qquad \Box A \prec \Box B \to \Box (\Box A \prec \Box B).$

Example proof: $\mathsf{R} \vdash \Box(p \equiv \Box \neg p \preceq \Box p) \& \neg \Box \bot \rightarrow \neg \Box p \& \neg \Box \neg p$

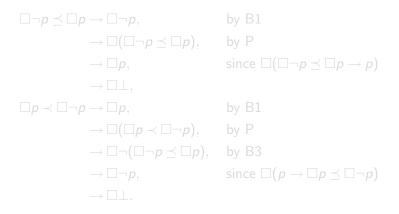
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへ⊙

On Modal Systems with Rosser Modalities (Vítězslav Švejdar) — The theory R of Guaspari and Solovay

Example proof: $\mathsf{R} \vdash \Box(p \equiv \Box \neg p \preceq \Box p) \& \neg \Box \bot \rightarrow \neg \Box p \& \neg \Box \neg p$

Proof

Assume $\Box p$ or $\Box \neg p$. Then $\Box \neg p \preceq \Box p$ or $\Box p \prec \Box \neg p$ by B4.



▲ロト ▲帰 ト ▲ヨト ▲ヨト ニヨー の々ぐ

On Modal Systems with Rosser Modalities (Vítězslav Švejdar) — The theory R of Guaspari and Solovay

Example proof: $\mathsf{R} \vdash \Box(p \equiv \Box \neg p \preceq \Box p) \& \neg \Box \bot \rightarrow \neg \Box p \& \neg \Box \neg p$

Proof

Assume $\Box p$ or $\Box \neg p$. Then $\Box \neg p \preceq \Box p$ or $\Box p \prec \Box \neg p$ by B4.

 $\Box \neg p \prec \Box p \rightarrow \Box \neg p$. by B1 $\rightarrow \Box (\Box \neg p \prec \Box p),$ by P $\rightarrow \Box p$. since $\Box(\Box \neg p \prec \Box p \rightarrow p)$ $\rightarrow \Box \bot$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト ニヨー の々ぐ

Example proof: $\mathsf{R} \vdash \Box(p \equiv \Box \neg p \preceq \Box p) \& \neg \Box \bot \rightarrow \neg \Box p \& \neg \Box \neg p$

Proof

Assume $\Box p$ or $\Box \neg p$. Then $\Box \neg p \preceq \Box p$ or $\Box p \prec \Box \neg p$ by B4.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Generalized proof predicate of PA

$Prf^{h}(x, y) \equiv$ the axioms of PA (with numerical codes) less than y are sufficient to prove (in the usual sense) the sentence x.

Fact

If the formalized proof predicate is used to interpret the modalities \leq and \prec then $\Box A \leq \Box B$ and $\Box A \prec \Box B$ are not Σ -sentences, and so the persistency axioms P are not valid.

The theory WR

has the axiom and the rule

W: $\Box A \rightarrow \Box (\neg B \rightarrow \Box A \prec \Box B), \qquad \Box A / \neg B \rightarrow \Box A \prec \Box B$

instead of the axiom P and the rule $\Box A / A$ of the theory R.

Generalized proof predicate of PA

 $Prf^{h}(x, y) \equiv$ the axioms of PA (with numerical codes) less than y are sufficient to prove (in the usual sense) the sentence x.

Fact

If the formalized proof predicate is used to interpret the modalities \leq and \prec then $\Box A \leq \Box B$ and $\Box A \prec \Box B$ are not Σ -sentences, and so the persistency axioms P are not valid.

The theory WR

has the axiom and the rule

 $\mathsf{W}: \ \Box A \to \Box (\neg B \to \Box A \prec \Box B), \qquad \Box A / \neg B \to \Box A \prec \Box B$

instead of the axiom P and the rule $\Box A / A$ of the theory R.

Generalized proof predicate of PA

 $Prf^{h}(x, y) \equiv$ the axioms of PA (with numerical codes) less than y are sufficient to prove (in the usual sense) the sentence x.

Fact

If the formalized proof predicate is used to interpret the modalities \leq and \prec then $\Box A \leq \Box B$ and $\Box A \prec \Box B$ are not Σ -sentences, and so the persistency axioms P are not valid.

The theory WR

has the axiom and the rule

W: $\Box A \rightarrow \Box (\neg B \rightarrow \Box A \prec \Box B), \qquad \Box A / \neg B \rightarrow \Box A \prec \Box B$

instead of the axiom P and the rule $\Box A / A$ of the theory R.

The alternative theory SR

Language

The language of SR has two sorts of propositional atoms, normal atoms p, q, \ldots and Σ -atoms s, t, \ldots Σ -formulas are formulas built up from \top, \bot, Σ -atoms, and formulas starting with \Box using & and \lor only.

Axioms

are as in WR, but W and the corresponding rule are replaced by stronger versions:

S:
$$\Box(E \to A) \to \Box(E \& \neg B \to \Box A \prec \Box B), \qquad E \in \Sigma,$$

 $E \to A / E \& \neg B \to \Box A \prec \Box B, \qquad \qquad E \in \Sigma.$

The alternative theory SR

Language

The language of SR has two sorts of propositional atoms, normal atoms p, q, \ldots and Σ -atoms s, t, \ldots Σ -formulas are formulas built up from \top, \bot, Σ -atoms, and formulas starting with \Box using & and \lor only.

Axioms

are as in WR, but W and the corresponding rule are replaced by stronger versions:

S:
$$\Box(E \to A) \to \Box(E \& \neg B \to \Box A \prec \Box B), \qquad E \in \Sigma,$$

 $E \to A / E \& \neg B \to \Box A \prec \Box B \qquad E \in \Sigma$

Example modal formula provable in SR

If *s* is a Σ -atom then SR $\vdash \Box(p \equiv \Box \neg p \preceq \Box p) \rightarrow (\Box(s \rightarrow p) \lor \Box(s \rightarrow \neg p) \rightarrow \Box \neg s).$

... and its arithmetical significance

If φ is a Rosser sentence constructed from the generalized proof predicate then neither φ nor $\neg \varphi$ is provable from any consistent Σ -sentence.

Put otherwise, both φ and $\neg \varphi$ are Π_1 -conservative: each Π_1 -sentence (i.e. negated Σ -sentence) provable from φ or $\neg \varphi$ is provable.

Example modal formula provable in SR

If s is a Σ -atom then SR $\vdash \Box(p \equiv \Box \neg p \preceq \Box p) \rightarrow (\Box(s \rightarrow p) \lor \Box(s \rightarrow \neg p) \rightarrow \Box \neg s).$

... and its arithmetical significance

If φ is a Rosser sentence constructed from the generalized proof predicate then neither φ nor $\neg \varphi$ is provable from any consistent Σ -sentence.

Put otherwise, both φ and $\neg \varphi$ are Π_1 -conservative: each Π_1 -sentence (i.e. negated Σ -sentence) provable from φ or $\neg \varphi$ is provable.

Example modal formula provable in SR

If s is a Σ -atom then SR $\vdash \Box(p \equiv \Box \neg p \preceq \Box p) \rightarrow (\Box(s \rightarrow p) \lor \Box(s \rightarrow \neg p) \rightarrow \Box \neg s).$

... and its arithmetical significance

If φ is a Rosser sentence constructed from the generalized proof predicate then neither φ nor $\neg\varphi$ is provable from any consistent Σ -sentence.

Put otherwise, both φ and $\neg \varphi$ are Π_1 -conservative: each Π_1 -sentence (i.e. negated Σ -sentence) provable from φ or $\neg \varphi$ is provable.

Example modal formula provable in SR

If s is a Σ -atom then SR $\vdash \Box(p \equiv \Box \neg p \preceq \Box p) \rightarrow (\Box(s \rightarrow p) \lor \Box(s \rightarrow \neg p) \rightarrow \Box \neg s).$

... and its arithmetical significance

If φ is a Rosser sentence constructed from the generalized proof predicate then neither φ nor $\neg \varphi$ is provable from any consistent Σ -sentence.

Put otherwise, both φ and $\neg \varphi$ are \prod_{1} -conservative: each \prod_{1} -sentence (i.e. negated Σ -sentence) provable from φ or $\neg \varphi$ is provable.

Example modal formula provable in SR

If s is a Σ -atom then SR $\vdash \Box(p \equiv \Box \neg p \preceq \Box p) \rightarrow (\Box(s \rightarrow p) \lor \Box(s \rightarrow \neg p) \rightarrow \Box \neg s).$

... and its arithmetical significance

If φ is a Rosser sentence constructed from the generalized proof predicate then neither φ nor $\neg \varphi$ is provable from any consistent Σ -sentence.

Put otherwise, both φ and $\neg \varphi$ are \prod_1 -conservative: each \prod_1 -sentence (i.e. negated Σ -sentence) provable from φ or $\neg \varphi$ is provable.

Some reading on Rosser constructions and Rosser logics

- D. Guaspari and R. M. Solovay.
 Rosser sentences.
 Annals of Math. Logic, 16:81–99, 1979.
- M. Hájková and P. Hájek.
 On interpretability in theories containing arithmetic.
 Fundamenta Mathematicae, 76:131–137, 1972.
- 🍆 C. Smoryński.

Self-Reference and Modal Logic. Springer, New York, 1985.

V. Švejdar.
 Modal analysis of generalized Rosser sentences.
 J. Symbolic Logic, 48(4):986–999, 1983.