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Gödel-Dummett propositional logic BG

Semantical definition
Truth values are numbers from the real interval [0, 1]; truth
function of implication → is the function ⇒ where a ⇒ b = 1 if
a ≤ b, and a ⇒ b = b otherwise; truth functions of & and ∨ are
min and max; tautologies are formulas with value 1 under any
truth evaluation.

Properties
• Axiomatized by intuitionistic Hilbert-style calculus enhanced

by the prelinearity schema: (A→ B) ∨ (B → A).

• FMP,

• Gm, for m ≥ 2, is the extension of BG where only m − 2
intermediate truth values are possible:
BG ⊆ . . . ⊆ G4 ⊆ G3 ⊆ G2,

• A ∨ B is equivalent to ((A→ B)→ B) & ((B → A)→ A).
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Gödel-Dummett predicate logic BG

Semantical definition
A formula ϕ in a multi-valued structure J under an evaluation
of variables e has a truth value J (ϕ)[e] ∈ [0, 1]; quantifiers
∀ and ∃ get evaluated using inf and sup; ϕ is a logical truth if
J (ϕ)[e] = 1 for each J and e.

Properties

• Axiomatized by the propositional calculus for BG plus

S1: ∀x(ψ ∨ ϕ(x))→ ψ ∨ ∀xϕ(x), x not free in ψ.

• FMP is not true. Consider, e.g., ∃x(∃yP(y)→ P(x)).

• An infinite truth value set V may determine a logic different
from BG and and also from all Gm. Thus, it makes sense to
define multi-valued structure based on a set V and the notion
of logical truth of a set V .
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Prenex operations, a reminder

Prenex operations are the following equivalences, x is not free in ψ:

(ψ & ∀xϕ(x))≡ ∀x(ψ & ϕ(x)),

(ψ & ∃xϕ(x))≡ ∃x(ψ & ϕ(x)),

(ψ ∨ ∀xϕ(x))≡ ∀x(ψ ∨ ϕ(x)), note that ← is the schema S1,

(ψ ∨ ∃xϕ(x))≡ ∃x(ψ ∨ ϕ(x)),

(ψ→∀xϕ(x))≡ ∀x(ψ→ ϕ(x)),

(ψ→∃xϕ(x))≡ ∃x(ψ→ ϕ(x)), let → be called S2,

(∀xϕ(x)→ ψ)≡ ∃x(ϕ(x)→ ψ), let → be called S3,

(∃xϕ(x)→ ψ)≡ ∀x(ϕ(x)→ ψ).
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The logics we consider

Definition
(a) Let S2G be the logic BG plus the schema S2:

S2: (ψ→∃xϕ(x))→∃x(ψ→ ϕ(x)),

let S3G be the logic BG plus the schema S3:

S3: (∀xϕ(x)→ ψ)→∃x(ϕ(x)→ ψ),

let PG be the logic BG plus both S2 and S3.
(b) Let G↑ and G↓ be the logics of the truth value sets
V↑ = {1} ∪ { 1− 1

k
; k ≥ 1 } and V↓ = {0} ∪ { 1

k
; k ≥ 1 }

respectively.

Questions

• What are the properties of these logics?

• What are their relationships?

V́ıtězslav Švejdar, Charles University Gödel-Dummett Predicate Logics 6/12



Introduction Logics and prenexability Properties of logics, problems

The logics we consider

Definition
(a) Let S2G be the logic BG plus the schema S2:

S2: (ψ→∃xϕ(x))→∃x(ψ→ ϕ(x)),

let S3G be the logic BG plus the schema S3:

S3: (∀xϕ(x)→ ψ)→∃x(ϕ(x)→ ψ),

let PG be the logic BG plus both S2 and S3.
(b) Let G↑ and G↓ be the logics of the truth value sets
V↑ = {1} ∪ { 1− 1

k
; k ≥ 1 } and V↓ = {0} ∪ { 1

k
; k ≥ 1 }

respectively.

Questions

• What are the properties of these logics?

• What are their relationships?
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Properties of logics, their relationships

Theorem (Basic properties of S2G)

Over BG, the logic S2G is equivalently axiomatized by

∃x(∃yϕ(y)→ϕ(x)) or by ∀x(∀y(ϕ(y)→ϕ(x))→ϕ(x))→∃xϕ(x).
Its characteristic class is the class of all truth value sets where no

value except possibly 1 is a limit of lower values.

Theorem (Basic properties of S3G)

Over BG, the logic S3G is equivalently axiomatized by

∃x(ϕ(x)→∀yϕ(y)).
Its characteristic class is the class of all truth value sets where no

value is a limit of higher values.

Theorem (Relationships between the logics)

The relationships between the logics we consider are as shown in

the following figure:
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value is a limit of higher values.

Theorem (Relationships between the logics)

The relationships between the logics we consider are as shown in

the following figure:
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Relationships between Gödel-Dummett logics
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Proof
S2G,S3G ⊆ PG is evident.
S2G ⊆ G↓ follows from V↓ ∈ Char(S2G). Similarly,
PG ⊆ G↑ follows from V↑ ∈ Char(PG).
G↓ ⊆ G↑ follows from G↑ =

⋂
m≥2 Gm, a result by [BPZ03].

S3G 6⊆ G↓ follows from V↓ /∈ Char(S3G).
S2G 6⊆ S3G follows from Char(S3G) 6⊆ Char(S2G). However,
G↓ 6⊆ PG is difficult.
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Properties of logics (continued), problems

Theorem (Inter-expressibility of quantifiers)

The quantifier ∀ is not expressible in terms of the remaining logical

symbols in the logic G3.

In the logic S3G, the quantifier ∃ is not expressible in terms of the

remaining logical symbols. In the logic S2G, however, it

is expressible.

Problems

• Is the logic S2G (or S3G, or PG) complete with respect to
some reasonable semantics?

• What is the weakest Gödel-Dummett logic in which each
formula is equivalent to a prenex formula?
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In 33rd International Symposium on Multiple-valued Logic,

May 16–19, 2003, pages 175–180, Tokyo, 2003. IEEE
Computer Society Press.

Blanka Kozĺıková.
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Appendix

Appendix 1: A multi-valued structure

Example

Truth value set: V = {0, 1
2 , 1} ∪ {

1
2 −

1
k

; k ≥ 3 };

language: L = {P}, with a single unary predicate symbol P;

domain of J : D = {d3, d4, d5, . . . };

realization of the symbol P: J (P(x))[dk ] = 1
2 −

1
k
.

Then we have J (∃yP(y)) = 1
2 , J (∃yP(y)→ P(x))[ak ] = 1

2 −
1
k
,

J (∃x(∃yP(y)→ P(x))) = 1
2 . So the sentence ∃x(∃yP(y)→ P(x))

is not a logical truth of this particular set V .

Fact
If the truth value set V contains a value a < 1 which is a limit of

lower values then the structure J can be chosen so that

J (∃x(∃yP(y)→ P(x))) < 1.

If not then the schema ∃x(∃yϕ(y)→ ϕ(x)) is a logical truth of V .
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Appendix

Appendix 2: Characteristic classes

Definition
A characteristic class of a logic S is the class of all truth value
sets V such that S is valid in all structures based on V .

Fact If S1 ⊆ S2 then Char(S2) ⊆ Char(S1).

Characteristic classes of S2G, S3G, and PG


 	

� �
Char(S2G):
No a ∈ V , a < 1 is
a limit of lower values


 	

� �
Char(S3G):

No a ∈ V is a limit
of higher values

V↓ V↑

r r

�
��>

�
��>

Fact
All sets in Char(PG) = Char(S2G) ∩ Char(S3G) are finite

or isomorphic to V↑.
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