Weak Theories and Essential Incompleteness

Vítězslav Švejdar
Dept. of Logic, Faculty of Arts and Philosophy, Charles University, www.cuni.cz/~svejdar/

Logica 07, Hejnice, June 2007

Outline

Introduction: Essential Incompleteness, Essential Undecidability

Essential Incompleteness of Robinson's Q

$Q^{-}, T C$, and R as Weak Alternatives to Q

Essential Incompleteness and Essential Undecidability

Motivation
Which is the weakest axiomatic theory that is recursively axiomatizable and essentially incomplete?

> Methods of essential incompleteness proofs Essential incompleteness can be proved directly, or using interpretability

> Canonical source
> The notions of essential incompleteness and essentia undecidability, as well as the notion of interpretability, were introduced in [TMR53]

Essential Incompleteness and Essential Undecidability

Motivation
Which is the weakest axiomatic theory that is recursively axiomatizable and essentially incomplete?

Methods of essential incompleteness proofs
Essential incompleteness can be proved directly, or using interpretability.

Canonical source
The notions of essential incompleteness and essential
undecidability, as well as the notion of interpretability, were
introduced in [TMR53]

Essential Incompleteness and Essential Undecidability

Motivation
Which is the weakest axiomatic theory that is recursively axiomatizable and essentially incomplete?

Methods of essential incompleteness proofs
Essential incompleteness can be proved directly, or using interpretability.

Canonical source
The notions of essential incompleteness and essential undecidability, as well as the notion of interpretability, were introduced in [TMR53].

Robinson's Arithmetic Q

Axioms
Q1: $\quad \forall x \forall y(\mathrm{~S}(x)=\mathrm{S}(y) \rightarrow x=y)$,
Q2: $\forall x(S(x) \neq 0)$,
Q3: $\forall x(x \neq 0 \rightarrow \exists y(x=S(y)))$,
Q4: $\forall x(x+0=x)$,
Q5: $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$,
Q6: $\forall x(x \cdot 0=0)$,
Q7: $\forall x \forall y(x \cdot \mathrm{~S}(y)=x \cdot y+x)$.

Robinson's Arithmetic Q

Axioms
Q1: $\forall x \forall y(S(x)=S(y) \rightarrow x=y)$,
Q2: $\forall x(S(x) \neq 0)$,
Q3: $\forall x(x \neq 0 \rightarrow \exists y(x=S(y)))$,
Q4: $\forall x(x+0=x)$,
Q5: $\forall x \forall y(x+S(y)=S(x+y))$,
Q6: $\forall x(x \cdot 0=0)$,
Q7: $\forall x \forall y(x \cdot \mathrm{~S}(y)=x \cdot y+x)$.
Extensions and properties

Robinson's Arithmetic Q

Axioms
Q1: $\forall x \forall y(S(x)=S(y) \rightarrow x=y)$,
Q2: $\forall x(S(x) \neq 0)$,
Q3: $\forall x(x \neq 0 \rightarrow \exists y(x=S(y)))$,
Q4: $\forall x(x+0=x)$,
Q5: $\forall x \forall y(x+S(y)=S(x+y))$,
Q6: $\forall x(x \cdot 0=0)$,
Q7: $\forall x \forall y(x \cdot \mathrm{~S}(y)=x \cdot y+x)$.
Extensions and properties
Ordering can be defined by $x \leq y$ iff $\exists v(v+x=y)$.
General facts, like $\forall x \forall y(x+y=y+x)$, are mostly unprovable.

Robinson's Arithmetic Q

Axioms
Q1: $\quad \forall x \forall y(\mathrm{~S}(x)=\mathrm{S}(y) \rightarrow x=y)$,
Q2: $\forall x(\mathrm{~S}(x) \neq 0)$,
Q3: $\forall x(x \neq 0 \rightarrow \exists y(x=S(y)))$,
Q4: $\forall x(x+0=x)$,
Q5: $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$,
Q6: $\forall x(x \cdot 0=0)$,
Q7: $\forall x \forall y(x \cdot \mathrm{~S}(y)=x \cdot y+x)$.
Extensions and properties
Ordering can be defined by $x \leq y$ iff $\exists v(v+x=y)$.
Numerals: $0, S(0), S(S(0)), \ldots$ are denoted $\overline{0}, \overline{1}, \overline{2}, \ldots$

Robinson's Arithmetic Q

Axioms
Q1: $\quad \forall x \forall y(\mathrm{~S}(x)=\mathrm{S}(y) \rightarrow x=y)$,
Q2: $\forall x(\mathrm{~S}(x) \neq 0)$,
Q3: $\forall x(x \neq 0 \rightarrow \exists y(x=S(y)))$,
Q4: $\forall x(x+0=x)$,
Q5: $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$,
Q6: $\forall x(x \cdot 0=0)$,
Q7: $\forall x \forall y(x \cdot \mathrm{~S}(y)=x \cdot y+x)$.
Extensions and properties
Ordering can be defined by $x \leq y$ iff $\exists v(v+x=y)$.
Numerals: $0, \mathrm{~S}(0), \mathrm{S}(\mathrm{S}(0)), \ldots$ are denoted $\overline{0}, \overline{1}, \overline{2}$,
General facts, like $\forall x \forall y(x+y=y+x)$, are mostly unprovable.

Robinson's Arithmetic Q

Axioms
Q1: $\quad \forall x \forall y(\mathrm{~S}(x)=\mathrm{S}(y) \rightarrow x=y)$,
Q2: $\forall x(\mathrm{~S}(x) \neq 0)$,
Q3: $\forall x(x \neq 0 \rightarrow \exists y(x=S(y)))$,
Q4: $\forall x(x+0=x)$,
Q5: $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$,
Q6: $\forall x(x \cdot 0=0)$,
Q7: $\forall x \forall y(x \cdot \mathrm{~S}(y)=x \cdot y+x)$.
Extensions and properties
Ordering can be defined by $x \leq y$ iff $\exists v(v+x=y)$.
Numerals: $0, \mathrm{~S}(0), \mathrm{S}(\mathrm{S}(0)), \ldots$ are denoted $\overline{0}, \overline{1}, \overline{2}$,
General facts, like $\forall x \forall y(x+y=y+x)$, are mostly unprovable.
$\mathrm{Q} \vdash \forall x(x \leq \bar{n} \rightarrow x=\overline{0} \vee \ldots \vee x=\bar{n})$,

Robinson's Arithmetic Q

Axioms
Q1: $\quad \forall x \forall y(\mathrm{~S}(x)=\mathrm{S}(y) \rightarrow x=y)$,
Q2: $\forall x(\mathrm{~S}(x) \neq 0)$,
Q3: $\forall x(x \neq 0 \rightarrow \exists y(x=S(y)))$,
Q4: $\forall x(x+0=x)$,
Q5: $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$,
Q6: $\forall x(x \cdot 0=0)$,
Q7: $\forall x \forall y(x \cdot \mathrm{~S}(y)=x \cdot y+x)$.
Extensions and properties
Ordering can be defined by $x \leq y$ iff $\exists v(v+x=y)$.
Numerals: $0, \mathrm{~S}(0), \mathrm{S}(\mathrm{S}(0)), \ldots$ are denoted $\overline{0}, \overline{1}, \overline{2}$,
General facts, like $\forall x \forall y(x+y=y+x)$, are mostly unprovable.
$\mathrm{Q} \vdash \forall x(x \leq \bar{n} \rightarrow x=\overline{0} \vee \ldots \vee x=\bar{n}), \mathrm{Q} \vdash \bar{n}+\bar{m}=\overline{n+m}$.

Essential Incompleteness Proofs

Ingredients of essential incompleteness proofs
A proof of essential incompleteness of a theory like Q usually uses
(i) definability of r.e. sets by Σ-formulas,
(ii) Σ-completeness (every true Σ-sentence is provable in Q),
plus one of additional conditions like
(1) For each pair A, B of recursively enumerable sets there exists
a \sum-formula $\varphi(x)$ such that $Q \vdash \varphi(\bar{n})$ for $n \in A-B$,
and $Q 1-\neg \varphi(\bar{n})$ for $n \in B-A$
(2) Weak representability of recursive functions.
(3) The self-reference theorem.

Note
Proofs of additional conditions (1)-(3) usually use Rosser trick None of these conditions is needed if incompleteness is to be proved only for all \sum-sound extensions of Q

Essential Incompleteness Proofs

Ingredients of essential incompleteness proofs
A proof of essential incompleteness of a theory like Q usually uses
(i) definability of r.e. sets by Σ-formulas,
(ii) Σ-completeness (every true Σ-sentence is provable in Q), plus one of additional conditions like:
(1) For each pair A, B of recursively enumerable sets there exists a Σ-formula $\varphi(x)$ such that $Q \vdash \varphi(\bar{n})$ for $n \in A-B$, and $Q \vdash \neg \varphi(\bar{n})$ for $n \in B-A$.
(2) Weak representability of recursive functions.
(3) The self-reference theorem.

Proofs of additional conditions (1)-(3) usually use Rosser trick None of these conditions is needed if incompleteness is to be proved on'y for all Σ-sound extensions of Q.

Essential Incompleteness Proofs

Ingredients of essential incompleteness proofs
A proof of essential incompleteness of a theory like Q usually uses
(i) definability of r.e. sets by Σ-formulas,
(ii) Σ-completeness (every true Σ-sentence is provable in Q), plus one of additional conditions like:
(1) For each pair A, B of recursively enumerable sets there exists a Σ-formula $\varphi(x)$ such that $Q \vdash \varphi(\bar{n})$ for $n \in A-B$, and $Q \vdash \neg \varphi(\bar{n})$ for $n \in B-A$.
(2) Weak representability of recursive functions.
(3) The self-reference theorem.

Note
Proofs of additional conditions (1)-(3) usually use Rosser trick. None of these conditions is needed if incompleteness is to be proved only for all Σ-sound extensions of Q.

A Structural Incompleteness Proof

Let T be a consistent recursively axiomatized extension of Q .

- Take a pair A, B of disjoint recursively inseparable r.e. sets:

- Let $\varphi(x)$ be a formula like in the condition (1) above.

- Fix $n_{0} \notin X \cup Y$. Such an n_{0} must exist, otherwise X and Y would be mutually complementary, and so X would be a recursive superset of A that is disjoint with B. Then $T \nvdash \varphi\left(\overline{n_{0}}\right)$ and $T \nvdash \neg \varphi\left(\overline{n_{0}}\right)$. So T is incomplete.

A Structural Incompleteness Proof

Let T be a consistent recursively axiomatized extension of Q .

- Take a pair A, B of disjoint recursively inseparable r.e. sets:

- Let $\varphi(x)$ be a formula like in the condition (1) above.

- Fix $n_{0} \notin X \cup Y$. Such an n_{0} must exist, otherwise X and Y would be mutually complementary, and so X would be a recursive superset of A that is disjoint with B. Then $T \nvdash \varphi\left(\overline{n_{0}}\right)$ and $T \nvdash \neg \varphi\left(\overline{n_{0}}\right)$. So T is incomplete

A Structural Incompleteness Proof

Let T be a consistent recursively axiomatized extension of Q .

- Take a pair A, B of disjoint recursively inseparable r.e. sets:

- Let $\varphi(x)$ be a formula like in the condition (1) above.

would be mutually complementary, and so X would be a
recursive superset of A that is disjoint with B. Then
$T \nvdash \varphi\left(\overline{n_{0}}\right)$ and $T \nvdash \neg \varphi\left(\overline{n_{0}}\right)$. So T is incomplete

A Structural Incompleteness Proof

Let T be a consistent recursively axiomatized extension of Q .

- Take a pair A, B of disjoint recursively inseparable r.e. sets:

- Let $\varphi(x)$ be a formula like in the condition (1) above.
- Put $X=\{n ; T \vdash \varphi(\bar{n})\}$. We have $A \subseteq X$ and X is r.e.

A Structural Incompleteness Proof

Let T be a consistent recursively axiomatized extension of Q .

- Take a pair A, B of disjoint recursively inseparable r.e. sets:

- Let $\varphi(x)$ be a formula like in the condition (1) above.
- Put $X=\{n ; T \vdash \varphi(\bar{n})\}$. We have $A \subseteq X$ and X is r.e. Put $Y=\{n ; T \vdash \neg \varphi(\bar{n})\}$. Again $B \subseteq Y$ and Y is r.e.
- Fix $n_{0} \notin X \cup Y$. Such an n_{0} must exist, otherwise X and Y would be mutually complementary, and so X would be a recursive superset of A that is disjoint with B. Then $T \nvdash \varphi\left(\overline{n_{0}}\right)$ and $T \nvdash \neg \varphi\left(\overline{n_{0}}\right)$. So T is incomplete

A Structural Incompleteness Proof

Let T be a consistent recursively axiomatized extension of Q .

- Take a pair A, B of disjoint recursively inseparable r.e. sets:

- Let $\varphi(x)$ be a formula like in the condition (1) above.
- Put $X=\{n ; T \vdash \varphi(\bar{n})\}$. We have $A \subseteq X$ and X is r.e. Put $Y=\{n ; T \vdash \neg \varphi(\bar{n})\}$. Again $B \subseteq Y$ and Y is r.e. Also $X \cap Y=\emptyset$.
- Fix $n_{0} \notin X \cup Y$. Such an n_{0} must exist, otherwise X and Y would be mutually complementary, and so X would be a recursive superset of A that is disjoint with B. Then $T \nvdash \varphi\left(\overline{n_{0}}\right)$ and $T \nvdash \neg \varphi\left(\overline{n_{0}}\right)$. So T is incomplete.

A Structural Incompleteness Proof

Let T be a consistent recursively axiomatized extension of Q .

- Take a pair A, B of disjoint recursively inseparable r.e. sets:

- Let $\varphi(x)$ be a formula like in the condition (1) above.
- Put $X=\{n ; T \vdash \varphi(\bar{n})\}$. We have $A \subseteq X$ and X is r.e. Put $Y=\{n ; T \vdash \neg \varphi(\bar{n})\}$. Again $B \subseteq Y$ and Y is r.e. Also $X \cap Y=\emptyset$.
- Fix $n_{0} \notin X \cup Y$. Such an n_{0} must exist, otherwise X and Y would be mutually complementary, and so X would be a recursive superset of A that is disjoint with B. Then $T \nvdash \varphi\left(\overline{n_{0}}\right)$ and $T \nvdash \neg \varphi\left(\overline{n_{0}}\right)$. So T is incomplete.

The Grzegorczyk's Theory Q $^{-}$

The theory Q^{-}
has the language $\{0, \mathrm{~S}, \mathrm{~A}, \mathrm{M}\}$, where 0 and S play the same role as in Q , and A and M are ternary relation symbols for addition and multiplication. Axioms Q1-Q7 are replaced by variants saying that A and M are graphs of binary functions that satisfy some conditions but may be non-total. For example, axiom Q7 becomes if u is a product of x and y and w is a sum of u and x, then
product of x and $S(y)$ exists and equals w.
Theorem
Q is interpretable in Q^{-}. So Q^{-}is essentially incomplete.

Using the Solovay's method of shortening of cuts.

The Grzegorczyk's Theory Q $^{-}$

The theory Q^{-}
has the language $\{0, \mathrm{~S}, \mathrm{~A}, \mathrm{M}\}$, where 0 and S play the same role as in Q , and A and M are ternary relation symbols for addition and multiplication. Axioms Q1-Q7 are replaced by variants saying that A and M are graphs of binary functions that satisfy some conditions but may be non-total. For example, axiom Q7 becomes if u is a product of x and y and w is a sum of u and x, then the product of x and $S(y)$ exists and equals w.

Theorem
Q is interpretable in Q^{-}
Proof
Using the Solovay's method of shortening of cuts.

The Grzegorczyk's Theory Q $^{-}$

The theory Q^{-}
has the language $\{0, \mathrm{~S}, \mathrm{~A}, \mathrm{M}\}$, where 0 and S play the same role as in Q , and A and M are ternary relation symbols for addition and multiplication. Axioms Q1-Q7 are replaced by variants saying that A and M are graphs of binary functions that satisfy some conditions but may be non-total. For example, axiom Q7 becomes if u is a product of x and y and w is a sum of u and x, then the product of x and $S(y)$ exists and equals w.

Theorem
Q is interpretable in Q^{-}. So Q^{-}is essentially incomplete.

Using the Solovay's method of shortening of cuts.

The Grzegorczyk's Theory Q $^{-}$

The theory Q^{-}
has the language $\{0, \mathrm{~S}, \mathrm{~A}, \mathrm{M}\}$, where 0 and S play the same role as in Q , and A and M are ternary relation symbols for addition and multiplication. Axioms Q1-Q7 are replaced by variants saying that A and M are graphs of binary functions that satisfy some conditions but may be non-total. For example, axiom Q7 becomes if u is a product of x and y and w is a sum of u and x, then the product of x and $S(y)$ exists and equals w.

Theorem
Q is interpretable in Q^{-}. So Q^{-}is essentially incomplete.
Proof
Using the Solovay's method of shortening of cuts.

The Theory TC of Grzegorczyk and Zdanowski

The theory TC
has a binary symbol \frown for concatenation, two constants a and b for two irreducible strings (i.e. one letter words) and some more or less obvious axioms like $\forall x \forall y \forall z\left(x \frown\left(y^{\frown} z\right)=\left(x^{\frown} y\right) \frown z\right)$.

History Axioms were formulated by Tarski, some ideas go back to Quine. Theorem ([G7071) TC is essentially undecidable. Problem Is TC equi-interpretable with Q?

The Theory TC of Grzegorczyk and Zdanowski

The theory TC
has a binary symbol \frown for concatenation, two constants a and b for two irreducible strings (i.e. one letter words) and some more or less obvious axioms like $\forall x \forall y \forall z\left(x^{\frown}\left(y^{\frown} z\right)=\left(x^{\frown} y\right) \frown z\right)$. History
Axioms were formulated by Tarski, some ideas go back to Quine.
Theorem ([GZ07])
TC is essentially undecidable.
problem
Is TC equi-interpretable with Q ?

The Theory TC of Grzegorczyk and Zdanowski

The theory TC
has a binary symbol \frown for concatenation, two constants a and b for two irreducible strings (i.e. one letter words) and some more or less obvious axioms like $\forall x \forall y \forall z\left(x^{\frown}\left(y^{\frown} z\right)=\left(x^{\frown} y\right) \frown z\right)$. History
Axioms were formulated by Tarski, some ideas go back to Quine.
Theorem ([GZ07])
TC is essentially undecidable.

The Theory TC of Grzegorczyk and Zdanowski

The theory TC
has a binary symbol \frown for concatenation, two constants a and b for two irreducible strings (i.e. one letter words) and some more or less obvious axioms like $\forall x \forall y \forall z(x \frown(y \frown z)=(x \frown y) \frown z)$. History
Axioms were formulated by Tarski, some ideas go back to Quine.
Theorem ([GZ07])
TC is essentially undecidable.
Problem
Is TC equi-interpretable with Q ?

The Theory R

ת1: $\bar{n} \neq \bar{m}, \quad$ for n different from m,
ת2: $\bar{n}+\bar{m}=\overline{n+m}$,
ת3: $\bar{n} \cdot \bar{m}=\bar{n} \cdot \bar{m}$,
ת4: $\forall x(x \leq \bar{n} \equiv x=\overline{0} \vee \ldots \vee x=\bar{n})$,
$\Omega 5: \forall x(x \leq \bar{n} \vee \bar{n} \leq x)$.
R is the theory with schemata $\Omega 1-\Omega 5, \mathrm{R}_{0}$ has only $\Omega 1-\Omega 4$.
(a) Q is not interpretable in R (Hájek).

Theorem
The self-reference theorem is true already for R_{0}
Remarks
The schema $\Omega 2$ can be omitted from R_{0} ([Rob49]),

The Theory R

ת1: $\bar{n} \neq \bar{m}, \quad$ for n different from m,
ת2: $\bar{n}+\bar{m}=\overline{n+m}$,
ת3: $\bar{n} \cdot \bar{m}=\bar{n} \cdot \bar{m}$,
ת4: $\forall x(x \leq \bar{n} \equiv x=\overline{0} \vee \ldots \vee x=\bar{n})$,

R is the theory with schemata $\Omega 1-\Omega 5, \mathrm{R}_{0}$ has only $\Omega 1-\Omega 4$.
(a) Q is not interpretable in R (Hájek).

Theorem
The self-reference theorem is true already for R_{0}
Remarks
The schema $\Omega 2$ can be omitted from R_{0} ([Rob49]),

The Theory R

ת1: $\bar{n} \neq \bar{m}, \quad$ for n different from m,
ת2: $\bar{n}+\bar{m}=\overline{n+m}$,
ת3: $\bar{n} \cdot \bar{m}=\bar{n} \cdot m$,
ת4: $\forall x(x \leq \bar{n} \equiv x=\overline{0} \vee \ldots \vee x=\bar{n})$,
$\Omega 5: ~ \forall x(x \leq \bar{n} \vee \bar{n} \leq x)$.
R is the theory with schemata $\Omega 1-\Omega 5, \mathrm{R}_{0}$ has only $\Omega 1-\Omega 4$.
Theorem
(a) Q is not interpretable in R (Hájek).
(b) R is interpretable in R_{0} (Cobham, discussed in [JS83]).

Theorem
The self-reference theorem is true already for R_{0}
Remarks
The schema $\Omega 2$ can be omitted from R_{0} ([Rob49]),

The Theory R

ת1: $\bar{n} \neq \bar{m}, \quad$ for n different from m,
ת2: $\bar{n}+\bar{m}=\overline{n+m}$,
ת3: $\bar{n} \cdot \bar{m}=\bar{n} \cdot m$,
Л4: $\forall x(x \leq \bar{n} \equiv x=\overline{0} \vee \ldots \vee x=\bar{n})$,
$\Omega 5: ~ \forall x(x \leq \bar{n} \vee \bar{n} \leq x)$.
R is the theory with schemata $\Omega 1-\Omega 5, \mathrm{R}_{0}$ has only $\Omega 1-\Omega 4$.
Theorem
(a) Q is not interpretable in R (Hájek).
(b) R is interpretable in R_{0} (Cobham, discussed in [JS83]).

Theorem
The self-reference theorem is true already for R_{0}.
Remarks
The schema $\Omega 2$ can be omitted from R_{0} ([Rob49]),

The Theory R

ת1: $\bar{n} \neq \bar{m}, \quad$ for n different from m,
ת2: $\bar{n}+\bar{m}=\overline{n+m}$,
ת3: $\bar{n} \cdot \bar{m}=\bar{n} \cdot m$,
$\Omega 4: \quad \forall x(x \leq \bar{n} \equiv x=\overline{0} \vee \ldots \vee x=\bar{n})$,

R is the theory with schemata $\Omega 1-\Omega 5, \mathrm{R}_{0}$ has only $\Omega 1-\Omega 4$.
Theorem
(a) Q is not interpretable in R (Hájek).
(b) R is interpretable in R_{0} (Cobham, discussed in [JS83]).

Theorem
The self-reference theorem is true already for R_{0}.
Remarks
The schema $\Omega 2$ can be omitted from R_{0} ([Rob49]),

The Theory R

ת1: $\bar{n} \neq \bar{m}, \quad$ for n different from m,

ת3: $\bar{n} \cdot \bar{m}=\overline{n \cdot m}$,
ת4: $\forall x(x \leq \bar{n} \equiv x=\overline{0} \vee \ldots \vee x=\bar{n})$,

R is the theory with schemata $\Omega 1-\Omega 5, \mathrm{R}_{0}$ has only $\Omega 1-\Omega 4$.
Theorem
(a) Q is not interpretable in R (Hájek).
(b) R is interpretable in R_{0} (Cobham, discussed in [JS83]).

Theorem
The self-reference theorem is true already for R_{0}.
Remarks
The schema $\Omega 2$ can be omitted from R_{0} ([Rob49]),

The Theory R

$\Omega 1: \quad \bar{n} \neq \bar{m}, \quad$ for n different from m,

ת3: $\bar{n} \cdot \bar{m}=\overline{n \cdot m}$,
ת4: $\forall x(x \leq \bar{n} \equiv x=\overline{0} \vee \ldots \vee x=\bar{n})$,

R is the theory with schemata $\Omega 1-\Omega 5, \mathrm{R}_{0}$ has only $\Omega 1-\Omega 4$.
Theorem
(a) Q is not interpretable in R (Hájek).
(b) R is interpretable in R_{0} (Cobham, discussed in [JS83]).

Theorem
The self-reference theorem is true already for R_{0}.

Remarks

The schema $\Omega 2$ can be omitted from R_{0} ([Rob49]),
The connective \equiv cannot be replaced by \rightarrow in $\Omega 4$.

The Theory R

ת1: $\bar{n} \neq \bar{m}, \quad$ for n different from m,
ת2: $\bar{n}+\bar{m}=\overline{n+m}$,
ת3: $\bar{n} \cdot \bar{m}=\bar{n} \cdot m$,
ת4: $\forall x(x \leq \bar{n} \equiv x=\overline{0} \vee \ldots \vee x=\bar{n})$,
$\Omega 5: ~ \forall x(x \leq \bar{n} \vee \bar{n} \leq x)$.
R is the theory with schemata $\Omega 1-\Omega 5, \mathrm{R}_{0}$ has only $\Omega 1-\Omega 4$.
Theorem
(a) Q is not interpretable in R (Hájek).
(b) R is interpretable in R_{0} (Cobham, discussed in [JS83]).

Theorem
The self-reference theorem is true already for R_{0}.

Remarks

The schema $\Omega 2$ can be omitted from R_{0} ([Rob49]),
The connective \equiv cannot be replaced by \rightarrow in $\Omega 4$.

References

目 Andrzej Grzegorczyk and Konrad Zdanowski．Undecidability and concatenation．In preparation， 2007.

R James P．Jones and John C．Shepherdson．Variants of Robinson＇s essentially undecidable theory R．Arch．Math． Logic，23：65－77， 1983.

圊 Julia Robinson．Definability and decision problems in arithmetic．J．Symbolic Logic，14（2）：98－114， 1949.

图 Vítězslav Švejdar．An interpretation of Robinson arithmetic in its Grzegorczyk＇s weaker variant．In preparation， 2007.

Alfred Tarski，Andrzej Mostowski，and Raphael M．Robinson． Undecidable Theories．North－Holland，Amsterdam， 1953.

