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Non-standard models of PA Definable initial segments Non-standard analysis

Non-standard model of Peano arithmetic

is a model of PA non-isomorphic to the standard model N.
That is, a non-standard model is a model containing a number e

such that

0 < e, 1 < e, 2 < e, . . .

A non-standard model is usually depicted like this:
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because there must be many non-standard numbers. The order
structure of the model is ω + (ω∗ + ω) · η, where η is a dense linear
order without endpoints. However, this is not a construction, just
a reasoning about the structure once its existence is proved.
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Some history

T. Skolem (1887–1963) A construction of a non-standard model,
1934.

Ladislav Svante Rieger (1916–1963) A thesis advisor of Petr
Hájek, inventor of Rieger-Nishimura lattice (1949), worked with
non-standard models of set theory.

Petr Vopěnka (1935–) A student of Eduard Čech, an (unofficial)
advisor of P. Hájek. Around 1960, and independently of
A. Robinson, gave a construction of non-standard model using
ultraproduct.
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Definable cuts

The non-standard models defined above may or may not be
elementarily equivalent with the standard model, but they do
satisfy induction. Hájek: every model of PA thinks about itself
that it is standard.

Definition
A formula J(x) is a cut in a theory T if
T ⊢ J(0) and T ⊢ ∀x(J(x) → J(x + 1)).
We informally write J = { x ; J(x) }.

Example

In Robinson arithmetic Q, take J(x) ≡ 0 + x = x . (Note that
∀x(x + 0 = x) and ∀x∀y(y + S(x) = S(y + x)) are axioms, but
∀x(0 + x = x) is unprovable in Q).
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Truth relations in Gödel-Bernays set theory

. . . e1 . . . . . . e2 . . . . . . . . .
...

...
...

ϕ1 . . . 1 . . . . . . 1 . . . . . . . . .
...

...
...

ϕ2 . . . 0 . . . . . . 1 . . . . . . . . .
...

...
...

ϕ1 & ϕ2 . . . 0 . . . . . . 1 . . . . . . . . .

Definition (in GB)
A truth relation on n is a relation between set formulas (formulas of ZF

set theory) having Gödel numbers less than n, and evaluations of free
variables, satisfying the Tarski’s conditions:

[ϕ1 & ϕ2, e] ∈ R ⇔ [ϕ1, e] ∈ R and [ϕ2, e] ∈ R, etc.,

[∀xϕ, e] ∈ R ⇔ for each set a, [ϕ, e(x/a)] ∈ R, etc.,

where e(x/a) evaluates x by a, and is identical to e everywhere else.
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Occupable numbers

Lemma If both R1 and R2 are truth relations on n then R1 = R2.

Definition Ocp = { n ; ∃R(R is a truth relation on n) }.

Lemma 0 ∈ Ocp. If n ∈ Ocp then n + 1 ∈ Ocp.

Theorem GB 6⊢ ∀n(n ∈ Ocp).

Some consequences and remarks

• There are reasonably defined formulas of GB that do not
determine a class.

• The Tarski’s definition of first-order semantics is not absolute;
it is developed in some sort of set theory, and it needs some
strength of axioms to work.

• A connection to Gödel 2nd theorem: GB ⊢ ConOcp(ZF).
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The concept of infinitesimals

If x is a non-standard number then 1/x is infinitely small, i.e. it is
infinitesimal.

Example definition

A function f is continuous in a if, for every infinitesimal dx , the
value f (x + dx) is infinitely close to f (x).
That is, if |f (x + dx) − f (x)| is infinitesimal.
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