Infinite natural numbers: unwanted phenomenon, or a useful concept?

Vítězslav Švejdar

Dept. of Logic, College of Arts and Philosophy, Charles University, $\label{eq:http://www.cuni.cz/~svejdar/} http://www.cuni.cz/~svejdar/$

Logica 10, Hejnice, June 2010

Outline

Non-standard model of Peano arithmetic, some history

Definable initial segments of natural numbers

A connection to non-standard analysis

is a model of PA non-isomorphic to the *standard model* **N**. That is, a non-standard model is a model containing a number *e* such that

$$0 < e, \qquad 1 < e, \qquad 2 < e, \qquad \dots$$

A non-standard model is usually depicted like this:

$$\frac{1}{N} \left(\cdots \cdots \left(\frac{1}{Z} \right) \cdots \left(\frac{1}{Z} \right) \cdots \left(\frac{1}{Z} \right) \cdots \right)$$

is a model of PA non-isomorphic to the standard model ${\bf N}.$ That is, a non-standard model is a model containing a number e such that

$$0 < e, \qquad 1 < e, \qquad 2 < e, \qquad \ldots$$

A non-standard model is usually depicted like this:

$$\frac{1}{N} \left(\cdots \cdots \left(\frac{1}{Z} \right) \cdots \left(\frac{1}{Z} \right) \cdots \left(\frac{1}{Z} \right) \cdots \right)$$

is a model of PA non-isomorphic to the standard model ${\bf N}.$ That is, a non-standard model is a model containing a number e such that

$$0 < e, \qquad 1 < e, \qquad 2 < e, \qquad \dots$$

A non-standard model is usually depicted like this:

$$\underset{N}{\stackrel{}{=}} \left(\cdots \cdots (\underset{Z}{\xrightarrow{}}) \cdots (\underset{Z}{\xrightarrow{}}) \cdots (\underset{Z}{\xrightarrow{}}) \cdots \right)$$

is a model of PA non-isomorphic to the standard model ${\bf N}.$ That is, a non-standard model is a model containing a number e such that

$$0 < e, \qquad 1 < e, \qquad 2 < e, \qquad \dots$$

A non-standard model is usually depicted like this:

$$\underset{N}{\stackrel{}{=}} \left(\cdots \cdots (\underset{Z}{\xrightarrow{}}) \cdots (\underset{Z}{\xrightarrow{}}) \cdots (\underset{Z}{\xrightarrow{}}) \cdots \right)$$

Some history

T. Skolem (1887–1963) A construction of a non-standard model, 1934.

Ladislav Svante Rieger (1916–1963) A thesis advisor of Petr Hájek, inventor of Rieger-Nishimura lattice (1949), worked with non-standard models of set theory.

Petr Vopěnka (1935–) A student of Eduard Čech, an (unofficial) advisor of P. Hájek. Around 1960, and independently of A. Robinson, gave a construction of non-standard model using ultraproduct.

Some history

T. Skolem (1887–1963) A construction of a non-standard model, 1934.

Ladislav Svante Rieger (1916–1963) A thesis advisor of Petr Hájek, inventor of Rieger-Nishimura lattice (1949), worked with non-standard models of set theory.

Petr Vopěnka (1935–) A student of Eduard Čech, an (unofficial) advisor of P. Hájek. Around 1960, and independently of A. Robinson, gave a construction of non-standard model using ultraproduct.

Some history

T. Skolem (1887–1963) A construction of a non-standard model, 1934.

Ladislav Svante Rieger (1916–1963) A thesis advisor of Petr Hájek, inventor of Rieger-Nishimura lattice (1949), worked with non-standard models of set theory.

Petr Vopěnka (1935–) A student of Eduard Čech, an (unofficial) advisor of P. Hájek. Around 1960, and independently of A. Robinson, gave a construction of non-standard model using ultraproduct.

Definable cuts

The non-standard models defined above may or may not be elementarily equivalent with the standard model, but they do satisfy induction. Hájek: every model of PA thinks about itself that it is standard.

Definition

A formula J(x) is a *cut* in a theory T if $T \vdash J(0)$ and $T \vdash \forall x(J(x) \rightarrow J(x+1))$. We informally write $J = \{x; J(x)\}$.

Example

In Robinson arithmetic Q, take $J(x) \equiv 0 + x = x$. (Note that $\forall x(x + 0 = x)$ and $\forall x \forall y(y + S(x) = S(y + x))$ are axioms, but $\forall x(0 + x = x)$ is unprovable in Q).

Definable cuts

The non-standard models defined above may or may not be elementarily equivalent with the standard model, but they do satisfy induction. Hájek: every model of PA thinks about itself that it is standard.

Definition

A formula
$$J(x)$$
 is a *cut* in a theory T if $T \vdash J(0)$ and $T \vdash \forall x(J(x) \rightarrow J(x+1))$.
We informally write $J = \{x; J(x)\}$.

Example

In Robinson arithmetic Q, take $J(x) \equiv 0 + x = x$. (Note that $\forall x(x + 0 = x)$ and $\forall x \forall y(y + S(x) = S(y + x))$ are axioms, but $\forall x(0 + x = x)$ is unprovable in Q).

Definable cuts

The non-standard models defined above may or may not be elementarily equivalent with the standard model, but they do satisfy induction. Hájek: every model of PA thinks about itself that it is standard.

Definition

A formula
$$J(x)$$
 is a *cut* in a theory T if $T \vdash J(0)$ and $T \vdash \forall x(J(x) \rightarrow J(x+1))$.
We informally write $J = \{x; J(x)\}$.

Example

In Robinson arithmetic Q, take $J(x) \equiv 0 + x = x$. (Note that $\forall x(x + 0 = x)$ and $\forall x \forall y(y + S(x) = S(y + x))$ are axioms, but $\forall x(0 + x = x)$ is unprovable in Q).

Truth relations in Gödel-Bernays set theory

Definition (in GB)

A *truth relation* on n is a relation between set formulas (formulas of ZF set theory) having Gödel numbers less than n, and evaluations of free variables, satisfying the Tarski's conditions:

$$\begin{split} [\varphi_1 \And \varphi_2, e] \in R \iff [\varphi_1, e] \in R \text{ and } [\varphi_2, e] \in R, \quad \text{etc.}, \\ [\forall x \varphi, e] \in R \iff \text{for each set } a, \ [\varphi, e(x/a)] \in R, \quad \text{etc.}, \\ \text{here } e(x/a) \text{ evaluates } x \text{ by } a, \text{ and is identical to } e \text{ everywhere else.} \end{split}$$

Truth relations in Gödel-Bernays set theory

	 e_1		• • •	e_2	•••	•••	
:	:			:			
<i>ω</i> 1	 1			1			
	•			•			
:	:			:			
φ_2	 0	• • •	•••	T	• • •	•••	• • •
	÷			÷			
$arphi_1$ & $arphi_2$	 0			1	• • •		

Definition (in GB)

A *truth relation* on n is a relation between set formulas (formulas of ZF set theory) having Gödel numbers less than n, and evaluations of free variables, satisfying the Tarski's conditions:

$$\begin{split} [\varphi_1 \And \varphi_2, e] \in R \iff [\varphi_1, e] \in R \text{ and } [\varphi_2, e] \in R, \quad \text{etc.}, \\ [\forall x \varphi, e] \in R \iff \text{for each set } a, \ [\varphi, e(x/a)] \in R, \quad \text{etc.}, \\ \text{here } e(x/a) \text{ evaluates } x \text{ by } a, \text{ and is identical to } e \text{ everywhere else.} \end{split}$$

w

Lemma If both R_1 and R_2 are truth relations on *n* then $R_1 = R_2$.

Definition $Ocp = \{ n ; \exists R(R \text{ is a truth relation on } n) \}.$

Lemma $0 \in \text{Ocp.}$ If $n \in \text{Ocp}$ then $n + 1 \in \text{Ocp.}$

Theorem GB $\not\vdash \forall n (n \in \text{Ocp}).$

- There are reasonably defined formulas of GB that do not determine a class.
- The Tarski's definition of first-order semantics is not absolute; it is developed in some sort of set theory, and it needs some strength of axioms to work.
- A connection to Gödel 2nd theorem: GB ⊢ Con^{Ocp}(ZF).

Lemma If both R_1 and R_2 are truth relations on *n* then $R_1 = R_2$.

Definition $Ocp = \{ n ; \exists R(R \text{ is a truth relation on } n) \}.$

Lemma $0 \in \text{Ocp.}$ If $n \in \text{Ocp}$ then $n + 1 \in \text{Ocp.}$

Theorem GB $\not\vdash \forall n (n \in \text{Ocp}).$

- There are reasonably defined formulas of GB that do not determine a class.
- The Tarski's definition of first-order semantics is not absolute; it is developed in some sort of set theory, and it needs some strength of axioms to work.
- A connection to Gödel 2nd theorem: GB ⊢ Con^{Ocp}(ZF).

Lemma If both R_1 and R_2 are truth relations on *n* then $R_1 = R_2$.

Definition $Ocp = \{ n ; \exists R(R \text{ is a truth relation on } n) \}.$

Lemma $0 \in \text{Ocp.}$ If $n \in \text{Ocp}$ then $n + 1 \in \text{Ocp.}$

Theorem GB $\not\vdash \forall n (n \in \text{Ocp}).$

- There are reasonably defined formulas of GB that do not determine a class.
- The Tarski's definition of first-order semantics is not absolute; it is developed in some sort of set theory, and it needs some strength of axioms to work.
- A connection to Gödel 2nd theorem: GB ⊢ Con^{Ocp}(ZF).

Lemma If both R_1 and R_2 are truth relations on n then $R_1 = R_2$.

Definition $Ocp = \{ n ; \exists R(R \text{ is a truth relation on } n) \}.$

Lemma $0 \in \text{Ocp.}$ If $n \in \text{Ocp}$ then $n + 1 \in \text{Ocp.}$

Theorem GB $\not\vdash \forall n (n \in \text{Ocp}).$

Some consequences and remarks

• There are reasonably defined formulas of GB that do not determine a class.

- The Tarski's definition of first-order semantics is not absolute; it is developed in some sort of set theory, and it needs some strength of axioms to work.
- A connection to Gödel 2nd theorem: GB ⊢ Con^{Ocp}(ZF).

Lemma If both R_1 and R_2 are truth relations on *n* then $R_1 = R_2$.

Definition $Ocp = \{ n ; \exists R(R \text{ is a truth relation on } n) \}.$

Lemma $0 \in \text{Ocp.}$ If $n \in \text{Ocp}$ then $n + 1 \in \text{Ocp.}$

Theorem GB $\not\vdash \forall n (n \in \text{Ocp}).$

- There are reasonably defined formulas of GB that do not determine a class.
- The Tarski's definition of first-order semantics is not absolute; it is developed in some sort of set theory, and it needs some strength of axioms to work.
- A connection to Gödel 2nd theorem: $GB \vdash Con^{Ocp}(ZF)$.

Lemma If both R_1 and R_2 are truth relations on *n* then $R_1 = R_2$.

```
Definition Ocp = \{ n ; \exists R(R \text{ is a truth relation on } n) \}.
```

```
Lemma 0 \in \text{Ocp.} If n \in \text{Ocp} then n + 1 \in \text{Ocp.}
```

```
Theorem GB \not\vdash \forall n (n \in \text{Ocp}).
```

- $\bullet\,$ There are reasonably defined formulas of GB that do not determine a class.
- The Tarski's definition of first-order semantics is not absolute; it is developed in some sort of set theory, and it needs some strength of axioms to work.
- A connection to Gödel 2nd theorem: $GB \vdash Con^{Ocp}(ZF)$.

Lemma If both R_1 and R_2 are truth relations on *n* then $R_1 = R_2$.

```
Definition Ocp = \{ n ; \exists R(R \text{ is a truth relation on } n) \}.
```

```
Lemma 0 \in \text{Ocp.} If n \in \text{Ocp} then n + 1 \in \text{Ocp.}
```

```
Theorem GB \not\vdash \forall n (n \in \text{Ocp}).
```

- $\bullet\,$ There are reasonably defined formulas of GB that do not determine a class.
- The Tarski's definition of first-order semantics is not absolute; it is developed in some sort of set theory, and it needs some strength of axioms to work.
- A connection to Gödel 2nd theorem: $GB \vdash Con^{Ocp}(ZF)$.

Lemma If both R_1 and R_2 are truth relations on *n* then $R_1 = R_2$.

```
Definition Ocp = \{ n ; \exists R(R \text{ is a truth relation on } n) \}.
```

```
Lemma 0 \in \text{Ocp.} If n \in \text{Ocp} then n + 1 \in \text{Ocp.}
```

```
Theorem GB \not\vdash \forall n (n \in \text{Ocp}).
```

- $\bullet\,$ There are reasonably defined formulas of GB that do not determine a class.
- The Tarski's definition of first-order semantics is not absolute; it is developed in some sort of set theory, and it needs some strength of axioms to work.
- A connection to Gödel 2nd theorem: $GB \vdash Con^{Ocp}(ZF)$.

The concept of infinitesimals

If x is a non-standard number then 1/x is infinitely small, i.e. it is infinitesimal.

Example definition

A function f is continuous in a if, for every infinitesimal dx, the value f(x + dx) is infinitely close to f(x). That is, if |f(x + dx) - f(x)| is infinitesimal.

The concept of infinitesimals

If x is a non-standard number then 1/x is infinitely small, i.e. it is infinitesimal.

Example definition

A function f is continuous in a if, for every infinitesimal dx, the value f(x + dx) is infinitely close to f(x). That is, if |f(x + dx) - f(x)| is infinitesimal.

References

- T. Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzhlbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. *Fundamenta Mathematicae*, 23:150–161, 1934.
- R. M. Solovay. Interpretability in set theories. Unpublished letter to P. Hájek, Aug. 17, 1976, http://www.cs.cas.cz/~hajek/RSolovayZFGB.pdf, 1976.
- P. Vopěnka and P. Hájek. Existence of a generalized semantic model of Gödel-Bernays set theory. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys., XXI(12), 1973.
- P. Vopěnka. Mathematics in the Alternative Set Theory. Teubner, Leipzig, 1979.