On Purely Implicational Fragments of Intuitionistic Propositional Logic

Vítězslav Švejdar

Dept. of Logic, College of Arts, Charles University, http://www.cuni.cz/~svejdar/

> Logica 2011 Hejnice, June 2011

> > **4** 🗗 ▶

Vitezslav Svejdar, Pragu

Purely Implicational Fragments of Intuitionistic Propositional Logic

1 /15

PL and its fragments

Prime nodes, the fragment with two ator

More than two atoms

Outline

Introduction: IPL, its fragments, algorithmical complexity

Kripke semantics, prime nodes, and the two atoms case $% \left\{ 1,2,...,4,...\right\}$

More than two atoms, and computer aided research

Fragments of IPL

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts

- (a) (Statman, 1979) IPL is PSPACE-complete.
- (b) $IPL^{\{\rightarrow\}}$, the purely implicational fragment of IPL, is *PSPACE*-complete.
- (c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is PSPACE-complete.
- (d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

Motivation

What happens if there are only two atoms and \rightarrow is the only connective? I.e., how does IPL^{$\{\rightarrow\}$}(2) look like?

itezslav Svejdar, Prague

On Furely implicational Fragments of intuitionistic Fropositional Logi

3/15

PL and its fragment

Prime nodes, the fragment with two atoms

More than two atoms

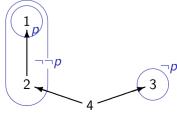
Kripke semantics for IPL

Definition

A Kripke model for intuitionistic logic is a triple $K = \langle W, \leq, \Vdash \rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
- $-x \Vdash A \lor B \text{ iff } x \Vdash A \text{ or } x \Vdash B$, and similarly for A & B,
- $x \Vdash A \rightarrow B$ iff $\forall y \ge x(y \Vdash A \Rightarrow y \Vdash B)$, and similarly for ¬A.

Example



This model is a counter-example for the formula $\neg\neg p \lor (\neg\neg p \to p)$. It is simultaneously a counter-example for $\neg\neg p \to p$, for $p \lor \neg p$, and for $\neg p \lor \neg \neg p$.

Prime nodes

Let, in IPL $\{-\}$ (n), the atoms be p_1, \ldots, p_n .

Definition

A node a of a Kripke model is prime if one of the atoms p_1, \ldots, p_n is not satisfied in a but is satisfied in all successors of a.

Lemma 1

If a is not prime and B is satisfied in all successors of a then $a \Vdash B$.

Lemma 2

If a is not prime and B is satisfied in all prime b's accessible from a then $a \Vdash B$.

Theorem

If a purely implicational formula built up from p_1, \ldots, p_n has a counter-example, then it has a counter-example consisting of prime nodes only.

itezslav Svejdar, Prague

n Purely Implicational Fragments of Intuitionistic Propositional Logic

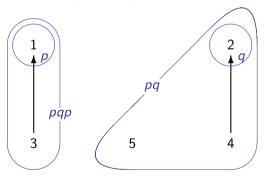
- 4 ₺

OL and its fragments

Prime nodes, the fragment with two atom

More than two stom

Model for atoms p and q, and definable sets in it



Theorem

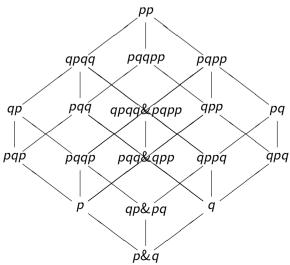
Every definable set containing 1 and 2 also contains 3 or 4. The sets \emptyset , $\{5\}$, $\{1,2\}$, $\{1,2,5\}$ are not definable. As the following figure shows, all of the remaining 14 sets are definable.

Formulas built up from p and q



Polish way of depicting the formulas built from two atoms

As it appears in papers by P. Krzystek and Z. Kostrzycka

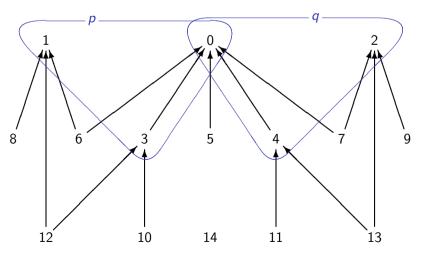


Some history of the two atoms case

Let \mathcal{H}_n be the structure of purely implicational formulas built from *n* atoms. Let \mathcal{J}_n be the structure of formulas built from *n* atoms using \rightarrow and &. Then

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_2 and \mathcal{J}_2 are given in Kostrzycka, 2003.
- The fact that $|\mathcal{H}_2| = 14$ is in Hirokawa, 1995.
- The structure \mathcal{J}_2 appears in Krzystek, 1977.
- Urguhart, 1974 attributes the fact that all \mathcal{H}_n are finite to Diego, and gives some upper and lower bounds on $|\mathcal{H}_n|$.

The model for two atoms and \(\precedeta \)



Theorem

(a) If 0 and not 3, then 2 and 4.

L and its fragments

Formulas built up from p, q, \perp

The claims (a)–(f) again, shown only on the handout

- (a) If 0 and not 3, then 2 and 4.
- (b) If 1 and not 3, then 8.
- (c) If 0,1 and not 3, then 6 and 8.
- (d) If 0 and none of 1, 2, then 3-5, 10, 11.
- (e) If 3 and not 1, then 10.
- (f) If 0-4 and none of 6, 8, 10, 12, then 7, 9, 11, 13.

Theorem

There exists *exactly* 518 non-equivalent formulas built up from p, q, and \perp .

Proof

The claims (a)–(f) allow only 518 formulas, and an sql script has generated that number of them.

4 🗇 ▶

itezslav Svejdar, Prague

on Fullery Implicational Fragments of Intuitionistic Fropositional Eogle

11/15

IPL and its fragment

Prime nodes, the fragment with two atom

More than two atoms

Three atoms p, q, r

Urquhart mentions Diego's estimate 10^{27} for the number $|\mathcal{H}_3|$ of non-equivalent formulas, and improves it as follows: $2^{23} < |\mathcal{H}_3| < 3 \cdot 2^{23}$.

The universal model has 61 nodes.

The lower bound can further be improved: $10684394 < |\mathcal{H}_3|$.

Krzystek, 1977 found the cardinality of \mathcal{J}_3 : $|\mathcal{J}_3|=623\,662\,965\,552\,330.$

References

- M. Blicha. Implicational Fragments of Intuitionistic Propositional Logic (in Slovak). Bachelor's thesis, College of Arts of Charles University, Dept. of Logic, 2010.
- S. Hirokawa. A characterization of implicational axiom schema playing the role of Peirces law in intuitionistic logic. RIFIS Technical Report, Research Institute of Fundamental Information Science, Kyushu University, 1994.
- Z. Kostrzycka. On the density of truth of implicational parts of intuitionistic and classical logics. *J. Applied Non-Classical Logics*, 13(3–4):391–421, 2003.
- P. S. Krzystek. On the free relatively pseudocomplemented semilattice with three generators. *Reports on Mathematical Logic*, 9:31–38, 1977.

4 🗗 ▶

'itezslav Svejdar, Prague

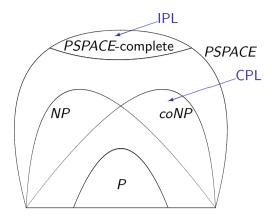
Purely Implicational Fragments of Intuitionistic Propositional Logic

IPL and its fragmen

Prime nodes, the fragment with two aton

- I. Nishimura. On formulas of one variable in intuitionistic propositional calculus. *J. Symb. Logic*, 25:327–331, 1960.
- L. S. Rieger. On lattice theory of Brouwerian propositional logic. *Acta Fac. Rerum Nat. Univ. Carol.*, 189:1–40, 1949.
- M. N. Rybakov. Complexity of intuitionistic and Visser's basic and formal logics in finitely many variables. In G. Governatori, I. Hodkinson, and Y. Venema, editors, *Advances in Modal Logic 6*, pages 394–411. King's College Publications, 2006.
- R. Statman. Intuitionistic propositional logic is polynomial-space complete. *Theoretical Comp. Sci.*, 9:67–72, 1979.
- V. Švejdar. On the polynomial-space completeness of intuitionistic propositional logic. *Archive Math. Logic*, 42(7):711–716, 2003.
- A. Urquhart. Implicational formulas in intuitionistic logic. *J. Symb. Logic*, 39(4):661–664, 1974.

Appendix: IPL, CPL, and complexity classes



Back to Introduction

