On Purely Implicational Fragments of Intuitionistic Propositional Logic

Vítězslav Švejdar

Dept. of Logic, College of Arts, Charles University, http://www.cuni.cz/~svejdar/

> Logica 2011 Hejnice, June 2011

Introduction: IPL, its fragments, algorithmical complexity

Kripke semantics, prime nodes, and the two atoms case

More than two atoms, and computer aided research

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts

(a) (Statman, 1979) IPL is *PSPACE*-complete.

(b) IPL^{→}, the purely implicational fragment of IPL, is *PSPACE*-complete.

(c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is *PSPACE*-complete.

(d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

Motivation

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts

(a) (Statman, 1979) IPL is PSPACE-complete.

(b) IPL^{→}, the purely implicational fragment of IPL, is PSPACE-complete.

(c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is *PSPACE*-complete.

(d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

Motivation

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts

(a) (Statman, 1979) IPL is *PSPACE*-complete.

(b) $IPL^{\{\rightarrow\}}$, the purely implicational fragment of IPL, is *PSPACE*-complete.

(c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is *PSPACE*-complete.

(d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

Motivation

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts

(a) (Statman, 1979) IPL is *PSPACE*-complete.

(b) IPL^{ \rightarrow }, the purely implicational fragment of IPL, is *PSPACE*-complete.

(c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is *PSPACE*-complete.

(d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

Motivation

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts

(a) (Statman, 1979) IPL is *PSPACE*-complete.

(b) IPL^{ \rightarrow }, the purely implicational fragment of IPL, is *PSPACE*-complete.

(c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is *PSPACE*-complete.

(d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

Motivation

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts

(a) (Statman, 1979) IPL is *PSPACE*-complete.

(b) IPL^{ \rightarrow }, the purely implicational fragment of IPL, is *PSPACE*-complete.

(c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is *PSPACE*-complete.

(d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

Motivation

Definition

A Kripke model for intuitionistic logic is a triple $K = \langle W, \leq, \Vdash \rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
- $x \Vdash A \lor B$ iff $x \Vdash A$ or $x \Vdash B$, and similarly for A & B,
- $x \Vdash A \to B \text{ iff } \forall y \ge x (y \Vdash A \Rightarrow y \Vdash B) \text{, and similarly for } \neg A.$

Example

Definition

A Kripke model for intuitionistic logic is a triple $K = \langle W, \leq, \Vdash \rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
- $x \Vdash A \lor B$ iff $x \Vdash A$ or $x \Vdash B$, and similarly for A & B,
- $x \Vdash A \to B \text{ iff } \forall y \ge x (y \Vdash A \Rightarrow y \Vdash B) \text{, and similarly for } \neg A.$

Example

Definition

A Kripke model for intuitionistic logic is a triple $K = \langle W, \leq, \Vdash \rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
- $x \Vdash A \lor B$ iff $x \Vdash A$ or $x \Vdash B$, and similarly for A & B,
- $x \Vdash A \to B \text{ iff } \forall y \ge x (y \Vdash A \Rightarrow y \Vdash B) \text{, and similarly for } \neg A.$

Example

Definition

A Kripke model for intuitionistic logic is a triple $K = \langle W, \leq, \Vdash \rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
- $x \Vdash A \lor B$ iff $x \Vdash A$ or $x \Vdash B$, and similarly for A & B,
- $x \Vdash A \to B \text{ iff } \forall y \ge x (y \Vdash A \Rightarrow y \Vdash B) \text{, and similarly for } \neg A.$

Definition

A Kripke model for intuitionistic logic is a triple $K = \langle W, \leq, \Vdash \rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
- $x \Vdash A \lor B$ iff $x \Vdash A$ or $x \Vdash B$, and similarly for A & B,
- $x \Vdash A \to B \text{ iff } \forall y \ge x (y \Vdash A \Rightarrow y \Vdash B) \text{, and similarly for } \neg A.$

This model is a counter-example for the formula $\neg \neg p \lor (\neg \neg p \rightarrow p)$. It is simultaneously a counterexample for $\neg \neg p \rightarrow p$, for $p \lor \neg p$, and for $\neg p \lor \neg \neg p$.

Let, in $IPL^{\{\rightarrow\}}(n)$, the atoms be p_1, \ldots, p_n .

Definition

A node *a* of a Kripke model is prime if one of the atoms p_1, \ldots, p_n is not satisfied in *a* but is satisfied in all successors of *a*.

Lemma 1 If *a* is not prime and *B* is satisfied in all successors of then *a* ⊩ *B*.

Lemma 2 If a is not prime and B is satisfied in all prime b's accessible from a then $a \Vdash B$.

Theorem

Let, in IPL^{ \rightarrow }(*n*), the atoms be p_1, \ldots, p_n .

Definition

A node *a* of a Kripke model is prime if one of the atoms p_1, \ldots, p_n is not satisfied in *a* but is satisfied in all successors of *a*.

Lemma 1

If a is not prime and B is satisfied in all successors of a then $a \Vdash B$.

Lemma 2

If a is not prime and B is satisfied in all prime b's accessible from a then $a \Vdash B$.

Theorem

Let, in IPL^{ \rightarrow }(*n*), the atoms be p_1, \ldots, p_n .

Definition

A node *a* of a Kripke model is prime if one of the atoms p_1, \ldots, p_n is not satisfied in *a* but is satisfied in all successors of *a*.

Lemma 1

If a is not prime and B is satisfied in all successors of a then $a \Vdash B$.

Lemma 2

If a is not prime and B is satisfied in all prime b's accessible from a then $a \Vdash B$.

Theorem

Let, in IPL^{ \rightarrow }(*n*), the atoms be p_1, \ldots, p_n .

Definition

A node *a* of a Kripke model is prime if one of the atoms p_1, \ldots, p_n is not satisfied in *a* but is satisfied in all successors of *a*.

Lemma 1

If a is not prime and B is satisfied in all successors of a then $a \Vdash B$.

Lemma 2

If a is not prime and B is satisfied in all prime b's accessible from a then $a \Vdash B$.

Theorem

5

Theorem

Theorem

Theorem

Theorem

Theorem

Formulas built up from p and q

Polish way of depicting the formulas built from two atoms

As it appears in papers by P. Krzystek and Z. Kostrzycka

Polish way of depicting the formulas built from two atoms

As it appears in papers by P. Krzystek and Z. Kostrzycka

Polish way of depicting the formulas built from two atoms

As it appears in papers by P. Krzystek and Z. Kostrzycka

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_2 and \mathcal{J}_2 are given in Kostrzycka, 2003.
- The fact that $|\mathcal{H}_2| = 14$ is in Hirokawa, 1995.
- The structure \mathcal{J}_2 appears in Krzystek, 1977.
- Urquhart, 1974 attributes the fact that all *H_n* are finite to Diego, and gives some upper and lower bounds on |*H_n*|.

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_2 and \mathcal{J}_2 are given in Kostrzycka, 2003.
- The fact that $|\mathcal{H}_2| = 14$ is in Hirokawa, 1995.
- The structure \mathcal{J}_2 appears in Krzystek, 1977.
- Urquhart, 1974 attributes the fact that all *H_n* are finite to Diego, and gives some upper and lower bounds on |*H_n*|.

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_2 and \mathcal{J}_2 are given in Kostrzycka, 2003.
- The fact that $|\mathcal{H}_2| = 14$ is in Hirokawa, 1995.
- The structure \mathcal{J}_2 appears in Krzystek, 1977.
- Urquhart, 1974 attributes the fact that all *H_n* are finite to Diego, and gives some upper and lower bounds on |*H_n*|.

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_2 and \mathcal{J}_2 are given in Kostrzycka, 2003.
- The fact that $|\mathcal{H}_2| = 14$ is in Hirokawa, 1995.
- The structure \mathcal{J}_2 appears in Krzystek, 1977.
- Urquhart, 1974 attributes the fact that all *H_n* are finite to Diego, and gives some upper and lower bounds on |*H_n*|.

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_2 and \mathcal{J}_2 are given in Kostrzycka, 2003.
- The fact that $|\mathcal{H}_2| = 14$ is in Hirokawa, 1995.
- The structure \mathcal{J}_2 appears in Krzystek, 1977.
- Urquhart, 1974 attributes the fact that all *H_n* are finite to Diego, and gives some upper and lower bounds on |*H_n*|.

Theorem

Vitezslav Svejdar, Pragu

On Purely Implicational Fragments of Intuitionistic Propositional Logic

Theorem (b) If 1 and not 3, then 8.

(c) If 0, 1 and not 3, then 6 and 8.

(d) If 0 and none of 1, 2, then 3–5, 10, 11.

Vitezslav Svejdar, Pragu

Theorem (e) If 3 and not 1, then 10.

Theorem (f) If 0-4 and none of 6, 8, 10, 12, then 7, 9, 11, 13.

Theorem Claims (a)–(f) allow at most 259 subsets of $\{0, ..., 13\}$.

On Purely Implicational Fragments of Intuitionistic Propositional Logic

Theorem

Thus there are at most 518 non-equivalent formulas.

Vitezslav Svejdar, Pragu

On Purely Implicational Fragments of Intuitionistic Propositional Logic

Formulas built up from p, q, \perp

Formulas built up from p, q, \perp

Theorem There exists *exactly* 518 non-equivalent formulas built up from p, q, and \perp .

Urquhart mentions Diego's estimate 10^{27} for the number $|\mathcal{H}_3|$ of non-equivalent formulas, and improves it as follows: $2^{23} < |\mathcal{H}_3| < 3 \cdot 2^{23}.$

The universal model has 61 nodes.

The lower bound can further be improved: $10\,684\,394 \leq |\mathcal{H}_3|$.

Urquhart mentions Diego's estimate 10^{27} for the number $|\mathcal{H}_3|$ of non-equivalent formulas, and improves it as follows: $2^{23} < |\mathcal{H}_3| < 3 \cdot 2^{23}.$

The universal model has 61 nodes.

The lower bound can further be improved: 10684394 $\leq |\mathcal{H}_3|$.

Urquhart mentions Diego's estimate 10^{27} for the number $|\mathcal{H}_3|$ of non-equivalent formulas, and improves it as follows: $2^{23} < |\mathcal{H}_3| < 3 \cdot 2^{23}.$

The universal model has 61 nodes.

The lower bound can further be improved: $10\,684\,394 \leq |\mathcal{H}_3|$.

Urquhart mentions Diego's estimate 10^{27} for the number $|\mathcal{H}_3|$ of non-equivalent formulas, and improves it as follows: $2^{23} < |\mathcal{H}_3| < 3 \cdot 2^{23}$.

The universal model has 61 nodes.

The lower bound can further be improved: $10\,684\,394 \leq |\mathcal{H}_3|$.

References

- M. Blicha. Implicational Fragments of Intuitionistic Propositional Logic (in Slovak). Bachelor's thesis, College of Arts of Charles University, Dept. of Logic, 2010.
- S. Hirokawa. A characterization of implicational axiom schema playing the role of Peirces law in intuitionistic logic. RIFIS Technical Report, Research Institute of Fundamental Information Science, Kyushu University, 1994.
- Z. Kostrzycka. On the density of truth of implicational parts of intuitionistic and classical logics. J. Applied Non-Classical Logics, 13(3-4):391-421, 2003.
- P. S. Krzystek. On the free relatively pseudocomplemented semilattice with three generators. *Reports on Mathematical Logic*, 9:31–38, 1977.

- I. Nishimura. On formulas of one variable in intuitionistic propositional calculus. *J. Symb. Logic*, 25:327–331, 1960.
- L. S. Rieger. On lattice theory of Brouwerian propositional logic. *Acta Fac. Rerum Nat. Univ. Carol.*, 189:1–40, 1949.
- M. N. Rybakov. Complexity of intuitionistic and Visser's basic and formal logics in finitely many variables. In G. Governatori, I. Hodkinson, and Y. Venema, editors, *Advances in Modal Logic 6*, pages 394–411. King's College Publications, 2006.
- R. Statman. Intuitionistic propositional logic is polynomial-space complete. *Theoretical Comp. Sci.*, 9:67–72, 1979.
- V. Švejdar. On the polynomial-space completeness of intuitionistic propositional logic. Archive Math. Logic, 42(7):711–716, 2003.
- A. Urquhart. Implicational formulas in intuitionistic logic. *J. Symb. Logic*, 39(4):661–664, 1974.

Appendix: IPL, CPL, and complexity classes

Back to Introduction

Vitezslav Svejdar, Pragu

On Purely Implicational Fragments of Intuitionistic Propositional Logic

< **∂** >