On Purely Implicational Fragments of Intuitionistic Propositional Logic

Vítězslav Švejdar
Dept. of Logic, College of Arts, Charles University, http://www.cuni.cz/~svejdar/

Logica 2011
Hejnice, June 2011

Outline

Introduction: IPL, its fragments, algorithmical complexity

Kripke semantics, prime nodes, and the two atoms case

More than two atoms, and computer aided research

Fragments of IPL

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts

Fragments of IPL

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts
(a) (Statman, 1979) IPL is PSPACE-complete.
(b) IPL $\{\rightarrow\}$, the purely implicational fragment of IPL, is

PSPACE-complete.
(c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is PSPACE-complete.
(d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

Motivation
What happens if there are only two atoms and \rightarrow is the only connective? I.e., how does IPL ${ }^{\{\rightarrow\}}(2)$ look like?

Fragments of IPL

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts
(a) (Statman, 1979) IPL is PSPACE-complete.
(b) $\operatorname{IPL}{ }^{\{\rightarrow\}}$, the purely implicational fragment of IPL, is PSPACE-complete.

Fragments of IPL

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.

Known facts
(a) (Statman, 1979) IPL is PSPACE-complete.
(b) $\operatorname{IPL}{ }^{\{\rightarrow\}}$, the purely implicational fragment of IPL, is PSPACE-complete.
(c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is PSPACE-complete.
(d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

> Motivation
> What happens if there are only two atoms and \rightarrow is the only connective? I.e., how does IPL ${ }^{\{\rightarrow\}}(2)$ look like?

Fragments of IPL

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.
Known facts
(a) (Statman, 1979) IPL is PSPACE-complete.
(b) $\operatorname{IPL}{ }^{\{\rightarrow\}}$, the purely implicational fragment of IPL, is PSPACE-complete.
(c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is PSPACE-complete.
(d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

Motivation
What happens if there are only two atoms and \rightarrow is the only
connective? I.e., how does IPL\{ ${ }^{\{\rightarrow\}}(2)$ look like?

Fragments of IPL

are obtained from IPL by restricting the number of propositional atoms and/or the set of logical connectives.
Known facts
(a) (Statman, 1979) IPL is PSPACE-complete.
(b) $\operatorname{IPL}{ }^{\{\rightarrow\}}$, the purely implicational fragment of IPL, is PSPACE-complete.
(c) (Rybakov, 2006) IPL(2), the fragment of IPL with two atoms only, is PSPACE-complete.
(d) (Rieger, 1949) IPL(1) is still infinite, but efficiently decidable (decidable in polynomial time).

Motivation

What happens if there are only two atoms and \rightarrow is the only connective? I.e., how does IPL ${ }^{\{\rightarrow\}}(2)$ look like?

Kripke semantics for IPL

Definition

A Kripke model for intuitionistic logic is a triple $K=\langle W, \leq, \Vdash\rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
- $\quad x \Vdash A \vee B$ iff $x \Vdash A$ or $x \Vdash B$, and similarly for $A \& B$,
- $\quad x \Vdash A \rightarrow B$ iff $\forall y \geq x(y \Vdash A \Rightarrow y \Vdash B)$, and similarly for $\neg A$.

Example

Kripke semantics for IPL

Definition

A Kripke model for intuitionistic logic is a triple $K=\langle W, \leq, \Vdash\rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
- $\quad x \Vdash A \vee B$ iff $x \Vdash A$ or $x \Vdash B$, and similarly for $A \& B$,
- $\quad x \Vdash A \rightarrow B$ iff $\forall y \geq x(y \Vdash A \Rightarrow y \Vdash B)$, and similarly for $\neg A$.

Example

Kripke semantics for IPL

Definition

A Kripke model for intuitionistic logic is a triple $K=\langle W, \leq, \Vdash\rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
- $\quad x \Vdash A \vee B$ iff $x \Vdash A$ or $x \Vdash B$, and similarly for $A \& B$,
- $\quad x \Vdash A \rightarrow B$ iff $\forall y \geq x(y \Vdash A \Rightarrow y \Vdash B)$, and similarly for $\neg A$.

Example

Kripke semantics for IPL

Definition

A Kripke model for intuitionistic logic is a triple $K=\langle W, \leq, \Vdash\rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
$-\quad x \Vdash A \vee B$ iff $x \Vdash A$ or $x \Vdash B$, and similarly for $A \& B$,
- $\quad x \Vdash A \rightarrow B$ iff $\forall y \geq x(y \Vdash A \Rightarrow y \Vdash B)$, and similarly for $\neg A$.

Example

Kripke semantics for IPL

Definition

A Kripke model for intuitionistic logic is a triple $K=\langle W, \leq, \Vdash\rangle$ where \leq is a transitive, reflexive, and weakly antisymmetric relation on the set $W \neq \emptyset$, and the relation \Vdash satisfies:

- if $x \Vdash A$ and $x \leq y$ then $y \Vdash A$,
- $\quad x \Vdash A \vee B$ iff $x \Vdash A$ or $x \Vdash B$, and similarly for $A \& B$,
- $\quad x \Vdash A \rightarrow B$ iff $\forall y \geq x(y \Vdash A \Rightarrow y \Vdash B)$, and similarly for $\neg A$.

Example

This model is a counter-example for the formula $\neg \neg p \vee(\neg \neg p \rightarrow p)$. It is simultaneously a counterexample for $\neg \neg p \rightarrow p$, for $p \vee \neg p$, and for $\neg p \vee \neg \neg p$.

Prime nodes

Let, in $\operatorname{IPL}{ }^{\{\rightarrow\}}(n)$, the atoms be p_{1}, \ldots, p_{n}.
Definition
A node a of a Kripke model is prime if one of the atoms p_{1}, \ldots, p_{n} is not satisfied in a but is satisfied in all successors of a.

Lemma 1
If a is not prime and B is satisfied in all successors of a
then $a \Vdash B$.
Lemma 2
If a is not prime and B is satisfied in all prime b 's accessible from a then $a \Vdash B$.

Theorem
If a purely implicational formula built up from p_{1}, \ldots, p_{n} has a
counter-example, then it has a counter-example consisting of prime nodes only.

Prime nodes

Let, in $\operatorname{IPL}{ }^{\{\rightarrow\}}(n)$, the atoms be p_{1}, \ldots, p_{n}.
Definition
A node a of a Kripke model is prime if one of the atoms p_{1}, \ldots, p_{n} is not satisfied in a but is satisfied in all successors of a.

Lemma 1
If a is not prime and B is satisfied in all successors of a then $a \Vdash B$.

If a is not prime and B is satisfied in all prime b 's accessible from a then $a \Vdash B$

Theorem
If a purely implicational formula built up from p_{1}, \ldots, p_{n} has a
counter-example, then it has a counter-example consisting of prime nodes only.

Prime nodes

Let, in $\operatorname{IPL}{ }^{\{\rightarrow\}}(n)$, the atoms be p_{1}, \ldots, p_{n}.

Definition

A node a of a Kripke model is prime if one of the atoms p_{1}, \ldots, p_{n} is not satisfied in a but is satisfied in all successors of a.

Lemma 1
If a is not prime and B is satisfied in all successors of a then $a \Vdash B$.

Lemma 2

If a is not prime and B is satisfied in all prime b 's accessible from a then $a \Vdash B$.

If a purely implicational formula built up from p_{1}, \ldots, p_{n} has a
counter-example, then it has a counter-example consisting of prime
nodes only.

Prime nodes

Let, in $\operatorname{IPL}{ }^{\{\rightarrow\}}(n)$, the atoms be p_{1}, \ldots, p_{n}.

Definition

A node a of a Kripke model is prime if one of the atoms p_{1}, \ldots, p_{n} is not satisfied in a but is satisfied in all successors of a.

Lemma 1

If a is not prime and B is satisfied in all successors of a then $a \Vdash B$.

Lemma 2

If a is not prime and B is satisfied in all prime b 's accessible from a then $a \Vdash B$.

Theorem
If a purely implicational formula built up from p_{1}, \ldots, p_{n} has a counter-example, then it has a counter-example consisting of prime nodes only.

Model for atoms p and q, and definable sets in it

5

Theorem
Every definable set containing 1 and 2 also contains 3 or 4 . The sets $\emptyset,\{5\},\{1,2\},\{1,2,5\}$ are not definable. As the following figure shows, all of the remaining 14 sets are definable.

Model for atoms p and q, and definable sets in it

Theorem
Every definable set containing 1 and 2 also contains 3 or 4 . The sets $\emptyset,\{5\},\{1,2\},\{1,2,5\}$ are not definable. As the following figure shows, all of the remaining 14 sets are definable.

Model for atoms p and q, and definable sets in it

Theorem
Every definable set containing 1 and 2 also contains 3 or 4 . The sets $\emptyset,\{5\},\{1,2\},\{1,2,5\}$ are not definable. As the following figure shows, all of the remaining 14 sets are definable.

Model for atoms p and q, and definable sets in it

> Theorem
> Every definable set containing 1 and 2 also contains 3 or 4 . The sets $\emptyset,\{5\},\{1,2\},\{1,2,5\}$ are not definable. As the following figure shows, all of the remaining 14 sets are definable.

Model for atoms p and q, and definable sets in it

Theorem

Every definable set containing 1 and 2 also contains 3 or 4 . The sets $\emptyset,\{5\},\{1,2\},\{1,2,5\}$ are not definable. As the following figure shows, all of the remaining 14 sets are definable.

Formulas built up from p and q

Polish way of depicting the formulas built from two atoms

As it appears in papers by P. Krzystek and Z. Kostrzycka

Polish way of depicting the formulas built from two atoms

As it appears in papers by P. Krzystek and Z. Kostrzycka

Polish way of depicting the formulas built from two atoms

As it appears in papers by P. Krzystek and Z. Kostrzycka

Some history of the two atoms case

Let \mathcal{H}_{n} be the structure of purely implicational formulas built from n atoms. Let \mathcal{J}_{n} be the structure of formulas built from n atoms using \rightarrow and \&. Then

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_{2} and \mathcal{J}_{2} are given in Kostrzycka, 2003.
- The fact that $\left|\mathcal{H}_{2}\right|=14$ is in Hirokawa, 1995
- The structure \mathcal{J}_{2} appears in Krzystek, 1977.
- Urquhart, 1974 attributes the fact that all \mathcal{H}_{n} are finite to Diego, and gives some upper and lower bounds on $\left|\mathcal{H}_{n}\right|$

Some history of the two atoms case

Let \mathcal{H}_{n} be the structure of purely implicational formulas built from n atoms. Let \mathcal{J}_{n} be the structure of formulas built from n atoms using \rightarrow and \&. Then

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_{2} and \mathcal{J}_{2} are given in Kostrzycka, 2003.
- The fact that $\left|\mathcal{H}_{2}\right|=14$ is in Hirokawa, 1995.
- The structure \mathcal{J}_{2} appears in Krzystek, 1977
- Urquhart, 1974 attributes the fact that all \mathcal{H}_{n} are finite to Diego, and gives some upper and lower bounds on $\left|\mathcal{H}_{n}\right|$

Some history of the two atoms case

Let \mathcal{H}_{n} be the structure of purely implicational formulas built from n atoms. Let \mathcal{J}_{n} be the structure of formulas built from n atoms using \rightarrow and \&. Then

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_{2} and \mathcal{J}_{2} are given in Kostrzycka, 2003.
- The fact that $\left|\mathcal{H}_{2}\right|=14$ is in Hirokawa, 1995.
- The structure \mathcal{J}_{2} appears in Krzystek, 1977.
- Urquhart, 1974 attributes the fact that all \mathcal{H}_{n} are finite to Diego, and gives some upper and lower bounds on $\left|\mathcal{H}_{n}\right|$.

Some history of the two atoms case

Let \mathcal{H}_{n} be the structure of purely implicational formulas built from n atoms. Let \mathcal{J}_{n} be the structure of formulas built from n atoms using \rightarrow and \&. Then

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_{2} and \mathcal{J}_{2} are given in Kostrzycka, 2003.
- The fact that $\left|\mathcal{H}_{2}\right|=14$ is in Hirokawa, 1995.
- The structure \mathcal{J}_{2} appears in Krzystek, 1977.
- Urquhart, 1974 attributes the fact that all \mathcal{H}_{n} are finite to Diego, and gives some upper and lower bounds on $\left|\mathcal{H}_{n}\right|$.

Some history of the two atoms case

Let \mathcal{H}_{n} be the structure of purely implicational formulas built from n atoms. Let \mathcal{J}_{n} be the structure of formulas built from n atoms using \rightarrow and \&. Then

- The method of prime nodes is elaborated in Blicha, 2010.
- The structures \mathcal{H}_{2} and \mathcal{J}_{2} are given in Kostrzycka, 2003.
- The fact that $\left|\mathcal{H}_{2}\right|=14$ is in Hirokawa, 1995.
- The structure \mathcal{J}_{2} appears in Krzystek, 1977.
- Urquhart, 1974 attributes the fact that all \mathcal{H}_{n} are finite to Diego, and gives some upper and lower bounds on $\left|\mathcal{H}_{n}\right|$.

The model for two atoms and \perp

The model for two atoms and \perp

Theorem
(a) If 0 and not 3, then 2 and 4.

The model for two atoms and \perp

Theorem
(b) If 1 and not 3 , then 8 .

The model for two atoms and \perp

Theorem
(c) If 0,1 and not 3, then 6 and 8 .

The model for two atoms and \perp

Theorem
(d) If 0 and none of 1,2 , then $3-5,10,11$.

The model for two atoms and \perp

Theorem
(e) If 3 and not 1 , then 10 .

The model for two atoms and \perp

Theorem
(f) If $0-4$ and none of $6,8,10,12$, then $7,9,11,13$.

The model for two atoms and \perp

Theorem
Claims (a)-(f) allow at most 259 subsets of $\{0, \ldots, 13\}$.

The model for two atoms and \perp

Theorem
Thus there are at most 518 non-equivalent formulas.

Formulas built up from p, q, \perp

\square
\square

Formulas built up from p, q, \perp

\square
\square
Theorem
There exists exactly 518 non-equivalent formulas built up from p, q, and \perp.

Three atoms p, q, r

Urquhart mentions Diego's estimate 10^{27} for the number $\left|\mathcal{H}_{3}\right|$ of non-equivalent formulas, and improves it as follows:
$2^{23}<\left|\mathcal{H}_{3}\right|<3 \cdot 2^{23}$.
The universal model has 61 nodes.
The lower bound can further be improved: $10684394 \leq\left|\mathcal{H}_{3}\right|$
Krzystek, 1977 found the cardinality of \mathcal{J}_{3} : $\left|\mathcal{J}_{3}\right|=623662965552330$.

Three atoms p, q, r

Urquhart mentions Diego's estimate 10^{27} for the number $\left|\mathcal{H}_{3}\right|$ of non-equivalent formulas, and improves it as follows:
$2^{23}<\left|\mathcal{H}_{3}\right|<3 \cdot 2^{23}$.
The universal model has 61 nodes.
The lower bound can further be improved: $10684394 \leq\left|\mathcal{H}_{3}\right|$
Krzystek, 1977 found the cardinality of \mathcal{J}_{3} : $\left|\mathcal{J}_{3}\right|=623662965552330$.

Three atoms p, q, r

Urquhart mentions Diego's estimate 10^{27} for the number $\left|\mathcal{H}_{3}\right|$ of non-equivalent formulas, and improves it as follows:
$2^{23}<\left|\mathcal{H}_{3}\right|<3 \cdot 2^{23}$.
The universal model has 61 nodes.
The lower bound can further be improved: $10684394 \leq\left|\mathcal{H}_{3}\right|$.
Krzystek, 1977 found the cardinality of \mathcal{J}_{3} : $\left|\mathcal{J}_{3}\right|=623662965552330$.

Three atoms p, q, r

Urquhart mentions Diego's estimate 10^{27} for the number $\left|\mathcal{H}_{3}\right|$ of non-equivalent formulas, and improves it as follows:
$2^{23}<\left|\mathcal{H}_{3}\right|<3 \cdot 2^{23}$.
The universal model has 61 nodes.
The lower bound can further be improved: $10684394 \leq\left|\mathcal{H}_{3}\right|$.
Krzystek, 1977 found the cardinality of \mathcal{J}_{3} :
$\left|\mathcal{J}_{3}\right|=623662965552330$.

References

©
M. Blicha. Implicational Fragments of Intuitionistic Propositional Logic (in Slovak). Bachelor's thesis, College of Arts of Charles University, Dept. of Logic, 2010.

目 S. Hirokawa. A characterization of implicational axiom schema playing the role of Peirces law in intuitionistic logic. RIFIS Technical Report, Research Institute of Fundamental Information Science, Kyushu University, 1994.

围 Z. Kostrzycka. On the density of truth of implicational parts of intuitionistic and classical logics. J. Applied Non-Classical Logics, 13(3-4):391-421, 2003.
(P. S. Krzystek. On the free relatively pseudocomplemented semilattice with three generators. Reports on Mathematical Logic, 9:31-38, 1977.

I．Nishimura．On formulas of one variable in intuitionistic propositional calculus．J．Symb．Logic，25：327－331， 1960.

圊 L．S．Rieger．On lattice theory of Brouwerian propositional logic．Acta Fac．Rerum Nat．Univ．Carol．，189：1－40， 1949.

固 M．N．Rybakov．Complexity of intuitionistic and Visser＇s basic and formal logics in finitely many variables．In G．Governatori， I．Hodkinson，and Y．Venema，editors，Advances in Modal Logic 6，pages 394－411．King＇s College Publications， 2006.

R R．Statman．Intuitionistic propositional logic is polyno－ mial－space complete．Theoretical Comp．Sci．，9：67－72， 1979.
圊 V．Švejdar．On the polynomial－space completeness of intuitionistic propositional logic．Archive Math．Logic， 42（7）：711－716， 2003.
（ A．Urquhart．Implicational formulas in intuitionistic logic． J．Symb．Logic，39（4）：661－664， 1974.

Appendix: IPL, CPL, and complexity classes

Back to Introduction

