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Induction schemas

Axiom schemas

Peano arithmetic PA is an axiomatic theory formulated in the
arithmetical language, containing the symbols +, and -, 0, S
(plus possibly < and <, but no such thing like exponentiation).
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Axiom schemas
Peano arithmetic PA is an axiomatic theory formulated in the
arithmetical language, containing the symbols +, and -, 0, S
(plus possibly < and <, but no such thing like exponentiation). It
has seven (nine) simple axioms like VxVy(x + S(y) = S(x + y)),
plus an axiom schema:
Ind: ©(0) & Vx(p(x) = ©(S5(x))) = Vzp(2),
CoV:  ¥x(Yv<xp(v) — p(x)) — Vzy(z),
LNP:  3zp(z) — Ix(p(x) & Vv <x—p(v)),
Note that LNP is the contraposition of CoV and vice versa, Ind
follows from CoV, while Ind applied on Yv<xp(v) yields CoV.
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Induction schemas

Axiom schemas
Peano arithmetic PA is an axiomatic theory formulated in the
arithmetical language, containing the symbols +, and -, 0, S
(plus possibly < and <, but no such thing like exponentiation). It
has seven (nine) simple axioms like VxVy(x + S(y) = S(x + y)),
plus an axiom schema (possibly with parameters):
Ind: ©(0) & Vx(p(x) = ©(S5(x))) = Vzp(2),
CoV:  ¥x(Yv<xp(v) — p(x)) — Vzy(z),
LNP:  3zp(z) — Ix(p(x) & Vv <x—p(v)),
Note that LNP is the contraposition of CoV and vice versa, Ind
follows from CoV, while Ind applied on Yv<xp(v) yields CoV.

Example

To show VxVy(Iv<y(v+x =y)V Iv<x(v+y = x)), one can
either apply induction on Vy(.. V..), or think of y as parameter
and apply induction on Fv<y(v+x=y)V Ivx(v+y = x),
where y is fixed.
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What happens if all quantifiers are bounded

Definition
Bounded quantifers are quantifiers of the form Vv<x, Vv<x,
dv<x, dv<x.
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Definition

Bounded quantifers are quantifiers of the form Vv<x, Vv<x,
dv<x, dv<x. A formula is bounded, or Ag, if all quantifiers in it
are bounded. IAg is a theory like PA, but with the induction
schema restricted to Ag formulas.

IAy can prove

properties of operations; properties of the divisibility relation
including the fact that a number is prime iff it is irreducible;
properties of the exponential function x — 2%, but not its totality.
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schema restricted to Ag formulas.
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IA, cannot prove
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Induction schemas

What happens if all quantifiers are bounded

Definition

Bounded quantifers are quantifiers of the form Vv<x, Vv<x,
dv<x, dv<x. A formula is bounded, or Ag, if all quantifiers in it
are bounded. IAg is a theory like PA, but with the induction
schema restricted to Ag formulas.

IAy can prove

properties of operations; properties of the divisibility relation
including the fact that a number is prime iff it is irreducible;
properties of the exponential function x — 2%, but not its totality.

[Ag cannot prove

A / VxIw£0Vv<x(v #0— v | x),

IAg t/ there exist infinitely many primes (?),
IAg t/ Vx3y(y = 2%).

Base theory: 1Ap+Exp is IAg plus the axiom Vx3Jy(y = 2%).
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Strong fragments of PA

Definition
A ¥, formula (M, formula) is a formula having a prefix of
n alternating quantifiers, the first of which is 3 (or V, respectively),

followed by a Ag formula.
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n alternating quantifiers, the first of which is 3 (or V, respectively),
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n alternating quantifiers, the first of which is 3 (or V, respectively),
followed by a Ag formula. 1Y, is IA¢+Exp plus Ind(X,), the
induction schema restricted to ¥, formulas.

Basic facts

1Y, is a stable theory: the schemas Ind(X,), CoV(%,), LNP(%,),
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Strong fragments

Strong fragments of PA

Definition

A ¥, formula (M, formula) is a formula having a prefix of

n alternating quantifiers, the first of which is 3 (or V, respectively),
followed by a Ag formula. 1Y, is IA¢+Exp plus Ind(X,), the
induction schema restricted to ¥, formulas.

Basic facts

IY, is a stable theory: the schemas Ind(X,), CoV(X,), LNP(X,),
Ind(M,), CoV(MN,), LNP(M,) are equivalent over IAg+Exp. The
hierarchy of theories IX; C I3, C ... does not collapse. Each X,
for n > 1 is finitely axiomatizable.

The collection schema (bounding schema)

Coll:  Vu<z3ve(u,v,z) — InVu<zIv<wep(u, v, z).
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An unbounded relation
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Collection

The collection schema
The schema Coll(I") prevents the existence of an unbounded I'
relation R with Dom(R) = {0,1,..,z — 1}.
Definition
BX,, and BIl, are the theories obtained by adding the schema
Coll(X,), or Coll(IM,) respectively, to IAg+Exp.
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The collection schema
The schema Coll(I") prevents the existence of an unbounded I'
relation R with Dom(R) = {0,1,..,z — 1}.
Definition
BX,, and BIl, are the theories obtained by adding the schema
Coll(X,), or Coll(IM,) respectively, to IAg+Exp.

Basic facts

The schemas Coll(X,+1) and Coll(,) are equivalent over
IAg+Exp. Thus [Ap+Exp C BlMy < BX; CI1¥; CBM; C ... If
there exists an unbounded M1, relation on {0,1,..,z — 1}, then
there exists an unbounded M, function on {0,1,..,z — 1}.
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Basic facts

The schemas Coll(X,+1) and Coll(,) are equivalent over
IAp+Exp. Thus IA¢+Exp CBlMy & BX; CIx; CBM; C ... If
there exists an unbounded M1, relation on {0,1,..,z — 1}, then
there exists an unbounded MM, function on {0,1,..,z —1}. Bll, is
also equivalent to PHP(X 1), saying that no ¥, function can
be a one-one mapping from {0,1,..,z} to {0,1,..,z — 1}.

Vitek Svejdar, Charles U. in Prague On Strong Fragments of Peano Arithmetic 7/10



Collection

The collection schema
The schema Coll(I") prevents the existence of an unbounded I'
relation R with Dom(R) = {0,1,..,z — 1}.
Definition
BX,, and BIl, are the theories obtained by adding the schema
Coll(X,), or Coll(IM,) respectively, to IAg+Exp.

Basic facts

The schemas Coll(X,+1) and Coll(,) are equivalent over
IAp+Exp. Thus IA¢+Exp CBlMy & BX; CIx; CBM; C ... If
there exists an unbounded M1, relation on {0,1,..,z — 1}, then
there exists an unbounded MM, function on {0,1,..,z —1}. Bll, is
also equivalent to PHP(X 1), saying that no ¥, function can
be a one-one mapping from {0,1,..,z} to {0,1,..,z — 1}.

Question
What about WPHP(X,,41), saying that there can be no ¥,
one-one mapping from the entire universe to {0,1,..,z — 1}7
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Weak pigeon hole principle

WPHP(X,+1): a one-one ¥, function must be unbounded.
ObViOUSIy an+1 H WPHP(Z,,+1)
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WPHP(X,+1): a one-one ¥, function must be unbounded.
ObViOUSIy an+1 H WPHP(Z,,+1)

Theorem
1Y, i/ WPHP(E 41).
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Weak pigeon hole principle

WPHP(X,+1): a one-one ¥, function must be unbounded.
ObViOUSIy an+1 H WPHP(ZH+1)

Theorem
1Y, i/ WPHP(E 41).

Proof
Can be extracted from a proof of IX,, I/ Coll(X,1) in Paris-Kirby.
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Weak pigeon hole principle

WPHP(X,+1): a one-one ¥, function must be unbounded.
ObViOUSIy an+1 H WPHP(Z,,+1)

Theorem
1Y, i/ WPHP(E 41).

Proof
Can be extracted from a proof of IX,, I/ Coll(X,1) in Paris-Kirby.

Theorem (unfinished)
IS+ WPHP(E 1) b Coll(Zpp1).
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Induction schemas Strong fragments Collection Weak PHP
Weak pigeon hole principle

WPHP(X,+1): a one-one ¥, function must be unbounded.
Obviously BX 11 - WPHP(X,41).

Theorem
1Y, i/ WPHP(E 41).

Proof
Can be extracted from a proof of IX,, I/ Coll(X,1) in Paris-Kirby.

Theorem (unfinished)
IS+ WPHP(E 1) b Coll(Zpp1).

Theorem (Paris)

If there exists a one-one ¥ ;1 function bounded by z then there
exists a one-one ¥ 1 function f with Rng(f) = {0,..,z — 1}.
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Weak PHP

Proof via sparse relations

If there exists a one-one X ,11 function bounded by z then there
exists a [1, relation R which is sparse in the following sense:
Vx3yR(x,y), but Vx(|JRN ({0,..,x — 1} x {0,..,x —1})| < z).
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Proof via sparse relations

If there exists a one-one X ,11 function bounded by z then there
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Induction schemas Strong fragments Collection Weak PHP

Proof (continuation)

The function f which is one-one and with Rng(f) ={0,..,z — 1}
is obtained as a unionof i C f4 C ...
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Proof (continuation)

The function f which is one-one and with Rng(f) = {0,..,z — 1}
is obtained as a union of fy C f; C ... The functions f; are
constructed by recursion, fy = (). Each f; is one-one and finite, and
Rng(f;) is a proper subset of {0,..,z —1}.
e If no number appears in stage i + 1 then fi 1 = f;.
e If x > z appears in stage i + 1 then fi11 = f; U [x, y| where
y =min({0,..,z — 1} — Rng(£)).
e If x < z appears in stage i + 1 and x € Rng(f;) then
fir1 = fi U [x,y] where y = min({0, ..,z — 1} — Rng(£;)).
e If x < z appears in stage i + 1 and x ¢ Rng(f;) then
fir1 = fi U[x, x].
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