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Axiom schemas
Peano arithmetic PA is an axiomatic theory formulated in the
arithmetical language, containing the symbols +, and ·, 0, S

(plus possibly ≤ and <, but no such thing like exponentiation).
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Axiom schemas
Peano arithmetic PA is an axiomatic theory formulated in the
arithmetical language, containing the symbols +, and ·, 0, S

(plus possibly ≤ and <, but no such thing like exponentiation). It
has seven (nine) simple axioms like ∀x∀y(x + S(y) = S(x + y)),
plus an axiom schema:

Ind: ϕ(0) & ∀x(ϕ(x) → ϕ(S(x))) →∀zϕ(z),

CoV: ∀x(∀v<x ϕ(v) → ϕ(x)) →∀zϕ(z),

LNP: ∃zϕ(z) →∃x(ϕ(x) & ∀v<x ¬ϕ(v)),

Note that LNP is the contraposition of CoV and vice versa, Ind
follows from CoV, while Ind applied on ∀v<x ϕ(v) yields CoV.
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Axiom schemas
Peano arithmetic PA is an axiomatic theory formulated in the
arithmetical language, containing the symbols +, and ·, 0, S

(plus possibly ≤ and <, but no such thing like exponentiation). It
has seven (nine) simple axioms like ∀x∀y(x + S(y) = S(x + y)),
plus an axiom schema (possibly with parameters):

Ind: ϕ(0) & ∀x(ϕ(x) → ϕ(S(x))) →∀zϕ(z),

CoV: ∀x(∀v<x ϕ(v) → ϕ(x)) →∀zϕ(z),

LNP: ∃zϕ(z) →∃x(ϕ(x) & ∀v<x ¬ϕ(v)),

Note that LNP is the contraposition of CoV and vice versa, Ind
follows from CoV, while Ind applied on ∀v<x ϕ(v) yields CoV.

Example

To show ∀x∀y(∃v≤y (v + x = y) ∨ ∃v≤x (v + y = x)), one can
either apply induction on ∀y( . . ∨ . . ), or think of y as parameter
and apply induction on ∃v≤y (v + x = y) ∨ ∃v≤x (v + y = x),
where y is fixed.
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What happens if all quantifiers are bounded

Definition
Bounded quantifers are quantifiers of the form ∀v≤x , ∀v<x ,
∃v≤x , ∃v<x .
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I∆0 can prove

properties of operations; properties of the divisibility relation
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∃v≤x , ∃v<x . A formula is bounded, or ∆0, if all quantifiers in it
are bounded. I∆0 is a theory like PA, but with the induction
schema restricted to ∆0 formulas.

I∆0 can prove

properties of operations; properties of the divisibility relation
including the fact that a number is prime iff it is irreducible;
properties of the exponential function x 7→ 2x , but not its totality.

I∆0 cannot prove

I∆0 6⊢ ∀x∃w 6=0∀v≤x (v 6= 0 → v | x),
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What happens if all quantifiers are bounded

Definition
Bounded quantifers are quantifiers of the form ∀v≤x , ∀v<x ,
∃v≤x , ∃v<x . A formula is bounded, or ∆0, if all quantifiers in it
are bounded. I∆0 is a theory like PA, but with the induction
schema restricted to ∆0 formulas.

I∆0 can prove

properties of operations; properties of the divisibility relation
including the fact that a number is prime iff it is irreducible;
properties of the exponential function x 7→ 2x , but not its totality.

I∆0 cannot prove

I∆0 6⊢ ∀x∃w 6=0∀v≤x (v 6= 0 → v | x),
I∆0 6⊢ there exist infinitely many primes (?),
I∆0 6⊢ ∀x∃y(y = 2x).

Base theory: I∆0+Exp is I∆0 plus the axiom ∀x∃y(y = 2x).
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Strong fragments of PA

Definition
A Σn formula (Πn formula) is a formula having a prefix of
n alternating quantifiers, the first of which is ∃ (or ∀, respectively),
followed by a ∆0 formula.
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Strong fragments of PA

Definition
A Σn formula (Πn formula) is a formula having a prefix of
n alternating quantifiers, the first of which is ∃ (or ∀, respectively),
followed by a ∆0 formula. IΣn is I∆0+Exp plus Ind(Σn), the
induction schema restricted to Σn formulas.

Basic facts
IΣn is a stable theory: the schemas Ind(Σn), CoV(Σn), LNP(Σn),
Ind(Πn), CoV(Πn), LNP(Πn) are equivalent over I∆0+Exp. The
hierarchy of theories IΣ1 ⊆ IΣ2 ⊆ . . . does not collapse. Each IΣn

for n ≥ 1 is finitely axiomatizable.

The collection schema (bounding schema)

Coll: ∀u<z ∃vϕ(u, v , z) →∃w∀u<z ∃v<w ϕ(u, v , z).

Vitek Svejdar, Charles U. in Prague On Strong Fragments of Peano Arithmetic 5/10



Induction schemas Strong fragments Collection Weak PHP

An unbounded relation

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 . . . . . . . . . z
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An unbounded relation
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The collection schema
The schema Coll(Γ) prevents the existence of an unbounded Γ
relation R with Dom(R) = {0, 1, . . , z − 1}.

Definition
BΣn and BΠn are the theories obtained by adding the schema
Coll(Σn), or Coll(Πn) respectively, to I∆0+Exp.
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Definition
BΣn and BΠn are the theories obtained by adding the schema
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relation R with Dom(R) = {0, 1, . . , z − 1}.

Definition
BΣn and BΠn are the theories obtained by adding the schema
Coll(Σn), or Coll(Πn) respectively, to I∆0+Exp.

Basic facts
The schemas Coll(Σn+1) and Coll(Πn) are equivalent over
I∆0+Exp. Thus I∆0+Exp ⊆ BΠ0 ⇔ BΣ1 ⊆ IΣ1 ⊆ BΠ1 ⊆ . . .
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The collection schema
The schema Coll(Γ) prevents the existence of an unbounded Γ
relation R with Dom(R) = {0, 1, . . , z − 1}.

Definition
BΣn and BΠn are the theories obtained by adding the schema
Coll(Σn), or Coll(Πn) respectively, to I∆0+Exp.

Basic facts
The schemas Coll(Σn+1) and Coll(Πn) are equivalent over
I∆0+Exp. Thus I∆0+Exp ⊆ BΠ0 ⇔ BΣ1 ⊆ IΣ1 ⊆ BΠ1 ⊆ . . . If
there exists an unbounded Πn relation on {0, 1, . . , z − 1}, then
there exists an unbounded Πn function on {0, 1, . . , z − 1}.
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The collection schema
The schema Coll(Γ) prevents the existence of an unbounded Γ
relation R with Dom(R) = {0, 1, . . , z − 1}.

Definition
BΣn and BΠn are the theories obtained by adding the schema
Coll(Σn), or Coll(Πn) respectively, to I∆0+Exp.

Basic facts
The schemas Coll(Σn+1) and Coll(Πn) are equivalent over
I∆0+Exp. Thus I∆0+Exp ⊆ BΠ0 ⇔ BΣ1 ⊆ IΣ1 ⊆ BΠ1 ⊆ . . . If
there exists an unbounded Πn relation on {0, 1, . . , z − 1}, then
there exists an unbounded Πn function on {0, 1, . . , z − 1}. BΠn is
also equivalent to PHP(Σn+1), saying that no Σn+1 function can
be a one-one mapping from {0, 1, . . , z} to {0, 1, . . , z − 1}.
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Basic facts
The schemas Coll(Σn+1) and Coll(Πn) are equivalent over
I∆0+Exp. Thus I∆0+Exp ⊆ BΠ0 ⇔ BΣ1 ⊆ IΣ1 ⊆ BΠ1 ⊆ . . . If
there exists an unbounded Πn relation on {0, 1, . . , z − 1}, then
there exists an unbounded Πn function on {0, 1, . . , z − 1}. BΠn is
also equivalent to PHP(Σn+1), saying that no Σn+1 function can
be a one-one mapping from {0, 1, . . , z} to {0, 1, . . , z − 1}.

Question
What about WPHP(Σn+1), saying that there can be no Σn+1

one-one mapping from the entire universe to {0, 1, . . , z − 1}?
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Weak pigeon hole principle

WPHP(Σn+1): a one-one Σn+1 function must be unbounded.
Obviously BΣn+1 ⊢ WPHP(Σn+1).
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Theorem
IΣn 6⊢ WPHP(Σn+1).

Proof
Can be extracted from a proof of IΣn 6⊢ Coll(Σn+1) in Paris-Kirby.

Theorem (unfinished)

IΣn+WPHP(Σn+1) 6⊢ Coll(Σn+1).

Vitek Svejdar, Charles U. in Prague On Strong Fragments of Peano Arithmetic 8/10



Induction schemas Strong fragments Collection Weak PHP

Weak pigeon hole principle

WPHP(Σn+1): a one-one Σn+1 function must be unbounded.
Obviously BΣn+1 ⊢ WPHP(Σn+1).

Theorem
IΣn 6⊢ WPHP(Σn+1).

Proof
Can be extracted from a proof of IΣn 6⊢ Coll(Σn+1) in Paris-Kirby.

Theorem (unfinished)

IΣn+WPHP(Σn+1) 6⊢ Coll(Σn+1).

Theorem (Paris)

If there exists a one-one Σn+1 function bounded by z then there
exists a one-one Σn+1 function f with Rng(f ) = {0, . . , z − 1}.
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Proof via sparse relations
If there exists a one-one Σn+1 function bounded by z then there
exists a Πn relation R which is sparse in the following sense:
∀x∃yR(x , y), but ∀x(|R ∩ ({0, . . , x − 1} × {0, . . , x − 1})| < z).

Vitek Svejdar, Charles U. in Prague On Strong Fragments of Peano Arithmetic 9/10



Induction schemas Strong fragments Collection Weak PHP

Proof via sparse relations
If there exists a one-one Σn+1 function bounded by z then there
exists a Πn relation R which is sparse in the following sense:
∀x∃yR(x , y), but ∀x(|R ∩ ({0, . . , x − 1} × {0, . . , x − 1})| < z).

0

Vitek Svejdar, Charles U. in Prague On Strong Fragments of Peano Arithmetic 9/10



Induction schemas Strong fragments Collection Weak PHP

Proof via sparse relations
If there exists a one-one Σn+1 function bounded by z then there
exists a Πn relation R which is sparse in the following sense:
∀x∃yR(x , y), but ∀x(|R ∩ ({0, . . , x − 1} × {0, . . , x − 1})| < z).

0 0
0 0

Vitek Svejdar, Charles U. in Prague On Strong Fragments of Peano Arithmetic 9/10



Induction schemas Strong fragments Collection Weak PHP

Proof via sparse relations
If there exists a one-one Σn+1 function bounded by z then there
exists a Πn relation R which is sparse in the following sense:
∀x∃yR(x , y), but ∀x(|R ∩ ({0, . . , x − 1} × {0, . . , x − 1})| < z).

0 0 0
0 0 0
0 0 0

Vitek Svejdar, Charles U. in Prague On Strong Fragments of Peano Arithmetic 9/10



Induction schemas Strong fragments Collection Weak PHP

Proof via sparse relations
If there exists a one-one Σn+1 function bounded by z then there
exists a Πn relation R which is sparse in the following sense:
∀x∃yR(x , y), but ∀x(|R ∩ ({0, . . , x − 1} × {0, . . , x − 1})| < z).
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0 0 0 0
0 0 0 0
0 0 0 0
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9 4 5 6

The numbers 2, 4, 5, 1
appear in stages
4, 5, 6, and 9
respectively.
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Proof (continuation)

The function f which is one-one and with Rng(f ) = {0, . . , z − 1}
is obtained as a union of f0 ⊆ f1 ⊆ . . .
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is obtained as a union of f0 ⊆ f1 ⊆ . . . The functions fi are
constructed by recursion, f0 = ∅. Each fi is one-one and finite, and
Rng(fi ) is a proper subset of {0, . . , z − 1}.

• If no number appears in stage i + 1 then fi+1 = fi .
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• If no number appears in stage i + 1 then fi+1 = fi .

• If x ≥ z appears in stage i + 1 then fi+1 = fi ∪ [x , y ] where
y = min({0, . . , z − 1} − Rng(fi )).
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The function f which is one-one and with Rng(f ) = {0, . . , z − 1}
is obtained as a union of f0 ⊆ f1 ⊆ . . . The functions fi are
constructed by recursion, f0 = ∅. Each fi is one-one and finite, and
Rng(fi ) is a proper subset of {0, . . , z − 1}.

• If no number appears in stage i + 1 then fi+1 = fi .

• If x ≥ z appears in stage i + 1 then fi+1 = fi ∪ [x , y ] where
y = min({0, . . , z − 1} − Rng(fi )).

• If x < z appears in stage i + 1 and x ∈ Rng(fi ) then
fi+1 = fi ∪ [x , y ] where y = min({0, . . , z − 1} − Rng(fi )).
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The function f which is one-one and with Rng(f ) = {0, . . , z − 1}
is obtained as a union of f0 ⊆ f1 ⊆ . . . The functions fi are
constructed by recursion, f0 = ∅. Each fi is one-one and finite, and
Rng(fi ) is a proper subset of {0, . . , z − 1}.

• If no number appears in stage i + 1 then fi+1 = fi .

• If x ≥ z appears in stage i + 1 then fi+1 = fi ∪ [x , y ] where
y = min({0, . . , z − 1} − Rng(fi )).

• If x < z appears in stage i + 1 and x ∈ Rng(fi ) then
fi+1 = fi ∪ [x , y ] where y = min({0, . . , z − 1} − Rng(fi )).

• If x < z appears in stage i + 1 and x /∈ Rng(fi ) then
fi+1 = fi ∪ [x , x ].
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