On Strong Fragments of Peano Arithmetic

Vítězslav Švejdar

Dept. of Logic, School of Arts, Charles University in Prague $\label{eq:http://www.cuni.cz/~svejdar/} http://www.cuni.cz/~svejdar/$

Logica 14, Hejnice, June 2014

Introduction: Peano arithmetic and the induction schemas

The hierarchy of strong fragments of Peano arithmetic

The collection schema

Weak pigeon hole principle

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols +, and \cdot , 0, S (plus possibly \leq and <, but *no* such thing like *exponentiation*).

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols +, and \cdot , 0, S (plus possibly \leq and <, but *no* such thing like *exponentiation*). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema:

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols +, and \cdot , 0, S (plus possibly \leq and <, but *no* such thing like *exponentiation*). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema:

Ind: $\varphi(0) \& \forall x(\varphi(x) \rightarrow \varphi(S(x))) \rightarrow \forall z\varphi(z),$

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols +, and \cdot , 0, S (plus possibly \leq and <, but *no* such thing like *exponentiation*). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema:

Ind:
$$\varphi(0) \& \forall x(\varphi(x) \to \varphi(\mathbf{S}(x))) \to \forall z\varphi(z),$$

$$CoV: \quad \forall x (\forall v < x \varphi(v) \rightarrow \varphi(x)) \rightarrow \forall z \varphi(z),$$

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols +, and \cdot , 0, S (plus possibly \leq and <, but *no* such thing like *exponentiation*). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema:

- Ind: $\varphi(0) \& \forall x(\varphi(x) \rightarrow \varphi(S(x))) \rightarrow \forall z\varphi(z),$
- LNP: $\exists z \varphi(z) \rightarrow \exists x(\varphi(x) \& \forall v < x \neg \varphi(v)),$

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols +, and \cdot , 0, S (plus possibly \leq and <, but *no* such thing like *exponentiation*). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema:

- Ind: $\varphi(0) \& \forall x(\varphi(x) \rightarrow \varphi(S(x))) \rightarrow \forall z\varphi(z),$
- LNP: $\exists z \varphi(z) \rightarrow \exists x(\varphi(x) \& \forall v < x \neg \varphi(v)),$

Note that LNP is the contraposition of CoV and vice versa, Ind follows from CoV, while Ind applied on $\forall v < x \varphi(v)$ yields CoV.

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols +, and \cdot , 0, S (plus possibly \leq and <, but *no* such thing like *exponentiation*). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema (possibly with parameters):

Ind:
$$\varphi(0) \& \forall x(\varphi(x) \rightarrow \varphi(S(x))) \rightarrow \forall z\varphi(z),$$

$$\mathsf{CoV}: \quad \forall x (\forall v < x \varphi(v) \rightarrow \varphi(x)) \rightarrow \forall z \varphi(z),$$

LNP:
$$\exists z \varphi(z) \to \exists x(\varphi(x) \& \forall v < x \neg \varphi(v)),$$

Note that LNP is the contraposition of CoV and vice versa, Ind follows from CoV, while Ind applied on $\forall v < x \varphi(v)$ yields CoV.

Example

To show $\forall x \forall y (\exists v \leq y (v + x = y) \lor \exists v \leq x (v + y = x))$, one can either apply induction on $\forall y (... \lor ...)$, or think of y as parameter and apply induction on $\exists v \leq y (v + x = y) \lor \exists v \leq x (v + y = x)$, where y is fixed.

Vitek Svejdar, Charles U. in Prague

Definition

Bounded quantifiers are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$.

Definition

Bounded quantifers are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is *bounded*, or Δ_0 , if all quantifiers in it are bounded.

Definition

Bounded quantifers are quantifiers of the form $\forall v \leq x, \forall v < x, \exists v \leq x, \exists v < x.$ A formula is bounded, or Δ_0 , if all quantifiers in it are bounded. I Δ_0 is a theory like PA, but with the induction schema restricted to Δ_0 formulas.

Definition

Bounded quantifers are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is bounded, or Δ_0 , if all quantifiers in it are bounded. I Δ_0 is a theory like PA, but with the induction schema restricted to Δ_0 formulas.

$I\Delta_0$ can prove

properties of operations; properties of the divisibility relation including the fact that a number is prime iff it is irreducible; properties of the exponential function $x \mapsto 2^x$, but *not its totality*.

Definition

Bounded quantifers are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is bounded, or Δ_0 , if all quantifiers in it are bounded. I Δ_0 is a theory like PA, but with the induction schema restricted to Δ_0 formulas.

$I\Delta_0$ can prove

properties of operations; properties of the divisibility relation including the fact that a number is prime iff it is irreducible; properties of the exponential function $x \mapsto 2^x$, but *not its totality*.

$I\Delta_0$ cannot prove

$$\begin{split} &I\Delta_0 \not\vdash \forall x \exists w \neq 0 \forall v \leq x \, (v \neq 0 \rightarrow v \mid x), \\ &I\Delta_0 \not\vdash \text{there exist infinitely many primes,} \\ &I\Delta_0 \not\vdash \forall x \exists y (y = 2^x). \end{split}$$

Definition

Bounded quantifers are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is bounded, or Δ_0 , if all quantifiers in it are bounded. I Δ_0 is a theory like PA, but with the induction schema restricted to Δ_0 formulas.

$I\Delta_0$ can prove

properties of operations; properties of the divisibility relation including the fact that a number is prime iff it is irreducible; properties of the exponential function $x \mapsto 2^x$, but *not its totality*.

$I\Delta_0$ cannot prove

$$\begin{split} &I\Delta_0 \not\vdash \forall x \exists w \neq 0 \forall v \leq x \, (v \neq 0 \rightarrow v \mid x), \\ &I\Delta_0 \not\vdash \text{there exist infinitely many primes (?),} \\ &I\Delta_0 \not\vdash \forall x \exists y (y = 2^x). \end{split}$$

Definition

Bounded quantifers are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is bounded, or Δ_0 , if all quantifiers in it are bounded. I Δ_0 is a theory like PA, but with the induction schema restricted to Δ_0 formulas.

$I\Delta_0$ can prove

properties of operations; properties of the divisibility relation including the fact that a number is prime iff it is irreducible; properties of the exponential function $x \mapsto 2^x$, but *not its totality*.

$I\Delta_0$ cannot prove

$$\begin{split} &I\Delta_0 \not\vdash \forall x \exists w \neq 0 \forall v \leq x \, (v \neq 0 \rightarrow v \mid x), \\ &I\Delta_0 \not\vdash \text{there exist infinitely many primes (?),} \\ &I\Delta_0 \not\vdash \forall x \exists y (y = 2^x). \end{split}$$

Base theory: $I\Delta_0 + Exp$ is $I\Delta_0$ plus the axiom $\forall x \exists y (y = 2^x)$.

Definition

A Σ_n formula (Π_n formula) is a formula having a prefix of n alternating quantifiers, the first of which is \exists (or \forall , respectively), followed by a Δ_0 formula.

Definition

A Σ_n formula (Π_n formula) is a formula having a prefix of n alternating quantifiers, the first of which is \exists (or \forall , respectively), followed by a Δ_0 formula. I Σ_n is I Δ_0 +Exp plus Ind(Σ_n), the induction schema restricted to Σ_n formulas.

Definition

A Σ_n formula (Π_n formula) is a formula having a prefix of n alternating quantifiers, the first of which is \exists (or \forall , respectively), followed by a Δ_0 formula. I Σ_n is I Δ_0 +Exp plus Ind(Σ_n), the induction schema restricted to Σ_n formulas.

Basic facts

 $I\Sigma_n$ is a stable theory: the schemas $Ind(\Sigma_n)$, $CoV(\Sigma_n)$, $LNP(\Sigma_n)$, $Ind(\Pi_n)$, $CoV(\Pi_n)$, $LNP(\Pi_n)$ are equivalent over $I\Delta_0+Exp$.

Definition

A Σ_n formula (Π_n formula) is a formula having a prefix of n alternating quantifiers, the first of which is \exists (or \forall , respectively), followed by a Δ_0 formula. I Σ_n is I Δ_0 +Exp plus Ind(Σ_n), the induction schema restricted to Σ_n formulas.

Basic facts

 $I\Sigma_n$ is a stable theory: the schemas $Ind(\Sigma_n)$, $CoV(\Sigma_n)$, $LNP(\Sigma_n)$, $Ind(\Pi_n)$, $CoV(\Pi_n)$, $LNP(\Pi_n)$ are equivalent over $I\Delta_0+Exp$. The hierarchy of theories $I\Sigma_1 \subseteq I\Sigma_2 \subseteq ...$ does not collapse. Each $I\Sigma_n$ for $n \ge 1$ is finitely axiomatizable.

Definition

A Σ_n formula (Π_n formula) is a formula having a prefix of n alternating quantifiers, the first of which is \exists (or \forall , respectively), followed by a Δ_0 formula. I Σ_n is I Δ_0 +Exp plus Ind(Σ_n), the induction schema restricted to Σ_n formulas.

Basic facts

 $I\Sigma_n$ is a stable theory: the schemas $Ind(\Sigma_n)$, $CoV(\Sigma_n)$, $LNP(\Sigma_n)$, $Ind(\Pi_n)$, $CoV(\Pi_n)$, $LNP(\Pi_n)$ are equivalent over $I\Delta_0$ +Exp. The hierarchy of theories $I\Sigma_1 \subseteq I\Sigma_2 \subseteq ...$ does not collapse. Each $I\Sigma_n$ for $n \ge 1$ is finitely axiomatizable.

The collection schema (bounding schema)

Definition

A Σ_n formula (Π_n formula) is a formula having a prefix of n alternating quantifiers, the first of which is \exists (or \forall , respectively), followed by a Δ_0 formula. I Σ_n is I Δ_0 +Exp plus Ind(Σ_n), the induction schema restricted to Σ_n formulas.

Basic facts

 $I\Sigma_n$ is a stable theory: the schemas $Ind(\Sigma_n)$, $CoV(\Sigma_n)$, $LNP(\Sigma_n)$, $Ind(\Pi_n)$, $CoV(\Pi_n)$, $LNP(\Pi_n)$ are equivalent over $I\Delta_0+Exp$. The hierarchy of theories $I\Sigma_1 \subseteq I\Sigma_2 \subseteq ...$ does not collapse. Each $I\Sigma_n$ for $n \ge 1$ is finitely axiomatizable.

The collection schema (bounding schema)

Coll:
$$\forall u < z \exists v \varphi(u, v, z) \rightarrow \exists w \forall u < z \exists v < w \varphi(u, v, z).$$

Weak PHP

An unbounded relation

< **∂** >

Weak PHP

Weak PHP

Weak PHP

Weak PHP

An unbounded relation

< 🗗 >

Weak PHP

An unbounded relation

< Ø →

Weak PHP

An unbounded relation

< Ø →

An unbounded relation

< 67 →

Weak PHP

An unbounded relation

0	0	0	0	0	0	0	0	0	0	0	0	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	1	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0														Ζ

< 67 >

Weak PHP

The collection schema

The schema $\operatorname{Coll}(\Gamma)$ prevents the existence of an unbounded Γ relation R with $\operatorname{Dom}(R) = \{0, 1, \dots, z-1\}$.

Definition

 $B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema $Coll(\Sigma_n)$, or $Coll(\Pi_n)$ respectively, to $I\Delta_0 + Exp$.

Weak PHP

The collection schema

The schema $\operatorname{Coll}(\Gamma)$ prevents the existence of an unbounded Γ relation R with $\operatorname{Dom}(R) = \{0, 1, \dots, z-1\}$.

Definition

 $B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema $Coll(\Sigma_n)$, or $Coll(\Pi_n)$ respectively, to $I\Delta_0+Exp$.

Basic facts

Weak PHP

The collection schema

The schema $\operatorname{Coll}(\Gamma)$ prevents the existence of an unbounded Γ relation R with $\operatorname{Dom}(R) = \{0, 1, \dots, z-1\}$.

Definition

 $B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema $Coll(\Sigma_n)$, or $Coll(\Pi_n)$ respectively, to $I\Delta_0 + Exp$.

Basic facts

The schemas ${\rm Coll}(\Sigma_{n+1})$ and ${\rm Coll}(\Pi_n)$ are equivalent over ${\rm I}\Delta_0+{\rm Exp}.$

Weak PHP

The collection schema

The schema $\operatorname{Coll}(\Gamma)$ prevents the existence of an unbounded Γ relation R with $\operatorname{Dom}(R) = \{0, 1, \dots, z-1\}$.

Definition

 $B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema $Coll(\Sigma_n)$, or $Coll(\Pi_n)$ respectively, to $I\Delta_0 + Exp$.

Basic facts

The schemas $\operatorname{Coll}(\Sigma_{n+1})$ and $\operatorname{Coll}(\Pi_n)$ are equivalent over $I\Delta_0 + \operatorname{Exp}$. Thus $I\Delta_0 + \operatorname{Exp} \subseteq B\Pi_0 \Leftrightarrow B\Sigma_1 \subseteq I\Sigma_1 \subseteq B\Pi_1 \subseteq \ldots$

Weak PHP

The collection schema

The schema $\operatorname{Coll}(\Gamma)$ prevents the existence of an unbounded Γ relation R with $\operatorname{Dom}(R) = \{0, 1, \dots, z-1\}$.

Definition

 $B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema $Coll(\Sigma_n)$, or $Coll(\Pi_n)$ respectively, to $I\Delta_0+Exp$.

Basic facts

The schemas $\operatorname{Coll}(\Sigma_{n+1})$ and $\operatorname{Coll}(\Pi_n)$ are equivalent over $I\Delta_0 + \operatorname{Exp}$. Thus $I\Delta_0 + \operatorname{Exp} \subseteq B\Pi_0 \Leftrightarrow B\Sigma_1 \subseteq I\Sigma_1 \subseteq B\Pi_1 \subseteq \dots$ If there exists an unbounded Π_n relation on $\{0, 1, \dots, z-1\}$, then there exists an unbounded Π_n function on $\{0, 1, \dots, z-1\}$.

Weak PHP

The collection schema

The schema $\operatorname{Coll}(\Gamma)$ prevents the existence of an unbounded Γ relation R with $\operatorname{Dom}(R) = \{0, 1, \dots, z-1\}$.

Definition

 $B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema $Coll(\Sigma_n)$, or $Coll(\Pi_n)$ respectively, to $I\Delta_0+Exp$.

Basic facts

The schemas $\operatorname{Coll}(\Sigma_{n+1})$ and $\operatorname{Coll}(\Pi_n)$ are equivalent over $I\Delta_0 + \operatorname{Exp}$. Thus $I\Delta_0 + \operatorname{Exp} \subseteq B\Pi_0 \Leftrightarrow B\Sigma_1 \subseteq I\Sigma_1 \subseteq B\Pi_1 \subseteq \ldots$ If there exists an unbounded Π_n relation on $\{0, 1, \ldots, z - 1\}$, then there exists an unbounded Π_n function on $\{0, 1, \ldots, z - 1\}$. B Π_n is also equivalent to $\operatorname{PHP}(\Sigma_{n+1})$, saying that no Σ_{n+1} function can be a one-one mapping from $\{0, 1, \ldots, z\}$ to $\{0, 1, \ldots, z - 1\}$.

Weak PHP

The collection schema

The schema $\operatorname{Coll}(\Gamma)$ prevents the existence of an unbounded Γ relation R with $\operatorname{Dom}(R) = \{0, 1, \dots, z-1\}$.

Definition

 $B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema $Coll(\Sigma_n)$, or $Coll(\Pi_n)$ respectively, to $I\Delta_0+Exp$.

Basic facts

The schemas $\operatorname{Coll}(\Sigma_{n+1})$ and $\operatorname{Coll}(\Pi_n)$ are equivalent over $I\Delta_0 + \operatorname{Exp}$. Thus $I\Delta_0 + \operatorname{Exp} \subseteq B\Pi_0 \Leftrightarrow B\Sigma_1 \subseteq I\Sigma_1 \subseteq B\Pi_1 \subseteq \ldots$ If there exists an unbounded Π_n relation on $\{0, 1, \ldots, z - 1\}$, then there exists an unbounded Π_n function on $\{0, 1, \ldots, z - 1\}$. B Π_n is also equivalent to $\operatorname{PHP}(\Sigma_{n+1})$, saying that no Σ_{n+1} function can be a one-one mapping from $\{0, 1, \ldots, z - 1\}$.

Question

What about $WPHP(\Sigma_{n+1})$, saying that there can be no Σ_{n+1} one-one mapping from the entire universe to $\{0, 1, \ldots, z-1\}$?

Vitek Svejdar, Charles U. in Prague

WPHP(Σ_{n+1}): a one-one Σ_{n+1} function must be unbounded. Obviously $B\Sigma_{n+1} \vdash WPHP(\Sigma_{n+1})$.

WPHP(Σ_{n+1}): a one-one Σ_{n+1} function must be unbounded. Obviously $B\Sigma_{n+1} \vdash WPHP(\Sigma_{n+1})$.

Theorem IS_n \nvDash WPHP(S_{n+1}).

WPHP(Σ_{n+1}): a one-one Σ_{n+1} function must be unbounded. Obviously $B\Sigma_{n+1} \vdash WPHP(\Sigma_{n+1})$.

Theorem IS_ $n \not\vdash WPHP(\Sigma_{n+1})$.

Proof

Can be extracted from a proof of $I\Sigma_n \not\vdash Coll(\Sigma_{n+1})$ in Paris-Kirby.

WPHP (Σ_{n+1}) : a one-one Σ_{n+1} function must be unbounded. Obviously $B\Sigma_{n+1} \vdash WPHP(\Sigma_{n+1})$.

Theorem IS_n $\not\vdash$ WPHP(S_{n+1}).

Proof

Can be extracted from a proof of $I\Sigma_n \not\vdash Coll(\Sigma_{n+1})$ in Paris-Kirby.

Theorem (unfinished) I Σ_n +WPHP(Σ_{n+1}) \nvDash Coll(Σ_{n+1}).

WPHP (Σ_{n+1}) : a one-one Σ_{n+1} function must be unbounded. Obviously $B\Sigma_{n+1} \vdash WPHP(\Sigma_{n+1})$.

Theorem IS $\Sigma_n \not\vdash WPHP(\Sigma_{n+1}).$

Proof

Can be extracted from a proof of $I\Sigma_n \not\vdash Coll(\Sigma_{n+1})$ in Paris-Kirby.

Theorem (unfinished) $I\Sigma_n + WPHP(\Sigma_{n+1}) \not\vdash Coll(\Sigma_{n+1}).$

Theorem (Paris)

If there exists a one-one Σ_{n+1} function bounded by z then there exists a one-one Σ_{n+1} function f with $\operatorname{Rng}(f) = \{0, \ldots, z-1\}$.

If there exists a one-one \sum_{n+1} function bounded by z then there exists a \prod_n relation R which is sparse in the following sense: $\forall x \exists y R(x, y)$, but $\forall x (|R \cap (\{0, ..., x - 1\} \times \{0, ..., x - 1\})| < z)$.

0

If there exists a one-one \sum_{n+1} function bounded by z then there exists a \prod_n relation R which is sparse in the following sense: $\forall x \exists y R(x, y)$, but $\forall x (|R \cap (\{0, ..., x - 1\} \times \{0, ..., x - 1\})| < z)$.

0 0 0 0 0 0 0 0 0

0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	0	0	
0	0	0	0	0	1	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
	9	4		5	6						

0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	1	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	
	9	4		5	6							

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
	9	4		5	6							

Weak PHP

Proof (continuation)

The function f which is one-one and with $\operatorname{Rng}(f) = \{0, \ldots, z-1\}$ is obtained as a union of $f_0 \subseteq f_1 \subseteq \ldots$

Weak PHP

Proof (continuation)

Weak PHP

Proof (continuation)

The function f which is one-one and with $\operatorname{Rng}(f) = \{0, \ldots, z-1\}$ is obtained as a union of $f_0 \subseteq f_1 \subseteq \ldots$ The functions f_i are constructed by recursion, $f_0 = \emptyset$. Each f_i is one-one and finite, and $\operatorname{Rng}(f_i)$ is a proper subset of $\{0, \ldots, z-1\}$.

• If no number appears in stage i + 1 then $f_{i+1} = f_i$.

Weak PHP

Proof (continuation)

- If no number appears in stage i + 1 then $f_{i+1} = f_i$.
- If $x \ge z$ appears in stage i + 1 then $f_{i+1} = f_i \cup [x, y]$ where $y = \min(\{0, \dots, z-1\} \operatorname{Rng}(f_i))$.

Weak PHP

Proof (continuation)

- If no number appears in stage i + 1 then $f_{i+1} = f_i$.
- If $x \ge z$ appears in stage i + 1 then $f_{i+1} = f_i \cup [x, y]$ where $y = \min(\{0, \dots, z-1\} \operatorname{Rng}(f_i))$.
- If x < z appears in stage i + 1 and $x \in \operatorname{Rng}(f_i)$ then $f_{i+1} = f_i \cup [x, y]$ where $y = \min(\{0, \dots, z - 1\} - \operatorname{Rng}(f_i))$.

Weak PHP

Proof (continuation)

- If no number appears in stage i + 1 then $f_{i+1} = f_i$.
- If $x \ge z$ appears in stage i + 1 then $f_{i+1} = f_i \cup [x, y]$ where $y = \min(\{0, \dots, z-1\} \operatorname{Rng}(f_i))$.
- If x < z appears in stage i + 1 and $x \in \operatorname{Rng}(f_i)$ then $f_{i+1} = f_i \cup [x, y]$ where $y = \min(\{0, \dots, z - 1\} - \operatorname{Rng}(f_i))$.
- If x < z appears in stage i + 1 and $x \notin \operatorname{Rng}(f_i)$ then $f_{i+1} = f_i \cup [x, x]$.