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Abstract

The set of all indices of all functions provably recursive in any reasonable

theory T is shown to be recursively isomorphic to U × U , where U is

Π2-complete set.
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Let arithmetical language be the language {+, ·, 0, S,<} with symbols for addi-
tion, multiplication, zero, successor and ordering, let standard model of arith-
metic be the structure N = 〈N,+N, ·N, 0N, SN, <N〉. Let n, the n-th numeral,
be the closed term S(S(. . (0) . .) with n occurrences of the symbol S. A set
A ⊆ Nk is definable in N if A has the form { [n1, . . , nk] ; N |= ϕ(n1, . . , nk)} for
some arithmetical formula ϕ(x1, . . , xk). A classical result (which can be seen as
a version of Gödel First Incompleteness Theorem, see e.g. [7]) says that the re-
cursively enumerable (r.e.) sets are exactly those subsets ofNk that are definable
in N by Σ1-formulas. Σ1-formulas are formulas of the form ∃vλ(x1, . . , xk, v)
where λ is bounded, and bounded formulas are formulas containing only quan-
tifiers of the form ∀x<y or ∃x<y (i.e. containing only bounded quantifiers).

An axiomatic theory T contains Robinson’s arithmetic Q if the language
of T contains the arithmetical language and all axioms of Q are provable in T .
A theory T is Σ1-sound if all Σ1-sentences provable in T hold in N. For the
rest of the paper a theory means a recursively axiomatizable Σ1-sound theory
containing Q.

Definition 1 A function f : N → N is provably recursive in T if there exists
a Σ1-formula ϕ(x, y) such that
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(i) f = { [n,m] ; N |= ϕ(n,m) }, i.e. ϕ defines the graph of f in N.

(ii) T ⊢ ∀x∃ !yϕ(x, y).

By the classical result mentioned above any function provably recursive in T
has r.e. graph and hence is recursive. Thus functions provably recursive in T

can be viewed as those recursive functions the totality of which is known to the
theory T . It is worth mentioning that if ϕ and f are as in definition 1 then
the equivalence f(n) = m ⇔ T ⊢ ϕ(n,m) holds for any pair n, m of natural
numbers: ⇒ is Σ-completeness, ⇐ follows from Σ1-soundness of T .

For T being Peano arithmetic PA, powerful methods capable of showing that
some particular recursive functions are not provably recursive were developed
in the late 70-ties ([8]) and later. Nice examples are e.g. in [5], more can be
found in [4] or in [2]. Similar results were obtained also for subsystems of PA

and for other theories. The importance of provably recursive functions lies in
the fact that if f is recursive but not provably recursive in T then the statement
the function f is total is an example of a true statement unprovable in T . Thus
the methods for showing that some particular recursive function is not provably
recursive in T are a source of independent statements, a source which is an
alternative to the Gödel Second Incompleteness Theorem and which can yield
statements that are more interesting from the “mathematical” point of view.

Can the existence of recursive functions that are not provably recursive in T
be shown by a structural argument, i.e. by showing that the two sets

{ f ; f is total } and { f ; f is provably recursive in T }

have index sets with different arithmetical classifications? We show that it
indeed is the case. While the index set of the former set is known to be Π2, we
shall show that the index set of the latter set is neither Π2 nor Σ2.

In [6] the set ΩBound of all indices of all general recursive functions with
bounded range is investigated and its precise position in arithmetical hierarchy
is found. The result obtained for ΩBound is in [6] extended to some other
index sets and could be extended also to the index set of all provably recursive
functions. Thus our results cannot be claimed to be completely new. Rather,
we present a logical version of a proof from [6] and apply it to index sets not
mentioned in [6].

Lemma 1 There exists a general recursive function h : N2 → N which is
universal for the set of all functions provably recursive in T . More specifically,
the set { h(a, ·) ; a ∈ N } equals to the set of all functions that are provably
recursive in T .

Here an in the sequel by h(a, ·) we mean the function n 7→ h(a, n) (with
a being constant). This function is sometimes also denoted by λnh(a, n). A
simple diagonal argument shows that h is not provably recursive in T .
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Proof of lemma 1 Consider the following algorithm to compute h:

Read inputs a and n.

Find least d ≥ a such that d is a proof in T of some sentence of the

form ∀x∃ !yϕ(x, y) with ϕ in Σ1.

Find m such that N |= ϕ(n,m). Output the number m.

It is easy to verify that h has the desired properties. QED

Let, as in [9], ϕe be the e-th partial recursive function and We be the e-th
r.e. set. Let U be the set { e ; We is infinite }. The set U is known to be
Π2-complete. If A and B are sets of natural numbers, let A×B denote the set
{ c(i, j) ; i ∈ A and j ∈ B } where c is the pairing function, and let A denote the
complement of A.

Theorem 1 The set A = { e ; ϕe is provably recursive in T } is recursively
isomorphic to U × U .

Proof Since A is a cylinder (verification is left to the reader) it is sufficient to
prove A ≤m U × U and U × U ≤m A.

Let h be the function from lemma 1. For any e, the function ϕe is provably
recursive if and only if

ϕe is total & ∃a∀x(ϕe(x) = h(a, x)),

where the left conjunct is known to be Π2 and the right one is Σ2 (the condition
ϕe(x) = h(a, x) is Π1 because it says that any computation of ϕe on input x
yields the result h(a, x)). Thus A is an intersection of a Π2- and a Σ2-set. Since
U is Π2-complete and U is Σ2-complete it is evident that A ≤m U × U .

To prove U × U ≤m A it is sufficient to find a partial recursive function ψ of
three variables such that, for each x and y, the function ψ(x, y, ·) is provably
recursive in T iffWx is infinite andWy is finite. Consider the following algorithm
to compute ψ:

Read inputs x, y and v.

Find an element of Wx which is greater than v.

Find a := sup{ z ; ∃w≤vT (y, z, w) }.

Output the number 1 + max{h(0, v), . . , h(a, v)}.

Here T (y, z, w) is the Turing predicate. T is primitive recursive and satisfies
Wy = { z ; ∃wT (y, z, w) } for each y. We suppose that for each x and w there
is at most one z such that T (y, z, w). Hence the set in the third line of our
algorithm is finite and the instruction “Find a := sup{ }” is correct. Note that
the algorithm does nothing with the element of Wx found in the second line.
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This instruction is there only to ensure that the algorithm starts cycling in cases
it is supposed to do so. The function ψ can be verified to have the following
properties:

– the function ψ(x, y, ·) is total iff Wx is infinite

– if Wx is infinite, Wy is finite and a = maxWy then ψ(x, y, ·) differs from
the function v 7→ 1 + max{h(0, v), . . , h(a, v)} on a finite set and hence is
provably recursive

– if Wx and Wy are both infinite then ψ(x, y, ·) is total but different from all
functions h(a, ·), a ∈ N .

Thus ψ is as required. QED

Besides the fact that recursive functions that are not provably recursive in T
do exist for each theory T in question (which follows already from lemma 1) we
mention two further consequences of our theorem.

Corollary 1 It is known, see e.g. [4] or [2], that primitive recursive functions
are exactly those functions that are provably recursive in IΣ1, where IΣ1 is
Peano arithmetic with the induction scheme restricted to Σ1-formulas. Thus
it follows from theorem 1 that the set of all indices of all primitive recursive
functions is recursively isomorphic to U × U .

Corollary 2 S. Buss proved in [1] that the polynomial time computable func-
tions are exactly those functions that are Σb

1
-definable in the theory S1

2. A
function f is Σb

1
-definable in T if there is a Σb

1
-definition ϕ(x, y) of its graph

such that T ⊢ ∀x∃ !yϕ(x, y) (see [1] for the definition of the theory S1
2, for the

definition of Σb

1
-formulas and for more information). An inspection of our proof

shows that it works also for Σb

1
-definable functions. Thus we have two sets

of functions connected to the theory S1
2: all polynomial time computable (i.e.

Σb

1
-definable in S1

2) functions, and all functions provably recursive in S1
2. We

cannot claim that these two sets are equal, but each has an index set recursively
isomorphic to U × U .
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