Arithmetical classification of the set of all provably recursive functions

Vítězslav Švejdar*i
April 12, 1999

The original publication is available at CMUC.

Abstract

The set of all indices of all functions provably recursive in any reasonable theory T is shown to be recursively isomorphic to $U \times \bar{U}$, where U is Π_{2}-complete set.
Keywords: provable, recursive, complete
AMS Subject Classification: 03F30, 03D55
Let arithmetical language be the language $\{+, \cdot, 0, S,<\}$ with symbols for addition, multiplication, zero, successor and ordering, let standard model of arithmetic be the structure $\mathbf{N}=\left\langle N,+^{\mathbf{N}}, \cdot \mathbf{N}, 0^{\mathbf{N}}, S^{\mathbf{N}},\left\langle^{\mathbf{N}}\right\rangle\right.$. Let \bar{n}, the n-th numeral, be the closed term $S(S(\ldots(0) .$.$) with n$ occurrences of the symbol S. A set $A \subseteq N^{k}$ is definable in \mathbf{N} if A has the form $\left\{\left[n_{1}, \ldots, n_{k}\right] ; \mathbf{N} \models \varphi\left(\overline{n_{1}}, \ldots, \overline{n_{k}}\right)\right\}$ for some arithmetical formula $\varphi\left(x_{1}, \ldots, x_{k}\right)$. A classical result (which can be seen as a version of Gödel First Incompleteness Theorem, see e.g. [7]) says that the recursively enumerable (r.e.) sets are exactly those subsets of N^{k} that are definable in \mathbf{N} by Σ_{1}-formulas. Σ_{1}-formulas are formulas of the form $\exists v \lambda\left(x_{1}, \ldots, x_{k}, v\right)$ where λ is bounded, and bounded formulas are formulas containing only quantifiers of the form $\forall x<y$ or $\exists x<y$ (i.e. containing only bounded quantifiers).

An axiomatic theory T contains Robinson's arithmetic Q if the language of T contains the arithmetical language and all axioms of Q are provable in T. A theory T is Σ_{1}-sound if all Σ_{1}-sentences provable in T hold in \mathbf{N}. For the rest of the paper a theory means a recursively axiomatizable Σ_{1}-sound theory containing Q .

Definition 1 function $f: N \rightarrow N$ is provably recursive in T if there exists a Σ_{1}-formula $\varphi(x, y)$ such that

[^0](i) $f=\{[n, m] ; \mathbf{N} \models \varphi(\bar{n}, \bar{m})\}$, i.e. φ defines the graph of f in \mathbf{N}.
(ii) $T \vdash \forall x \exists!y \varphi(x, y)$.

By the classical result mentioned above any function provably recursive in T has r.e. graph and hence is recursive. Thus functions provably recursive in T can be viewed as those recursive functions the totality of which is known to the theory T. It is worth mentioning that if φ and f are as in definition 1 then the equivalence $f(n)=m \Leftrightarrow T \vdash \varphi(\bar{n}, \bar{m})$ holds for any pair n, m of natural numbers: \Rightarrow is Σ-completeness, \Leftarrow follows from Σ_{1}-soundness of T.

For T being Peano arithmetic PA, powerful methods capable of showing that some particular recursive functions are not provably recursive were developed in the late 70 -ties ([8]) and later. Nice examples are e.g. in [5], more can be found in [4] or in [2]. Similar results were obtained also for subsystems of PA and for other theories. The importance of provably recursive functions lies in the fact that if f is recursive but not provably recursive in T then the statement the function f is total is an example of a true statement unprovable in T. Thus the methods for showing that some particular recursive function is not provably recursive in T are a source of independent statements, a source which is an alternative to the Gödel Second Incompleteness Theorem and which can yield statements that are more interesting from the "mathematical" point of view.

Can the existence of recursive functions that are not provably recursive in T be shown by a structural argument, i.e. by showing that the two sets

$$
\{f ; f \text { is total }\} \text { and }\{f ; f \text { is provably recursive in } T\}
$$

have index sets with different arithmetical classifications? We show that it indeed is the case. While the index set of the former set is known to be Π_{2}, we shall show that the index set of the latter set is neither Π_{2} nor Σ_{2}.

In [6] the set Ω Bound of all indices of all general recursive functions with bounded range is investigated and its precise position in arithmetical hierarchy is found. The result obtained for Ω Bound is in [6] extended to some other index sets and could be extended also to the index set of all provably recursive functions. Thus our results cannot be claimed to be completely new. Rather, we present a logical version of a proof from [6] and apply it to index sets not mentioned in [6].
Lemma 1 There exists a general recursive function $h: N^{2} \rightarrow N$ which is universal for the set of all functions provably recursive in T. More specifically, the set $\{h(a, \cdot) ; a \in N\}$ equals to the set of all functions that are provably recursive in T.

Here an in the sequel by $h(a, \cdot)$ we mean the function $n \mapsto h(a, n)$ (with a being constant). This function is sometimes also denoted by $\lambda n h(a, n)$. A simple diagonal argument shows that h is not provably recursive in T.

Proof of lemma 1 Consider the following algorithm to compute h :

Read inputs a and n.

Find least $d \geq a$ such that d is a proof in T of some sentence of the form $\forall x \exists!y \varphi(x, y)$ with φ in Σ_{1}.
Find m such that $\mathbf{N} \models \varphi(\bar{n}, \bar{m})$. Output the number m.
It is easy to verify that h has the desired properties. QED
Let, as in [9], φ_{e} be the e-th partial recursive function and W_{e} be the e-th r.e. set. Let U be the set $\left\{e ; W_{e}\right.$ is infinite $\}$. The set U is known to be Π_{2}-complete. If A and B are sets of natural numbers, let $A \times B$ denote the set $\{c(i, j) ; i \in A$ and $j \in B\}$ where c is the pairing function, and let \bar{A} denote the complement of A.
Theorem 1 The set $A=\left\{e ; \varphi_{e}\right.$ is provably recursive in $\left.T\right\}$ is recursively isomorphic to $U \times \bar{U}$.

Proof Since A is a cylinder (verification is left to the reader) it is sufficient to prove $A \leq_{\mathrm{m}} U \times \bar{U}$ and $U \times \bar{U} \leq_{\mathrm{m}} A$.
Let h be the function from lemma 1. For any e, the function φ_{e} is provably recursive if and only if

$$
\varphi_{e} \text { is total \& } \exists a \forall x\left(\varphi_{e}(x)=h(a, x)\right),
$$

where the left conjunct is known to be Π_{2} and the right one is Σ_{2} (the condition $\varphi_{e}(x)=h(a, x)$ is Π_{1} because it says that any computation of φ_{e} on input x yields the result $h(a, x))$. Thus A is an intersection of a Π_{2} - and a Σ_{2}-set. Since U is Π_{2}-complete and \bar{U} is Σ_{2}-complete it is evident that $A \leq_{\mathrm{m}} U \times \bar{U}$.
To prove $U \times \bar{U} \leq_{\mathrm{m}} A$ it is sufficient to find a partial recursive function ψ of three variables such that, for each x and y, the function $\psi(x, y, \cdot)$ is provably recursive in T iff W_{x} is infinite and W_{y} is finite. Consider the following algorithm to compute ψ :

Read inputs x, y and v.
Find an element of W_{x} which is greater than v.
Find $a:=\sup \{z ; \exists w \leq v T(y, z, w)\}$.
Output the number $1+\max \{h(0, v), \ldots, h(a, v)\}$.
Here $T(y, z, w)$ is the Turing predicate. T is primitive recursive and satisfies $W_{y}=\{z ; \exists w T(y, z, w)\}$ for each y. We suppose that for each x and w there is at most one z such that $T(y, z, w)$. Hence the set in the third line of our algorithm is finite and the instruction "Find $a:=\sup \{ \}$ " is correct. Note that the algorithm does nothing with the element of W_{x} found in the second line.

This instruction is there only to ensure that the algorithm starts cycling in cases it is supposed to do so. The function ψ can be verified to have the following properties:

- the function $\psi(x, y, \cdot)$ is total iff W_{x} is infinite
- if W_{x} is infinite, W_{y} is finite and $a=\max W_{y}$ then $\psi(x, y, \cdot)$ differs from the function $v \mapsto 1+\max \{h(0, v), \ldots, h(a, v)\}$ on a finite set and hence is provably recursive
- if W_{x} and W_{y} are both infinite then $\psi(x, y, \cdot)$ is total but different from all functions $h(a, \cdot), a \in N$.

Thus ψ is as required. QED
Besides the fact that recursive functions that are not provably recursive in T do exist for each theory T in question (which follows already from lemma 1) we mention two further consequences of our theorem.

Corollary 1 It is known, see e.g. [4] or [2], that primitive recursive functions are exactly those functions that are provably recursive in $I \Sigma_{1}$, where $I \Sigma_{1}$ is Peano arithmetic with the induction scheme restricted to Σ_{1}-formulas. Thus it follows from theorem 1 that the set of all indices of all primitive recursive functions is recursively isomorphic to $U \times \bar{U}$.

Corollary 2 S. Buss proved in [1] that the polynomial time computable functions are exactly those functions that are Σ_{1}^{b}-definable in the theory S_{2}^{1}. A function f is Σ_{1}^{b}-definable in T if there is a Σ_{1}^{b}-definition $\varphi(x, y)$ of its graph such that $T \vdash \forall x \exists!y \varphi(x, y)$ (see [1] for the definition of the theory S_{2}^{1}, for the definition of Σ_{1}^{b}-formulas and for more information). An inspection of our proof shows that it works also for Σ_{1}^{b}-definable functions. Thus we have two sets of functions connected to the theory S_{2}^{1} : all polynomial time computable (i.e. Σ_{1}^{b}-definable in S_{2}^{1}) functions, and all functions provably recursive in S_{2}^{1}. We cannot claim that these two sets are equal, but each has an index set recursively isomorphic to $U \times \bar{U}$.

References

[1] S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.
[2] P. Hájek and P. Pudlák. Metamathematics of First Order Arithmetic. Springer, 1993.
[3] L. Hay. Index sets universal for differences of arithmetic sets. Zeitschr. f. math. Logik und Grundlagen d. Math., 20:239-254, 1974.
[4] R. Kaye. Models of Peano Arithmetic. Oxford University Press, 1991.
[5] L. A. S. Kirby and J. B. Paris. Accessible independence results for Peano arithmetic. Bull. London Math. Soc., 14:285-293, 1982.
[6] F. D. Lewis. Classes of recursive functions and their index sets. Zeitschr. f. math. Logik und Grundlagen d. Math., 17:291-294, 1971.
[7] P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.
[8] J. B. Paris and L. Harrington. A mathematical incompleteness in Peano arithmetic. In J. Barwise, editor, Handbook of Mathematical Logic, chapter D8. North-Holland, 1977.
[9] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

[^0]: *This paper was supported by grants 162/97 of the Charles University and 401/98/0383 of the Grant Agency of the Czech Republic.
 ${ }^{\dagger}$ Charles University, Prague, and Institute of Computer Science of the Academy of Sciences of the Czech Republic, Prague, vitezslavdotsvejdaratcunidotcz, http://www1.cuni.cz/~svejdar/.

