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Abstract

We consider two theories of concatenation, F and TC, proposed
by Grzegorczyk, and proofs of their mutual interpretability. We
also discuss the Grzegorczyk’s project of replacing, in founda-
tional studies, the Robinson’s Q by some variant of the theory of
concatenation.

1 Introduction: numbers, or strings?

Robinson arithmetic Q was introduced in Tarski, Mostowski, and
Robinson (1953) as a base axiomatic theory for investigating incom-
pleteness and undecidability. It is very weak, but all its recursively
axiomatizable consistent extensions are both incomplete and unde-
cidable. In logic textbooks, it often plays the role of the weakest
reasonable theory with this property.

A. Grzegorczyk recently proposed to study the theory of concate-
nation as a possible alternative theory for studying incompleteness
and undecidability. Unlike Robinson (or Peano) arithmetic, where
the individuals are numbers that can be added or multiplied, in the
theory of concatenation one has strings (or texts) that can be con-
catenated. So in the language of the theory of concatenation there is
a binary function symbol _ for laying two strings end to end to form
a new string. Axioms of the theory of concatenation postulate e.g.
associativity of the operation _, or the existence of irreducible, i.e.
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single-letter, strings. Particular variants of the theory of concatena-
tion may differ in the number of irreducible strings (with two as the
most obvious choice), or in the existence of the empty string.

Before Grzegorczyk, some aspects of concatenation were consid-
ered and some axioms were formulated by Quine (1946) and Tarski.
One variant of the theory, called theory F, appears already in the
book Tarski et al. (1953), where it is claimed but not proved that F
is essentially undecidable.

Grzegorczyk’s motivation to study the theory of concatenation is
philosophical. When reasoning or when performing a computation,
we deal with texts. Our human capacity to perform these intellectual
tasks depends on our ability to discern texts. Then it is natural to
define notions like undecidability directly in terms of texts, without
reference to natural numbers. When proving Gödel 1st incomplete-
ness theorem, choosing the theory of concatenation as the base the-
ory could be preferable to choosing Peano or Robinson arithmetic,
because then one of the essential steps in the incompleteness proof,
formalization of logical syntax, would be practically effortless.

We will discuss properties of two theories of concatenation, the-
ory F defined in Tarski et al. (1953) and theory TC proposed by
Grzegorczyk. It appears that an appropriate method of showing unde-
cidability of all consistent extensions is proving mutual interpretabil-
ity of these theories with Robinson arithmetic Q. We will consider
methods of constructing interpretations, one of these being the well
known Solovay method of shortening of cuts. We will also discuss the
Grzegorczyk’s project of replacing Robinson’s Q by some version of
theory of concatenation in more details. The pros of the project are
obvious, but there are also some cons.

2 Some preliminaries

For an axiomatic theory T , let Thm(T ) be the set of all sentences
provable in T , in symbols Thm(T ) = {ϕ; T ` ϕ}, and let Ref(T ) be the
set of all sentences refutable in T , in symbols Ref(T ) = {ϕ ; T ` ¬ϕ}.
A theory T is consistent if Thm(T )∩Ref(T ) = ∅, i.e. if no sentence of T
is simultaneously provable and refutable in T . A theory T is complete
if it is consistent and each sentence of T is either provable or refutable
in T . A theory T is recursively axiomatizable if it is equivalent to a
theory T ′ with an algorithmically decidable set of axioms (i.e. with T ′
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algorithmically decidable). A theory is decidable if there exists an
algorithm that decides about its provability, i.e. if the set Thm(T ) is
algorithmically decidable.

A theory S is an extension of a theory T if the language of T (i.e.
the set of all non-logical symbols of T ) is a subset of the language of S,
and each sentence of T provable in T is provable also in S. A theory T
is essentially incomplete if no recursively axiomatizable extension of T
is complete; T is essentially undecidable if no consistent extension
of T is decidable. It is known that a theory is essentially incomplete
if and only if it is essentially undecidable. Thus we use these notions
interchangeably or, following Grzegorczyk, we preferably speak about
essential undecidability.

An interpretation of a theory T in a theory S is a mapping from
formulas of T to formulas of S that well-behaves w.r.t. logical symbols
and maps all axioms of T to sentences provable in S. A theory T is in-
terpretable in S if there exists an interpretation of T in S. The notion
of interpretation, as well as the notion of essential undecidability, first
appeared in Tarski et al. (1953). Important facts about interpretabil-
ity are the following: (i) if T is interpretable in S and S is consistent
then T is consistent, too; (ii) if T is interpretable in S and T is es-
sentially undecidable then then S is essentially undecidable, too. The
notion of interpretability can be used as a means to measure strength
of axiomatic theories: if T is interpretable in S and vice versa, i.e. if
T and S are mutually interpretable, then we can think that T and S
represent the same expressive and deductive strength.

3 The importance of Robinson arithmetic

Robinson arithmetic Q is an axiomatic theory having seven simple
axioms formulated in the language {+, ·, 0, S} with symbols for ad-
dition and multiplication (of natural numbers), a constant for the
number zero, and a unary function symbol S for the successor func-
tion x 7→ x + 1. Peano arithmetic PA is obtained from Q by adding
the induction schema. The theory I∆0 is like Peano arithmetic, but
with the induction schema restricted to ∆0-formulas (bounded formu-
las) only. The theory I∆0+Ω1 is I∆0 enhanced by the axiom asserting
the totality of the function x 7→ xlog x. For a non-expert, the proper-
ties of natural numbers expressible by ∆0-formulas constitute a class
that is a subclass of all algorithmically decidable properties. An ex-
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ample of a ∆0-formula is the formula ∃v(v · x = y), i.e. the formula
the number x is a divisor of the number y. Other two examples are
the number x is prime and the number x is divisible by some prime. An
example of a formula that is not ∆0 is there exists a y > x such that
y 6= 0 and y is divisible by all v such that v 6= 0 and v ≤ x; this formula
speaks about a thing similar to the factorial of x. Another example of
a non-∆0 formula is there exists a y such that y > x and y is prime. In
the theory I∆0, one cannot prove that a factorial of x exists for each
number x, while provability of the sentence a prime y > x exists for
each x is a difficult open problem. Both sentences are easily proved
by unrestricted induction, i.e. in Peano arithmetic.

Basic properties of natural numbers, like associativity and com-
mutativity of addition and multiplication, are provable in I∆0, but
unprovable in Q. Generally, universal sentences are seldom provable
in Q. However, I∆0+Ω1 is interpretable in Q. Gödel 1st incom-
pleteness theorem, or better, its Rosser generalization, says that any
recursively axiomatizable extension of Q is incomplete. So Q is essen-
tially incomplete (essentially undecidable). The meaning of Gödel 2nd
incompleteness theorem is somewhat questionable for Q. However, its
usual proof goes through in I∆0+Ω1 without any changes.

Thus Robinson arithmetic Q is a very weak but still essentially
undecidable theory. It represents a rich “degree of interpretability”
because a lot of stronger theories, like I∆0+Ω1, are interpretable in it.
Since it is finitely axiomatizable, it can be used in a straightforward
proof of undecidability of classical predicate logic.

4 The theory TC

The theory of concatenation TC has the language {_, ε, a, b} with a
binary function symbol _, a constant ε for the empty string, and two
other constants a and b. We usually omit the symbol _, i.e. write xy
for the concatenation x_y of the strings x and y. The axioms of TC
are the following:

TC1: ∀x(xε = εx = x),

TC2: ∀x∀y∀z(x(yz) = (xy)z),

TC3: ∀x∀y∀u∀v(xy = uv → ∃w((xw = u & wv = y) ∨
∨ (uw = x & wy = v))),
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Figure 1: The editors axiom

TC4: a 6= ε & ∀x∀y(xy = a → x = ε ∨ y = ε),

TC5: b 6= ε & ∀x∀y(xy = b → x = ε ∨ y = ε),

TC6: a 6= b.

The axioms TC1 and TC2 can be described as axioms of semigroups;
by TC2 we can omit parentheses in expressions whenever convenient.
The axioms TC4-TC6 postulate that the strings a and b are different,
and each of them is non-empty and irreducible (cannot be non-trivially
decomposed into two strings). The axiom TC3 is called editors axiom
in Grzegorczyk (2005). It describes what happens if two editors of a
large work independently suggest splitting the text into two volumes.
If their suggestions are x, y and u, v respectively, as shown in Fig. 1,
then the first volume of one of the editors consists of two parts: the
other editor’s first volume, and a text w (possibly empty) that si-
multaneously occurs as a starting part of the other editor’s second
volume. In Ganea (2009) this text w is called an interpolant (of the
equation xy = uv).

The theory TC was defined in Grzegorczyk (2005). However, the
editors axiom is attributed to Tarski, and the idea about the impor-
tance of concatenation in incompleteness proofs can be traced back to
Quine, who in Quine (1946) cites Tarski and Hermes and says: Gödel’s
proof . . . depended on constructing a model of concatenation theory
within arithmetic. Note that Quine does not list any axioms, and thus
when he says “concatenation theory”, he in fact means its standard
model (defined below). Undecidability of TC is shown in Grzegorczyk
(2005). Later Grzegorczyk and Zdanowski (2008) showed essential
undecidability of TC. They also showed that by removing any of the
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axioms TC1, TC3–TC6 one obtains a theory that is not essentially un-
decidable. The question whether Robinson arithmetic is interpretable
in TC is left open in Grzegorczyk and Zdanowski (2008). A. Visser
and R. Sterken, see Visser (2009), M. Ganea in Ganea (2009), and the
present author (Švejdar, 2009) independently gave a positive answer
to this question. We give more information about interpretability in
(and of) TC in Section 5 below.

The papers Grzegorczyk (2005) and Grzegorczyk and Zdanowski
(2008) work with a variant of TC having no empty string. Then,
for example, the axiom TC4 has the form ∀x∀y(xy 6= a). The paper
Švejdar (2009) works with a variant of TC having three instead of two
irreducible strings. The exact choice of variant of the theory is a mat-
ter of taste because, as shown in Grzegorczyk and Zdanowski (2008),
all variants of the theory of concatenation are mutually interpretable,
provided the irreducible strings are at least two in number.

Let A be the set {a, b}∗ of all strings in the two-letter alpha-
bet {a, b}, and let A be the structure with A as a universe, with
concatenation defined “normally” and with constants a and b real-
ized by a and b respectively. Then A is the standard model of TC.
The structure B having the set B = {a, b, e}∗ as its universe and with
all symbols also defined normally is another example of a model of TC.
Let x v y mean ∃u∃v(uxv = y), and let x y mean ∃u(ux = y).
The formulas x v y and x y can be read the string x is a substring
of y and the string y ends by x respectively. The model B above shows
that the sentence ∀x(x 6= ε → a v x ∨ b v x) is not provable in TC.

The following theorem gives some more examples of provable and
unprovable sentences. Its purpose is to give the reader some feeling
about provability in TC.

Theorem 1 The following sentences (a)–(d) are provable in TC,
(a) ∀x(xa 6= ε),
(b) ∀x∀y(xy = ε → x = ε & y = ε),
(c) ∀x∀y(xa = ya → x = y),
(d) ∀x∀y(a xy → y = ε ∨ a y),
while the following sentence (e) is not provable in TC:
(e) ∀x∀y∀z(xz = yz → x = y).

Proof (a) Assume that xa = ε. Then, using TC1 and TC2, we have
(bx)a = b. Irreducibility of b, i.e. TC5, yields bx = ε or a = ε. The
latter is excluded by TC4. Then from bx = ε, (bx)a = b, and TC1
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we have a = b, a contradiction with TC6.

(b) If xy = ε then x(ya) = a using TC1 and TC2. So x = ε or ya = ε
by TC4. From (a) we have x = ε. Then xy = ε yields y = ε.

(c) Let xa = ya. By the editors axiom TC3, there exists a w such
that xw = y & wa = a or yw = x & wa = a. Consider the first case,
the second one is symmetric. From wa = a and irreducibility of a we
have w = ε. From that and xw = y we indeed have x = y.

(d) Let a xy, and let u be such that ua = xy. The axiom TC3
yields a w satisfying uw = x & wy = a, or xw = u & wa = y. In
the second case we obviously have a y. So consider the first case.
From wy = a we have w = ε or y = ε. If y = ε then we are done. If
w = ε then y = a, and thus a y.

(e) Let D be the set of all strings in {a, b, e}∗ that have no occurrences
of ae. Realize a and b by a and b respectively, and define x + y
accordingly: x+y results from xy by repeating the substitution ae→ e
while possible. For example, bab + eb = babeb, but baa + eb = beb.
One can check, in case of TC3 with a little effort, in case of the
remaining axioms rather easily, that the structure D = 〈D, +, ε, a, b〉
is a model of the theory TC. In D we have a + e = ε + e. So the
formula x_z = y_z is not true in D if x, y, z are evaluated by a,
the empty string, and e respectively, and thus the sentence (e) is not
valid in D.

Another useful sentence is ∀x∀y(a v xy → a v x ∨ a v y). We
leave its proof in TC as an exercise. More about the theory TC and
about its models is in Visser (2009).

5 The theory F, interpretability

Theorem 2 Robinson arithmetic Q is interpretable in TC.

Proof We only give the basic idea of the proof given in Švejdar
(2009). The full proof is rather technical.

When constructing an interpretation, one first has to specify its do-
main, which in our case means to work in TC and select strings that
will play the role of natural numbers. It appears that the following
definition works:

Num(x) ≡ ∀u(u v x & u 6= ε → a u),
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a string x is a number if each non-empty substring of x ends by a.
Note that, in the model D in the proof of Theorem 1, the string e
starts by a (since e = a + e). However, e is not a number because it
is a non-empty substring of itself and cannot be written as e = z + a,
i.e. does not end by a.

Having numbers, addition is interpreted as concatenation, zero is in-
terpreted as the empty string ε, and the successor function S is inter-
preted as the function x 7→ xa. These definitions work because in TC
one can prove that ε and a are numbers and that numbers are closed
under concatenation. All axioms of Q about 0, S, and + translate to
sentences provable in TC under this interpretation.

To interpret multiplication, a straightforward idea is to first define the
notion of a witnessing sequence. A sequence of pairs [u0, v0], . . , [uq, vq]
is a witnessing sequence for x · y if: u0 = v0 = ε, for each i < q the
pair [ui+1, vi+1] equals [uia, viy], and uq = x. Then one can define
that x · y = z if there exists a witnessing sequence for x · y with [x, z]
as the last member. The problem here is that in TC it is not possible
to prove that a witnessing sequence exists for each choice of x, y,
and it is also not possible to prove that if it exists, it is uniquely
determined. A way how to overcome this problem is interpreting not
the full Robinson arithmetic Q, but rather its variant Q− in which
addition and multiplication are non-total functions. Then the result
is obtained by combining the constructed interpretation of Q− in TC
with a fact known from Švejdar (2007) that Q is interpretable in Q−.

The theory Q− used in the proof of Theorem 2 was also introduced
by Grzegorczyk. The interpretation of Q in Q− in Švejdar (2007) is
constructed using the Solovay method of shortening of cuts. This
method is now widely known, but was never published: it is only
explained in a letter to Petr Hájek (Solovay, 1976). M. Ganea in
Ganea (2009) gives a different proof of interpretability of Q in TC,
but he also uses the detour via Q−. Sterken and Visser give a proof
not using Q−, see Visser (2009).

A consequence of the fact that Q is interpretable in TC is essential
undecidability of TC. All proofs of interpretability of Q in TC are
somewhat involved, but still simpler than the direct proof of essen-
tial undecidability of TC given in Grzegorczyk and Zdanowski (2008).
These interpretability proofs might use some ideas developed by Grze-
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gorczyk and Zdanowski: that is certainly true about the author’s proof
in Švejdar (2009).

Since TC is interpretable in I∆0, the theories TC and Q are mu-
tually interpretable; thus they represent the same expressive and de-
ductive power. This is a piece of information missing in Grzegorczyk
and Zdanowski (2008).

An interesting alternative theory of concatenation is the theory F.
It has the same language as TC, and its axioms are:

F1: ∀x(xε = εx = x),

F2: ∀x∀y∀z(x(yz) = (xy)z),

F3: ∀x∀y∀z(yx = zx ∨ xy = xz → y = z),

F4: ∀x∀y(xa 6= yb),

F5: ∀x(x 6= ε → ∃u(x = ua ∨ x = ub)).

Axioms F1 and F2 are the same as axioms TC1 and TC2 of TC. It
is easy to verify that axiom F4 is provable in TC; axioms F3 and F5,
as is evident from models D and B in the previous section, are not
provable in TC. From the opposite point of view, axioms TC4–TC6
and sentences (a) and (b) in Theorem 1 are examples of sentences
provable in F; we leave their proofs to the reader as an interesting
exercise. Albert Visser, (Visser, 2009), has constructed a model M
of F such that M /|= ∀x∀y(a v xy → a v x ∨ a v y). Thus in F,
one can have strings w1 and w2 such that a v w1w2, a 6v w1, a 6v w2;
Albert Visser describes this situation as creating a letter ex nihilo.
A consequence of these remarks is that Thm(TC) and Thm(F) are
incomparable sets of sentences.

It is claimed in Tarski et al. (1953) that W. Szmielew and A. Tarski
proved essential undecidability of F by interpreting Q in F; how-
ever, no proof is given. Ganea (2009) constructed an interpretation
of TC in F. In conjunction with Theorem 2, this gives a proof of the
theorem of Szmielew and Tarski. We give (a slight simplification of)
Ganea’s proof below in Theorem 3. Note however, that it is still an
interesting historical problem what proof could Szmielew and Tarski
have had in mind. Ours (Ganea’s) proof implicitly uses the Solo-
vay’s shortening technique, formulated long after the book Tarski et
al. (1953) was published. A. Visser has some possible explanation of
this historical problem.
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Theorem 3 (Ganea) TC is interpretable in F.

Proof Work in F and define tame strings as follows:

Tame(x) ≡ ∀v∀z(z vx → z x ∨ x z),

where has the same meaning as in TC.

(i) We first show (prove within F) that tame strings are closed under
concatenation. So assume that x and y are tame, and let v and z be
such that z vxy. We need to show that z xy or xy z. Since
y is tame, we have z y or y z. If z y then z xy and we
are done. So assume that y z and take t such that ty = z. From
z vxy we have a u such that uz = vxy; thus uty = vxy. From
axiom F3 we have ut = vx. Since x is tame, we have t x or x t.
Then ty xy or xy ty. Since ty = z, we indeed have z xy or
xy z.

(ii) Next we show that if wy is tame, then also w is tame. So let
v and z be such that z vw. We want to show that z w or w z.
From z vw we have zy vwy. Since wy is tame, we have zy wy
or wy zy. Then a straightforward use of axiom F3 yields z w or
w z.

Now we are ready to verify that the domain of tame strings, together
with the identical mapping of symbols (a, b, and ε to a, b, and ε
respectively, concatenation to concatenation), defines an interpreta-
tion of TC in F. It is not difficult to verify that a, b, and ε are
tame; this together with (i) means that the domain of tame strings is
closed under all operations. The axiom TC1 translates to the sentence
∀x(Tame(x) → xε = εx = x). This sentence is evidently provable
in F. A similar argument shows that axioms TC2 and TC4–TC6
translate to sentences provable in F as well. This is so easy because
TC2 and TC4–TC6 are universal sentences.

Thus it remains to prove the the translation of the editors axiom TC3
is provable in F. Note that TC3 is the only axiom of TC that is not a
universal sentence; it contains an existential quantifier. Let x, y, u, v,
be tame strings such that xy = uv. We have to show that there exists
a tame w satisfying xw = u & wv = y or uw = x & wy = v. Since
y is tame, from uv = xy we have v y or y v. It is sufficient to
consider the latter, the former is symmetric. We have a w such that
wy = v. Then uwy = uv and uwy = xy. From axiom F3 we have
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uw = x. So w is an interpolant. Since v is tame, from wy = v and
(ii) above we know that w is tame.

Since F is easily interpretable in I∆0, from the other results men-
tioned in this paper we know that F and TC are deductively incompa-
rable, but from interpretability point of view they represent the same
degree of deductive strength. It may be of some interest to directly
interpret F in TC.

Theorem 4 F is interpretable in TC.

Proof Now in TC, work with radical strings, where

Rad(x) ≡ ∀y∀z(yx = zx → y = z).

It is not difficult to show that radical strings include ε, a, and b, and
that the domain of all radical strings that are empty or end in either a
or b is closed under concatenation and defines an interpretation of F.

6 On the Grzegorczyk’s project

Let us repeat from the Introduction that Grzegorczyk’s suggestion
is to consider strings and concatenation on both formal and meta-
mathematical level. On formal level, the theory of concatenation can
serve as an alternative to Robinson arithmetic; on metamathemati-
cal level, dealing with texts is philosophically better justified because
intellectual activities like reasoning and computing involve working
with texts.

So Grzegorczyk’s interest, purely philosophical as he puts it, con-
sists in methodologically confronting two approaches: on one hand
the whole metalogical construction in which one uses traditional arith-
metical methods and defines recursiveness as Gödel does, and on the
other hand the whole metalogical construction in which one does not
use numbers but speaks only about texts and concatenation and defines
decidability as discernibility, as done in Grzegorczyk (2005).

The motivations for accepting strings rather then numbers as the
basic notion can briefly be summarized as follows:

– in Gödel’s argument, the only use of numbers is coding of syn-
tactical objects,

– then Gödel theorems are presented as a part of mathematics, but
their significance is broader,
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– when reasoning, communicating, or even computing, we deal with
texts, not with numbers,

– on metamathematical level, the notion of computability can be
defined without reference to numbers.

One could remark that mathematics in not necessarily identified by
working with numbers; Gödel theorems could be presented as part
of mathematics even if they were reformulated without numbers, and
they transcede mathematics regardless whether their formulation in-
volves strings or numbers. With this little remark in mind, one can say
that the arguments for superiority of strings over numbers are clear
and easily acceptable. The definition of recursiveness without using
numbers, as done in Grzegorczyk (2005), is very interesting; knowing
how all proofs of Kleene’s normal form theorem are, it always makes
sense to think about more transparent proofs.

However, it is also possible to find some arguments that speak
contra strings, or at least for modifying or extending the “string ap-
proach”. First, when reasoning or computing, we also substitute. Cre-
ating a grammatically correct sentence in a natural language can be
described as substituting into patterns. In logic, we have substitution
in formulation of predicate axioms. So one can think that the theory
of concatenation, if enhanced by some notion of occurrence or substi-
tution, could better serve its purpose. Second, when proving essential
undecidability, one also needs an order. Known proofs usually (is it a
mistake to say always?) contain some sort of Rosser trick, i.e. speak
about an event that occurs before some other event. One can think
that considering order is more natural in the environment of num-
bers than in the environment of strings. In fact, defining an order
of strings is one of crucial and rather difficult steps in the essential
undecidability proof of TC contained in Grzegorczyk and Zdanowski
(2008).
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Švejdar, V. (2007). An interpretation of Robinson arithmetic in
its Grzegorczyk’s weaker variant. Fundamenta Informaticae,
81 (1–3), 347–354.
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