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When posing the old question ‘What are arithmetical truths about?’
(‘What is their epistemic status?’ or ‘How are they possible?’) we find
ourselves standing in the shadow of Gödel, just as our predecessors stood
in the shadow of Kant. Of course, this observation may be a bit mislead-
ing if only for the reason that Gödel’s famous incompleteness theorems
are not of a philosophical nature, at least not in the first place. There
are plenty of texts, however, explaining them as philosophically relevant,
i.e. as having some philosophical implications.

In this article I am not aiming to add a new interpretation to the
old ones. Rather, I am proposing to see the incompleteness as a link in
the chain of certain great (positive or negative) foundational results such
as Frege’s calculization of logic, Russell’s paradox, Gödel’s completeness
theorem, Gentzen’s proof of consistency etc. The foundational line de-
scribed in this way can then be critically examined as relatively successful
with respect to some of its leading ideas and as unsuccessful with respect
to others. What I have particularly in mind here is the idea of reducing
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arithmetic to logic, with its decisive influence on the rebirth and subse-
quent development of modern (mathematical) logic. Hence, the key issue
of this article may be formulated as follows: ‘What do Gödel’s theorems
tell us about the alleged analyticity or syntheticity of arithmetic?’.

1 Frege’s thesis

In the 19th century there were many programs announcing the need of
reducing arithmetic to logic (Jevons, Schröder, Dedekind, Peano), yet
ironically there was no logic capable of competing with arithmetic in
rigor and self-sufficiency. Frege overcame this difficulty by simply invent-
ing it, but his new logic remained virtually unknown until his death, so
there must be another explanation of this sudden enthusiasm for log-
ical methods, and, in fact, there is: a general disappointment with the
Kantian intuitive conception of mathematics, i.e. with Kant’s attempt to
ground both arithmetic and geometry in the spatio-temporal structures
of reality.

As much as Frege’s contemporaries and Frege himself disagreed with
Kant on the nature and sources of mathematical knowledge, they were
unable to put this disagreement in other than Kantian terms, discarding
one side (the left one) of his fundamental distinction between

constructive vs. discursive,

intuition vs. concept,

mathematic vs. logic,

synthetic vs. analytic

while endorsing the other. In the light of this observation we can rephrase
the main task of Frege’s logicism as follows: ‘How can one present arith-
metic in a non-constructive way?’ or ‘How can one show that arithmetic is
not synthetic, but analytic (not world -dependent, but word -dependent)?’
Or more specifically: ‘How can one avoid intuition in the process of jus-
tifying basic arithmetical concepts (the intuitive number construction 0,
0 + 1, 0 + 1 + 1, etc.) and propositions (2 + 2 = 4, 34 × 2 = 68)?’

The general answer: ‘by conceptual means’ was, for the first time,
successfully implemented in Frege’s Begriffsschrift, in particular in his
ancestral definition and his axiomatization of logic. Proceeding from the
(parental) relation R to the explicit second-order definition of its arbi-
trary finite iteration RR . . . R (ancestral), Frege was able to rephrase
the predicate “x is a number” as “x is a successor of the number 0” or
“(∀X)[X(0)∧ (∀y)(X(y) → X(y+1)) → X(x)]”, with “x+1 = y” as the
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basic (parental) relation. This initial success encouraged Frege to declare
logicism a feasible hypothesis, according to which, prospectively,

(1) numbers are to be conceptually separated by means of the afore-
mentioned predicate as a certain species of the more general
genus ‘logical object’ or of the most general concept ‘object’
(the same holds for functions whose ‘intuitive’ recursive — for-
mation was proved to be logistically admissible in Dedekind’s
famous recursive theorem),1)

(2) arithmetical proposition are to be deduced from logical axioms,
the conceptual truths of Frege’s new logic, by logical rules alone.
Among these axioms, the so-called Grundgesetz V — Frege’s
Axiom of Extensionality — is in charge of the ontological basis
from which numbers as logical objects are to be separated.

Stages (1) and (2) mirror the expressive and deductive parts, respectively,
of the logicist project.

It seems to be clear that Russell’s paradox decimated in the first
place the second, proof-theoretical part of the project. That is why set
theorists like Georg Cantor did not regard the antinomy as a serious
problem and why some modern logicians, like Crispin Wright or George
Boolos, still hope to resurrect logicism in a model-theoretical, struc-
turalistic way. The second-order logic they are using (‘the set theory in
sheep’s clothing’, as Quine put it) is deductively incomplete (thus proof-
theoretically unacceptable), but semantically very strong. This seems to
be in accord with the expressive part of the original project.

Although I agree with the neologicists that Frege’s system is not
affected by the paradox as badly as we thought it was, I claim that this
does not warrant it as successful according to Frege’s own standards. Let
me indicate why.

In a sense, both Frege and Cantor proposed a set-theoretical (i.e. a
kind of a semantical) solution to the foundational problems of arithmetic:
their numbers are the so-called pure sets or what Frege called ‘logical
objects’. Frege unlike Cantor, however, realized that now we have to
face up to a new problem. Instead of ‘What are numbers and how are
they given to us?’ we have ‘What are sets and how are they given to us?’.
I cannot go into details here,2) so I will merely claim that in this respect
neither Frege nor anyone else could succeed in a desirable way and that

1) Analyzed in detail in Kolman [2007].
2) Cf. Kolman [2005].
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it is Russell’s paradox that indicates why. To put it simply, there are no
objects justifiable by logic alone; there are no pure sets, but only sets
of concrete objects like cats, atoms or numbers. And make no mistake!
Axiomatic set theory does not justify pure sets, but presupposes them
in order to be consistent.

2 Wittgenstein’s antithesis

Does all of this imply that the idea of analytical (language-dependent)
arithmetic is definitely dead? As a matter of fact, yes, but I do not
want to commit myself to such a strong claim yet. Contrary to Poincaré,
Brouwer or Wittgenstein, neither do I want to criticize the logicist the-
sis as such. I pointed out earlier that Frege (unlike Poincaré, Brouwer
and Wittgenstein) at least gave his reasons for treating logicism as a
bold, but promising hypothesis and that, accordingly, he did not stick
dogmatically to it after it was found wrong. However, in spite of this
self-critical approach, Frege was clearly too absorbed in his methods to
recognize where and why they failed. In this respect, Wittgenstein was
more successful.

Like Poincaré and Brouwer in their destructive approach to logi-
cism, Wittgenstein was not overly specific either, but the main idea
of his critique is clear: in order to avoid the spatio-temporal intuition
Frege strives to proceed as abstractly as possible, pushing the practical
arithmetic aside as scientifically irrelevant. But his abstract second-order
definitions such as

(∀X)[X(0) ∧ (∀y)(X(y) → X(y + 1)) → X(x)]

work correctly only under the condition that their second-order vari-
ables (‘X’) range over sets specified in pre-scientific, spatio-temporal or
practical fashion. In our example it is

‘the Set of all and only those objects obtained by iterating the
operation +1 a finite number of times, with 0 at the beginning’.

Since the soundness of these definitions ought to be established before
they are employed, the desirable elimination of the practical — pre-
sumably Kantian — element is only imaginary, as Wittgenstein clearly
recognized in the context of his later reflections on ‘following a rule’. His
critique of the logicist foundations, however, was already anticipated in
his Tractatus-theory of internal properties, relations and operations.

According to Wittgenstein, concepts such as number are not explic-
itly definable, i.e. graspable by means of an explicit formula. Rather,
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they are categorical notions, and as such they are describable only by
means of a rule, i.e. implicitly as a potentially infinite process generating
their instances. (This is Wittgenstein’s early doctrine of inexpressibility
and at the same time Kant’s doctrine of concepts as rules.) Wittgenstein
represents these internal notions with the help of a complex variable

[a, x,O(x)]

which can be transcribed in Lorenzen’s operativist style as

⇒ a, (starting rule)

x ⇒ O(x). (inductive rule)

In the case of number we get the rules ‘⇒ |’, ‘x ⇒ x|’. Although without
any direct factual difference (on the arithmetical object level), these tran-
scriptions are very important philosophically (on the metalevel). They
provide the missing link between the abstract notions of arithmetic and
their practical applicability in everyday life. Grasping the concept of
number now amounts to mastering the ‘counting’ rules mentioned above.
Wittgenstein, however, did not systematically develop these suggestions
into a full-fledged theory since he simply did not believe in such a thing
as the ‘foundations of arithmetic’. In a sense he may have been right but
generally he committed the same error as Frege did, only the other way
around: instead of the practice he undervalued the theory.

3 Hilbert’s synthesis

The need for the mutual support between practice and theory was al-
ready partially recognized by the later Hilbert in his metamathematics.
As a study of derivability in certain calculi it was not only a new mathe-

matical discipline but also a new philosophy of mathematics with the am-
bition to supersede the old versions of formalism and possibly Brouwer’s
mentalistically misconceived constructivism. In Lorenzen’s later ‘opera-
tivist’ elaboration of Hilbert’s ideas3) we find certain calculi (collections
of rules) as the basic form of mathematical practice (ability to operate
according to the rules) and a theory of this operating as ‘arithmetic’ it-
self. So, for instance, to say that the arithmetical formula “2 + 2 = 4”
is true, according to Lorenzen, is to assert the derivability of the figure
“|| + || = ||||” in the following calculus (+):

⇒ x + | = x|, (+1)

3) See Lorenzen [1955].
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x + y = z ⇒ x + y| = z|. (+2)

Here the variables x, y, z range over the figures manufactured by this
calculus (|):

⇒ |, (|1)

x ⇒ x|. (|2)

This time, however, the variable x is the so-called ‘eigenvariable’ ranging
over the figures so far manufactured by the same calculus (the so-called
numerals |, ||, |||, etc.). As a result, to justify the truth of a sentence such
as “2 + 2 = 4”, one simply has to write down the respective derivation
in (+).

So far so good, but the apparent simplicity of this radical syntactic
account ends with the next step, namely with the question: ‘What is one
supposed to write down to justify the falsity of some formula?’ Obviously,
there is no ‘negative’ derivation (Russell’s negative fact) available. Loren-
zen solved this problem by supplementing his operative arithmetic with
operative logic, i.e. with something he would have to add later anyway.4)

His solution is nevertheless very elegant.
According to it (and also according to the approach of the late

Wittgenstein), to justify the truth of a sentence does not mean in general
just to say the sentence or to write it down, but to justify it to somebody.
This somebody needn’t be a passive listener, but may potentially dis-
agree, i.e. become an opponent. Constructively interpreted, this implies
that the opponent of ¬A commits himself to justifying A. An elementary
arithmetical sentence A is true if its proponent can justify it, while its
negation ¬A is true if an opponent cannot justify A. Now we can apply
the same dialogical approach to the sentential connectives and afterwards
build an alternative operational semantics of complex sentences. In this
connection Lorenzen uses the name ‘dialogical logic’. Instead of giving
a systematic account, let me briefly demonstrate the principles it uses
by justifying some complex arithmetical sentences. These sentences turn
out to be the so-called Peano axioms of arithmetic.

Let us first take the formula m + 1 = n + 1 → m = n. Translated
into the unary notation m| = n| → m = n, this formula turns out not
to depend on the calculus (+), but on another one, which can briefly be
described as

⇒ | = |, (=1)

4) Lorenzen and Lorenz [1978].
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x = y ⇒ x| = y|. (=2)

“Briefly” means that we shall avoid details concerning the general prob-
lem of interpreting identity. — By means of semantic tableaux we can
now unfold a proponent’s justification of the sentence m| = n| → m = n

as a justification of its consequent m = n in the situation of an oppo-
nent’s simultaneous committing to its antecedent m| = n|, where m and n

stand for some specific numerals. The proponent’s commitment, hence,
is conditioned, i.e., he can demand the opponent’s reasons before giv-
ing his own justification. But this immediately leads to the proponent’s
victory since every derivation which justifies the antecedent can be con-
verted into a derivation justifying its consequent, simply by deleting the
last row. Moreover, since the indicated winning strategy is completely
general, i.e. independent of the choice of m, n, we can take our example
as a way of justifying the sentence

(∀x, y)(x = y ⇒ x| = y|). (P1)

The expression “winning strategy” indicates that we are not interested
in a victory achieved with the help of good luck but in a victory achieved
according to the rules allowing us to win not only against this or that
opponent, but against every opponent possible. Otherwise it wouldn’t
make much sense to call any sentence unambiguously true or false. In
the case of a quantified sentence (∀x)A(x), the relevant rule amounts to
a general strategy telling us how to win (a game associated with) the
sentence A(n) for a numeral n suggested by a random opponent. Since
the sentence

(∀x)(x + 1 6= x) (P2)

doesn’t need any additional explanation, we can proceed directly to the
induction schema

A(|) ∧ (∀x)(A(x) → A(x|)) → (∀x)A(x). (PI)

In order to justify a sentence of the form ‘A ∧B’ one needs to know the
winning strategy for both A and B. The beginning of the dialog can be
described accordingly as follows:

(O) (P)

A(|) (∀x)A(x) (1)

(∀x)(A(x) → A(x|)) (2)
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In the next step the opponent chooses some numeral m, thereby attack-
ing the proponent’s sentence (∀x)A(x). The proponent’s defence consists
simply in writing down the sentence A(m) as a new claim he commits
himself to. If we fix some concrete value of m, say m := |||, we can present
the further steps schematically in the following tableau, with attacks (?)
noted on the right:

A(|||) (1) |||? (3)

A(|) → A(||) (2) |? (4)

A(||) A(|) (4) ? (5)

A(||) → A(|||) (2) ||? (6)

A(|||) A(||) (6) ? (7)

This strategy is completely general; i.e., the choice of m does not affect
the final result of the dialog, but only its length. By iterating steps (4) and
(5), the proponent can always force his opponent to claim an elementary
sentence A(m) which the proponent was forced to claim before. In this
way the tableau ‘closes’ and we are done.

4 Syntheticity and incompleteness

The relevancy of Lorenzen’s operativism to our opening problem is two-
fold. Firstly, here we have an account of arithmetic which does not start
with some undefined or principally indefinable first principles, such as,
e.g., Peano axioms, as we have been used to since Hilbert, but tries to jus-
tify all the arithmetical propositions (including those ‘axioms’) by more
basic, pragmatic means instead. Being totally in accord with the ‘origi-
nal’ characterization of arithmetic as a science dealing with calculations
(Kant would add: calculations in time), this account provides us with
a positive support of the syntheticity thesis. Secondly, we can interpret
Gödel’s incompleteness result along Lorenzen’s line, i.e., as saying that
arithmetic does not belong to sciences employing the axiomatic method.
This, under appropriate circumstances, can be regarded as support for
the syntheticity thesis, too, but in a more negative way, which depends
partly on the last update we will make to our analyticity/syntheticity
distinction and partly on our interpretation of Gödel’s theorems. Let us
elaborate these two points.

Lorenzen’s approach, i.e. his operative arithmetic supplemented with
dialogical logic, provides us with a convenient theoretical device for bring-
ing the old distinction between ‘analytic’ and ‘synthetic’ or between logic



Gödel’s Theorems and the Synthetic-Analytic Distinction 9

and arithmetic closer to modern standards. First of all, for a given lan-
guage there is always a certain class of sentences that are justifiable only
on the grounds of dialogical rules alone, i.e. their truth (the proponent’s
winning strategy) doesn’t depend on the truth of the elementary sen-
tences in question (that’s why it doesn’t matter which language is being
used). Every sentence of the form ‘A → ¬¬A’, for instance, belongs to
this class of the so-called logical truths.5) The arithmetical truth, on the
contrary, is defined by means of dialogical rules plus arithmetical calculi
(|), (=), (+), etc. The winning strategy for (PI), for instance, presup-
poses the proponent’s familiarity with the number-construction via (|).
In fact, that’s why Lorenzen calls arithmetic ‘synthetic’ — it is based on
construction (synthesis). Logical truth, by contrast, is based only on the
argumentation-governing rules, i.e. on linguistic norms. As such it may
be called ‘analytical’.

Instructive as it is, this differentiation doesn’t seem to cut deep.
Its conventionality points rather in the opposite direction, namely that
arithmetic and logic are closely related. They are both dealing with sym-
bols and accordingly may be called ‘formal’. In fact, this is Lorenzen’s
own proposal. His alternative differentiation takes advantage of Gödel’s
incompleteness result, thereby putting both the technical and the ideo-
logical part of modern logic in perspective. The basic idea goes as follows:
Just as we have calculized basic arithmetical concepts (such as number,
addition, etc.), we can attempt to calculize arithmetical and logical truth.
In other words, one may try to describe true arithmetical and logical sen-
tences only by means of some mechanical device, manufacturing them as
mere syntactic figures according to the respective schematic rules. Know-
ing that this is possible for logic and impossible for arithmetic (both due
to Gödel), the completeness/incompleteness distinction seems to be fi-
nally the required solution to our introductory problem. In the rest of
the article, we will discuss this promising possibility, and we will soon
discover that things are less easy-going than we might wish. A straight-
forward presentation of Gödel’s incompleteness results turns out to be a
necessary part of this enterprise.

5) Lorenzen’s original idea, however, was to show that only the truths of Brouwer’s or
Heyting’s intuitionistic logics are justifiable by the dialogical, i.e. pragmatic means.
In the course of the development it turned out that one can dialogically justify both
classical and intuitionistic (and in fact many other) concepts, depending on the ad-
ditional rules which specify (not only how, but this time also) when it is allowed to
attack the opponent and when it is allowed to defend oneself against his attack. Hence,
speaking of logical truth we need to specify, in advance, what additional dialogical
rules we are using.
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If we interpret ‘analytical’ as something like ‘free of intuition’, there-
by indicating that we can possibly relinquish the non-schematic, ‘mate-
rial’ controllability of the relevant concepts, then arithmetic post-Gödel
is certainly a non-analytical discipline. As we shall emphasize, arithmeti-
cal methods of proof provably transcend any attempted schematization.
However, as we have already pointed out, one cannot conclude from this
negative evidence that arithmetic unlike logic is synthetic, if only for
the reason that the original distinction between the constructive and the
conceptual is rather blurred in our Hilbertian operative update: they are
both dealing with symbols.

My point is that we should first rather examine closer the alleged
independence of arithmetic of pure schemata. After all, there are at least
two extreme epistemological doctrines of arithmetical truth which con-
sider themselves to be vindicated by the bare fact of incompleteness.
The first of them is mathematical mentalism (instantiated in the intu-
itionism of Brouwer) basing arithmetical truth on mental constructions
as opposed to linguistic conventions which, according to Brouwer, are
totally heterogeneous with respect to mathematics. The second one is
mathematical Platonism with its stress on the independence of arith-
metic not only of the individual human subject (which has a point), but
of the whole of mankind as well. According to both of them arithmetic is
non-analytical. But neither intuitionism nor Platonism, provides us with
a satisfactory analysis of how we can know that an arithmetical sentence
is true and what such a proclamation should mean, not to mention their
respective treatments of Gödel’s theorems.6) Let us begin with this.

5 What is an arithmetical rule?

First of all, Gödel’s theorems apply only to the theories that are axioma-

tized effectively. This doesn’t imply any kind of strong finitism, because
we don’t want, for example, to rule out axiomatized theories with in-
finitely many axioms or rules. These axioms and/or rules,7) however,
should be mechanically testable (recognizable), which already implies
that they have to be finite sequences of symbols and, as a consequence,
that formal deductions (arithmetical proofs) have to be mechanically
testable, too. Speaking rather more technically, a theory is effectively

6) By this I mean especially the most popular versions of their interpretation such
as: ‘we know that we cannot know everything’ (Socratian modesty) or reference to
the so-called intuition as a kind of mysterious power available only to the chosen few
(the mathematician’s ‘sixth sense’).
7) Axioms can easily be interpreted as rules and vice versa.
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axiomatized if and only if it has a decidable set of axioms and uses a
proof system in which it is decidable whether a sequence of well-formed
formulas is a proof.

On the other hand, there seems to be no theoretical reason why
some infinite rules couldn’t under appropriate circumstances be regarded
as ‘effectively’ manageable, too. Let us take, for example, the so-called
ω-rule

A(|), A(||), A(|||), etc. ⇒ (∀x)A(x). (ω)

As an arithmetical rule it is transparent and sound enough, as long as one
interprets the “etc.” correctly. In fact, the Gödel-Tarski idea of semantics
employs this kind of infinite rules systematically, with the ω-rule as a
special case of the more general

A(N) for all substituents N ⇒ (∀x)A(x). (∀)

The ∀-rule is then nothing but the well-known part of the so-called se-
mantical definition of truth. But let us be careful! Contrary to the ω-
rule, the ∀-rule doesn’t partake in any concrete definition of truth but
represents only a truth-schema. The semantical definition ignores the
evaluation of elementary sentences.

The whole point of the last paragraph is to make us think about
semantic definitions such as (∀) as special (more generously conceived)
systems of rules (proof systems) which — starting with some elementary
sentences — evaluate the complex ones by exactly one of two truth values:
true or false. Constructive (effective) or intuitionistic logic denies this
very possibility, arguing that from the mere non-existence of a winning
strategy for A(x) one cannot validly conclude that there is a concrete
strategy for some ¬A(N) or, in particular, that the existence of concrete
strategies for winning or refuting every A(N) doesn’t entail the existence
of a general strategy for A(x).

To illustrate my point by a more familiar example, let us consider
this: There is no problem in demonstrating whether, for any given even
number M , it is the sum of two primes. However, the truth value of
the general judgment that every even number is the sum of two primes
(the so-called Goldbach conjecture), is still unknown, 250 years after the
problem was first posed. Hence, although we could potentially access
individual strategies for every single number, we still do not know the
general strategy of how to win a proposition concerning them all. Con-
sequently, a decision must be made whether the infinite vehicles of truth
and judgment such as (ω) or (∀) should be referred to as rules
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(1) only in the case when we positively know that all their premises
are true, i.e., when we have at our disposal some general strat-
egy for winning all of them at once, or,

(2) more liberally, if we know somehow that all their premises are
positively true or false.

Since the concept of elementary arithmetical truth — as defined by the
calculi (=), (+), etc., plus the dialogical rule for negation — is strongly
effective, i.e. mechanically testable, we can choose it as our basis. Starting
from it we can subsequently arrive at the concept of constructive or
classical arithmetical truth, depending on how we interpreted the infinite
rule (ω).

Moreover, the classical concept of truth obtained by a more liberal
reading of (ω) allows us to articulate the important distinction between
the truth we already know and the truth which has not been recognized
yet, but is recognizable in principle. (Incidentally, Frege’s semantical pair
of sense and reference — of truth-conditions and truth-value — aims at
the same thing.) What seems to beg the question now is

(1) the compatibility of this mild ‘semantical Platonism’ (as Ste-
keler once called it) with the possibility of arithmetical truths
which are not only unknown at the moment, but unknowable
in principle, on the one hand, and

(2) the widespread opinion that such a strong ‘ontological Platon-
ism’ is validated by Gödel’s theorems, on the other.

In what follows, we can forget about the first part of this question as
long as we remember that the problem with Platonism doesn’t lie in its
compatibility or incompatibility with our experience, but in the lack of
better arguments in its favour. The second part, however, is relevant here
and we want to refute it in the next section.

6 What is arithmetical truth?

Although the more liberal reading of (ω) gives us a better idea about the
so-called standard model of arithmetic, which as we are usually told can
be described only in an intuitive way, the constructivists do have a point
when saying that the words “rule” or “inference pattern” refer ordinarily
to something one can actually follow, hence that a rule which one can
follow only in principle is not in fact a rule. Imposing the condition of
their effective controllability on the premises of (ω) we actually obtain
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the above mentioned constructive meaning of the quantified sentence
A(x): it is true (justified) if and only if there is some general winning
strategy for every substitutable name N , i.e. for every sentence A(N).

Since in the constructivist reading the concept of winning strategy
remains to a large extent deliberately open, there is always room for
an effective, yet liberal enough semantics and a strong effective finite
or ‘mechanical’ syntax or axiomatics. These axiomatics or strong finite
rule-systems (i.e. systems with finite rules) are called full-formalisms, and
those more liberal ones (i.e. systems with infinite rules, no matter if clas-
sically or constructively interpreted) are referred to as semi-formalisms;
both distinctions are due to Schütte [1960]. The important thing is that
Gödel’s theorems affect only the full-formal systems.

Gödel came up with a general metastrategy of how to construct, for
every full-formal (hence schematically given) system of winning arith-
metical strategies (i.e. axioms and/or rules), a justifiable arithmetical
sentence not winnable by them. This (meta)strategy rests on the so-
called diagonal construction and on a presupposition that the starting
system is sufficiently strong, since the weak systems are incomplete by
definition.

The basic idea behind Gödel’s proof looks like this: After devising
an appropriate coding scheme we can express many sentences about a
certain arithmetical full-formalism in its language and even deduce them
in it in accord with the truth. Firstly, we associate arithmetical expres-
sions with numbers (codes) in such a way that a particular number fulfils
a concrete arithmetical condition if and only if the encoded expression
fulfils a certain syntactic condition, e.g., ‘to be an axiom’, ‘to be a proof’
etc. Secondly, we take into consideration the syntactic relation holding
between two expressions if and only if the first of them is the proof of
the second one and we name the corresponding arithmetical condition

Proof (x, y).

It holds for two numbers m, n just in case m codes the proof of the
formula coded by n. And finally, we need an operation

subst (x, y)

which yields, for two numbers m, n as arguments, the code p of the result
of substituting the numeral for n (i.e. the arithmetical expression ‘n’) for
any occurrence of the sole free variable “x” in the formula F (x) coded
by m. Therewith we have the formula

(∀y)¬Proof (y, subst (x, x))
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at our disposal. Let us abbreviate it as G(x). — So far so good. The
formula G(x) has “x” as its sole free variable, it is associated with some
code g and it holds of m if the formula coded by subst (m,m) is not
provable in the relevant full-formalism, i.e., if there is no number n coding
the proof of the formula in question. Substituting the numeral for g in
G(x) yields the formula

G(g) ⇋ (∀x)¬Proof (x, subst (g, g)).

This is, in fact, the critical formula we are looking for, because G(g) is
true (justifiable) if and only if there is no number m such that
Proof (m, subst (g, g)) holds, in other words: if and only if the formula
coded by subst (g, g) is unprovable in the given full-formalism. But this
formula is G(g) itself! Since the full-formalism is constructed in such a
way that it deduces only true (justifiable) arithmetical sentences, the for-
mula G(g) cannot be provable, otherwise we would have a false theorem.
Hence, G(g) is not provable, hence G(g) is true!

The reason why we retell the whole story in terms of the semi- and
full-formalisms and the winning strategies lies in the observation that
the unprovable yet true arithmetical sentence of Gödel’s theorem is an
unprovable sentence of the full-formalism but a provable (i.e. justifiable
or true) sentence of the semi-formalism: there is a strategy of how to win
G(g), but also of how to construct a new unprovable yet true formula in
the case when G(g) is added ad hoc to the original full-formalism as a new
axiom. Now it is quite clear how the concept of essential unprovability
is not to be understood, namely Platonistically, no matter if in a strong
or a mild sense. The reason is that Gödel’s proof does not even cross the
border of the constructive semi-formalism. — Hereafter, therefore, we
will carefully differentiate between the deducibility in a full-formalism
and in a semi-formalism, using the well-established symbols “⊢” and
“²”, respectively. To sum up, the theses we have established so far are
the following:

(1) The essential incompleteness or incompletability of arithmetic
affects only the arithmetical full-formalism, which means that
there is always a true arithmetical formula which is not a the-
orem.

(2) ‘Incomplete’ thereby always means ‘incomplete with respect to
some semi-formalism’ that defines which sentences are to be
evaluated as true and which not.
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(3) For this reason the semi-formalism itself cannot be incomplete.
However, it can be incomplete with respect to some other semi-
formalism, which is actually the case of the constructive semi-
formalism in relation to the classical one.

In this particular case, however, we are not able to prove this incomplete-
ness to be essential, so we can keep on believing with Hilbert that every
mathematical problem is solvable and we can prospectively announce
this general solvability as a kind of regulative (optimistic) hypothesis
(“wir müssen wissen, wir werden wissen”).8)

(4) Even if we interpret arithmetical truth classically, i.e. not ef-
fectively, the unprovable yet true formula of Gödel’s theorem
remains constructively true, i.e. provable in the constructive
semi-formalism.

Therefore we should formally differentiate between ²C and ²L (C stand-
ing for “classical”, L for “Lorenzen”).

7 Is arithmetic consistent?

Along the same lines we have explained Gödel’s theorem we can now
handle its corollary, better known under the name of the Second Incom-
pleteness Theorem. This is in fact the famous slogan that the consistency
of arithmetic cannot be proved by appealing to arithmetical means alone,
or even that it cannot be established at all. Of course, we ought to be cau-
tious here again. A sober reading of the corollary entails only something
like this:

There is an actual strategy of how for every full-formalization
T of arithmetic (which is, again, strong enough) to construct a
sentence ST of which the following conditions hold:

(1) ST is justifiable (²) if and only if T is consistent,

(2) ST is unprovable (⊢) in T if and only if T is consistent.

Then, on closer look, it is clear that the condition (2) alone amounts to a
triviality: we can simply take ST to be any contradiction we like. Adding
the condition (1) we want the unprovable sentence of (2) to be true. But

8) [Hilbert, 1935, p. 387].
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there is a sentence like this already due to the (First) Theorem. So what
is the point of the corollary?

To understand its significance we have to look at it with Hilbert’s
eyes, i.e. from the point of view of a proponent of strong effective — full-
formal — systems. Then there is no place for a semi-formal justification
and for a general, non-effective concept of arithmetical truth in partic-
ular. According to Hilbert, semantical concepts such as this one could
lead us only badly astray (as Russell’s paradox had shown) and just for
this reason they should eventually be replaced with something more se-
cure, e.g., with syntactical consistency. With this in mind we can first
rephrase the concept of incompleteness in syntactic terms and say that
an axiomatic (full-formal) theory T is incomplete if there is a sentence S

of its language such that neither S nor ¬S are provable (⊢) in T . More
importantly, Gödel’s theorem can be generalized in this way, i.e. without
assuming the truth of the full-formal system in question. The argument
goes roughly like this.

Firstly, one must show that the elementary syntactic properties (for-
mulahood, axiomhood, proofhood) are not only adequately expressible
in arithmetical language, which means that the arithmetical formulas
assigned to these properties are provable or refutable in the arithmetical
semi-formalism in accordance with truth, but that these formulas are
provable or refutable in the relevant full-formal system T as well. This
second characteristic is known as the case-by-case capturing in T and
holds of the aforementioned syntactic properties already in the Robinson
Arithmetic (Q), i.e. in the (first-order) Peano Arithmetic (PA) without
the induction.

Now consider the sentence G(g) = (∀y)¬Proof (y, subst (g, g)) again
and suppose it is provable in T . Then there is some number m which
codes its proof and, by definition, the sentence Proof (m, subst (g, g)) is
provable in T , too. But the provability of (∀y)¬Proof (y, subst (g, g))
entails the provability of ¬Proof (n, subst (g, g)) for every n, particularly
for n := m. Hence

T ⊢ Proof (m, subst (g, g)) and T ⊢ ¬Proof (m, subst (g, g)),

which means that T is (syntactically) inconsistent. Hence, if T is consis-
tent, which is the formalist’s substitute for truth, there can be no proof
of G(g) in T . In order to show that ¬G(g) is unprovable too, we need a
stronger assumption than a mere consistency of T . — Gödel introduced
the concept of ω-consistency, defining a theory to be ω-consistent if the
fact that T ⊢ ¬A(n) for each n excludes the possibility of T ⊢ (∃x)A(x).
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Note that ω-consistency implies plain consistency, because T is incon-
sistent if and only if all formulas are provable in it, so in the case of
an inconsistent theory the forbidden combination of provable formulas
mentioned in the definition of ω-consistency obtains automatically. —
Suppose that T is ω-consistent and ¬G(g) is provable in T . Then G(g) is
unprovable, because of plain consistency, which means that no number
m can code a proof of G(g). Hence, by definition, ¬Proof (n, subst (g, g))
holds (²) for each n and, by the requirement that T captures the relation
‘to be a proof of’, even

T ⊢ ¬Proof (n, subst (g, g)) for each n.

But we are assuming that ¬G(g) is provable in T , which is equivalent
to T ⊢ (∃y) Proof (y, subst (g, g)), and that makes T ω-inconsistent, con-
trary to the hypothesis.

Now for the Second Theorem. According to Hilbert, syntactic con-
sistency is a sufficient and in fact the only requirement one can impose
on an axiomatic theory. This requirement can be coded in a familiar
manner as the unprovability of a contradictory formula in T , i.e. as
(∀x)¬Proof (x,m), where m is, e.g., the code of “0 = 1”. (This is, of
course, because we assume that the negation of “0 = 1” is provable in
T .) Let us abbreviate (∀x)¬Proof (x,m) as Con T . — The content of the
First Theorem in its syntactic version can now be formalized as

Con T → G(g)

and eventually proved in T , if T is at least as strong as PA, hence stronger
than Q. Assuming T is consistent, this already yields that ConT must
be unprovable, since T ⊢ Con T and T ⊢ Con T → G(g) entail T ⊢ G(g),
which, as we know from the First Theorem, is not true.

No matter how interesting the unprovability of ConT in T can be,
it should be clear that it has nothing to do with the consistency or
inconsistency of arithmetic. It makes no sense to construct a formula
provable in T if and only if T is consistent since an inconsistent theory
entails every formula. In his controversy with Hilbert about the nature
of axioms, i.e. of axiomatic theories in general, Frege was right to point
out that the consistency of axioms is secondary to their truth: When we
are devising an axiomatization of arithmetic, we are obliged, of course,
to pick up only true sentences as axioms. Their mutual consistency does
not suffice (for them to be picked out), and, as a matter of fact, follows
from the fact they are true.
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With the proof-theoretical jargon of semi- and full-formalisms at
our disposal and with hindsight on the Second Theorem we can now ar-
ticulate the problem of arithmetical consistency as follows: the already
established full-formal systems such as PA or Q are consistent simply be-
cause their axioms are provable in the arithmetical semi-formalism. This
is, in fact, the usual model-theoretical argument: a theory is consistent
because there is a model for it.

The main use of our proof-theoretical diction lies in its relativity.
If PA is inconsistent, then arithmetic full-formalism is inconsistent. In
the model-theoretical jargon, where semi-formalism is replaced by the
so-called standard model, we are usually told that this possibility is pre-
cluded simply by definition. Eventually an appeal is made to some kind
of intuition. In the proof-theoretical case we do not confine ourselves to
such vague justifications, because we can actually prove that the rules of
the semi-formalism do not evaluate arithmetical sentences inconsistently.
Our method is an easy metainduction:

(1) Elementary arithmetical sentences (m + n = p, m × n = p) are
evaluated unambiguously as true or false only on the basis of
the arithmetical calculi we have set down before,

(2) Tarski’s evaluation of complex sentences is correct, too, though
we can still argue about whether they assign one and only one
value to each sentence (as Stekeler’s semantical Platonism main-
tains)9) or at most one value to each sentence (as Brouwer and
his followers believe).

In fact, this is the difference between the classical and constructivist
conception of truth, logic and arithmetic.

8 Conclusion

The import of the Second Theorem seems to lie in its support for the ev-
idence that arguments for the consistency of arithmetic cannot avoid ap-
peal to the infinite, semantical methods. Consistency proofs by Gentzen
build on this very idea. In fact, this inevitability is possibly already given
in the infinite construction of |, ||, |||, . . . , and hence one can, on the
one hand, repeat Kant’s doubts about arithmetical sentences being de-
ducible from a single formal definition and, on the other hand, expect
with Poincaré that this fact has something to do with the complete in-
duction.

9) See Stekeler-Weithofer [1986].
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But we ought to be cautious not to carry this observation too far,
as Poincaré [1908] did, having declared complete induction a dividing
line between logical and mathematical methods. Of course, complete or
mathematical induction is indispensable in mathematics, but this is be-
cause numbers (arithmetical operations etc.) are defined inductively, not
because it is somehow essential for arithmetic per se. Realizing this we
can see that induction is indispensable in logic too as long as the basic
concepts like formula, theorem or proof are employed. In his Tractatus

Wittgenstein availed himself of this observation by interpreting natural
numbers to be indexes of a sentence-forming operation. Shall we con-
clude from this evidence that there is no difference between logic and
mathematics?

Wittgenstein’s later answer would certainly have been negative: Ari-
thmetic and logic are, of course, different, simply by definition: the first
one makes computations, the second one inferences. The completeness
and incompleteness phenomenon has little to do with this. In fact, instead
of interpreting the variable X in the formula

(∀X)[X(0) ∧ (∀y)(X(y) → X(y + 1)) → X(x)]

schematically, i.e. as ranging over expressions of a formal language, as the
first-order version of the induction axiom (schema) does, we can make
use of the original, indefinite way, which amounts to the second-order
axiom. This is the part of the full-formal system of second-order Peano
Arithmetic (PA2) which is, of course, incomplete due to Gödel’s Theo-
rem. We can, however, argue that in contrast with PA the axioms of PA2

describe arithmetical semi-formalism so well (or technically: up to iso-
morphism), that every semi-formalism which entails them (under some
structure-preserving translation) already entails all theorems of the orig-
inal semi-formalism (under the same structure-preserving translation).
This is nothing but the well-known categoricity theorem for the second-
order Peano Arithmetic. As a consequence, to justify an arithmetical
sentence we do not need elementary arithmetical calculi any more, we
need only Peano’s axioms. The point is that for any true arithmetical
sentence S the conditional

PA2 → S

becomes justifiable by logic alone, which means that it is a tautology! As-
suming the underlying logic is complete in the sense that all and only the
tautologies are deducible, the arithmetic becomes complete, too, which
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is impossible. Hence, by contraposition, second-order logic is also incom-
plete. So, Gödel’s Theorem, in fact, proves the incompleteness not only
for arithmetic, but for logic as well.

But then, we need to ask, what is the moral of Gödel’s Incomplete-
ness Theorem with respect to the question of the epistemic status of
arithmetic or logic? Are there any essential differences between them?
Of course there are, but they are not easily to be found, given the condi-
tion that there are remarkable similarities between counting and judging
and these undoubtedly are built into the foundations of modern logic.
The problem of our question and of the postlogicist philosophy of math-
ematics in general lies precisely in the fact that they do not take this
into account.

So Poincaré was actually right. Modern logic was successful be-
cause of availing itself of methods peculiar to mathematics, especially
of complete induction. But this did not turn logic into mathematics, as
Poincaré suggested; neither did it turn mathematics into logic as the
logicists thought. The relations between them were nevertheless changed
or distorted, if we wish, and it made them, or certain parts of them,
simultaneously more powerful with respect to some problems and objec-
tions and more vulnerable with respect to others. But this seems to be a
necessary epiphenomenon of any scientific development. — Nevertheless,
under the influence of logic, mathematics has become more sensitive to
the syntactic design of its theories, making them available for intersubjec-
tive checking by devising a transparent, uniform concept of (deductive)
proof. The negative side of this move was, of course, the above mentioned
identification of arithmetical truth with deductive consistency. Gödel’s
theorems, as we have interpreted them above, are only the symptoms of
some consequences of this decision.

In this article I have tried to argue that they tell us nothing fatal
about the nature of our reason, nor anything about logic and arithmetic
as its prominent offspring, as long as we are aware that they are (by
definition) disciplines of their own, as Wittgenstein used to stress. Si-
multaneously I want to point out, pace the radical scepticism of Poincaré
and Wittgenstein, that the story of modern logic shows us how fruitful
the possible crossovers of these two disciplines of pure reason can be if
they are interpreted in a modest, dialectical way, i.e. not as the reduction
of the whole of logic to arithmetic nor vice versa, but as the projection
of a part of the former onto part of the latter, leading eventually to a
discipline of a new, somewhat mixed kind, as already displayed by sub-
jects such as metamathematics, proof- or model-theory, computational
complexity and many others.
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