Translation Options

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td>no</td>
<td>slap</td>
<td>to the</td>
<td>green witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not give</td>
<td>to</td>
<td>the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slap</td>
<td>the witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Look up possible phrase translations
 - many different ways to segment words into phrases
 - many different ways to translate each phrase
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td>a slap</td>
<td>by</td>
<td>green witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not give</td>
<td>to</td>
<td>the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>slap</td>
<td>the witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Start with empty hypothesis
 - e: no English words
 - f: no foreign words covered
 - p: probability 1
Hypothesis Expansion

- Pick translation option
- Create hypothesis
 - e: add English phrase Mary
 - f: first foreign word covered
 - p: probability 0.534
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td>a slap</td>
<td>by</td>
<td>green witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>slap</td>
<td>to the</td>
<td>green witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not give</td>
<td></td>
<td>to the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slap</td>
<td>the witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Add another hypothesis

- e: witch
 - f:
 - p: .18
- e: Mary
 - f:
 - p: .534
Hypothesis Expansion

- Further hypothesis expansion
Hypothesis Expansion

- Maria
- no
- dio una bofetada
- a la
- bruja verde

... until all foreign words covered
- find best hypothesis that covers all foreign words
- backtrack to read off translation
Hypothesis Expansion

- Adding more hypothesis

⇒ Explosion of search space
Explosion of Search Space

- Number of hypotheses is exponential with respect to sentence length

⇒ Decoding is NP-complete [Knight, 1999]
⇒ Need to reduce search space
 - risk free: hypothesis recombination
 - risky: histogram/threshold pruning
Hypothesis Recombination

- Different paths to the same partial translation
Hypothesis Recombination

- Different paths to the same partial translation

⇒ Combine paths
 - drop weaker hypothesis
 - keep pointer from worse path
Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)
Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)

⇒ Combine paths
Pruning

- Hypothesis recombination is not sufficient

⇒ Heuristically discard weak hypotheses

- Organize Hypothesis in stacks, e.g. by
 - same foreign words covered
 - same number of foreign words covered (Pharaoh does this)
 - same number of English words produced

- Compare hypotheses in stacks, discard bad ones
 - histogram pruning: keep top n hypotheses in each stack (e.g., $n=100$)
 - threshold pruning: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha = 0.001$)