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Introduction

The goal of this thesis was to provide a fast implementation of a system for dis-
ambiguating token and sentence boundaries and to evaluate the implementation
both in terms of its accuracy and its speed.

Token and sentence boundary disambiguation may seem trivial at first, and it
usually is, but in some occasions it might turn out to be quite complex. Consider

the following cases:

(1) On Friday, the 2274, at around 2 a.m. Dr. T. Adams finished the prelimi-

nary examination.

(2) The field tests were to begin on Friday, the 22" at around 2 a.m.

Dr. T. Adams finished the preliminary examination the night before.

(3) "314 159.26%, about half of the yearly budget, was spent on office redec-
oration!", protested the disgruntled employee of Vanity, S.p.A.

Even as I was typesetting these examples in IXTEX, I had to explicitly mark
some of the periods in the above examples as not being sentence boundaries, as
IXTEX likes to insert slightly larger spaces after sentence terminators (so called
French spacing). The heuristic used by WTEX is very simple: if a word-final
potential sentence terminator (a period, a question mark or an exclamation mark)
follows a capital letter, then it is most likely a part_of an abbreviation (or an
initial) and so it does not mark the end of a sentenc [4].

Such a simple system runs into problems in the examples given above, as
we can see that abbreviations do not necessarily end with capital letters and
on top of that, a period may serve both as part of an abbreviation and as a
sentence terminator. Examples [I] and [2] also show us that the context needed
to disambiguate the sentence boundary may be quite far from the boundary in
question.

While getting the size of a space correctly down to the last millimeter is
certainly a noble goal, there are also some important uses for a more reliable
segmenter and tokenizer. When text is being processed and parsed by automatic
tools, a common first step is to divide the text into tokens and sentences. A
lot of the tools that then work with these tokens assume they are correct and
try to analyze them further. As a lot of these tools are getting more and more
accurate, it is important we step up the quality of the tokenization process, so
that the system’s quality is not determined by something as basic as tokenization

and segmentation of input.

LA more intuitive approach might be to check the case of the following, not the preceding,
word.



In the last 20 years, the problem started getting some recognition and several
systems were demonstrated. This thesis does not aim to create a new system for
tokenization. This work is based on an already existing tokenizer implemented
by Ondiej Bojar during the construction of the UMC 0.1 Czech-Russian-English
Multilingual Corpus [15] 10].

A key feature of the original tokenizer is its strict segregation of language-
dependent knowledge into configurable files. The new implementation expands
on this idea and assumes next to nothing about the language being processed
except that the sentence and token boundaries are disambiguated by a limited
context window described by binary predicates expressed as regular expressions.
The tokenizer thus offers a great deal of customizability and a lot of effort has
been put into ensuring that the tokenizer will behave as expected and that the
behaviour is easy to understand without diverging too much from the original.

Performance, being the motivation behind the current implementation, was
also important. Both the original and the new tokenizer rely on a C-++ toolkit
which handles the mechanics of machine learning [16]. However, the original
implementation, being written in Perl, had to access the functionality through a
command-line interface passing data through files. The new implementation will
have the benefits of using the C++ API directly. Where the old implementation
used regular expressions to partition the input and detect potential token and
sentence boundaries, the new implementation uses a lexical analyzer generator
[26] to generate fast C-++ code, compile it and load it at runtime. The new
implementation also benefits from the multiple CPUs found on modern computers
and uses a high-level parallelism library [3] to perform the various time-consuming
tasks of tokenization in parallel.

In Chapter [, we will look at other systems which tried to tackle the prob-
lem and compare them to our tokenizer. In Chapter 2] a brief overview of the
maximum entropy method of machine learning will be given. Chapter [ will fa-
miliarize us with the implementation of the tokenizer. Finally, in Chapter [, we

evaluate the speed and accuracy of the tokenizer on several datasets.



1. A Survey of Other Solutions

In this chapter we present an overview of existing systems designed to disam-
biguate sentence and token boundaries. We examine systems based both on
hand-written rules and systems using machine learning methods such as maxi-
mum entropy models and decision trees. Next, we look at a system that uses part
of speech data to disambiguate sentence boundaries and another system which
uses collocation detection techniques. Finally we describe a state-of-the-art Chi-
nese word segmenter. For each of these systems, we describe how our tokenizer
can be used to express the same ideas about sentence and token boundary dis-

ambiguation.

1.1 RE

The system [I3] referred to as RE in [14] is an example of a purely rule-based
system. It does not need any training data, but instead it relies on explicit
linguistic knowledge such as lists of abbreviations and custom regular expressions.
The RE system in particular works by scanning the input text for periods and
then inspecting the tokens surrounding it. If the surrounding tokens do not match
a combination of the user’s regular expressions, the period is marked as a sentence
boundary.

Our tokenizer also allows the user to define regular expressions against which
neighboring tokens will be checked (not only neighboring tokens, a token at any
distance can be examined, which can be important as we saw in the introduc-
tion). The crucial difference between the RE system and our tokenizer is that the
outcomes of all these regular expression tests are not explicitly mapped to the dis-
ambiguation of the potential boundary by the programmer or the user. Instead,
our system relies on already tokenized data from which it learns how to combine

the outcomes of these regular expression tests into a tokenization decision.

1.2 MxTerminator

Contrary to RE, MxTerminator [24] is a supervised machine-learning system.
This means that the tool has to be supplied with already tokenized data from
which the classifier infers the logic behind tokenization. The classifier in this
case is based on maximum entropy models, the same mathematical foundation
on which our system is built.

The MxTerminator scans the text for a list of potential sentence terminators



and presents the classifier with features of the neighboring tokens. The hard-
coded features include the word containing the potential sentence terminator,
the words preceding and following it, the presence of particular characters in the
current word and whether the current word is a honorific or a corporate designator
(e.g. Corp.). All of these are easily expressed using regular expressions and lists
of tokens and so it should be quite easy to produce a system very similar to
MxTerminator using a specific configuration.

There is also a more general version of the MxTerminator which does not rely
on precompiled lists of honorifics and other abbreviations. In this version, the
MxTerminator first scans the training data and searches for words containing a
period which does not serve as a sentence terminator. The features passed to the
maximum entropy classifier then consist only of the trigram of words containing
the potential sentence terminator and values describing whether the individual
words belong to the abbreviations induced from training data in the previous
step. With our tokenizer, the user is free to scan the data ahead and store the
induced abbreviations in a file. The tokenizer can then be configured to use the

file as a definition for the induced abbreviation feature.

1.3 Riley

Riley [25] uses a method of classification different from the MxTerminator. In-
stead of using a maximum entropy classifier, he builds a regression tree. The
following features are used to disambiguate the period (let a be the word con-

taining the period in question and b the following word):

e Probability of a occurring at the end of a sentence

e Probability of b occurring at the beginning of a sentence
e Length of a

e Length of b

e Case of a

e Case of b

e Any punctuation after the period

e Abbreviation class of a

A training dataset the size of approximately 25 million words was used to

estimate the probabilities of individual words occurring near sentence boundaries.



Thanks to such detailed information, the system was found to perform notably
well.

The first two features used in the regression tree have a natural counterpart
in the maximum entropy model. When the text of a token is being passed to the
maximum entropy classifier during training, it estimates a parameter for each type
of token encountered and each possible outcome (no boundary, token boundary,
sentence boundary). What this parameter does, basically, is that it describes and
retains in the model the probability of encountering a specific type together with
a specific outcome. The equivalent of a probability of a certain type occurring
near the sentence boundary would therefore be the maximum entropy model’s
parameter corresponding to the event of that type appearing together with the
sentence boundary outcome.

As for the length features, the maximum entropy toolkit we employed uses a
more general form of a maximum entropy feature which allows for real feature
values instead of only binary values (the only such feature supported by our
tokenizer is the length of a token). The remaining parameters can be described

by binary features defined as regular expressions supplied by the user.

1.4 Satz

The Satz system [21] is another supervised machine-learning system for sentence
boundary disambiguation. It is very unique in that it does not rely on the su-
perficial characteristics of the shape of the surrounding tokens. Instead, it passes
to the underlying classifier the probability distribution of parts of speech for ev-
ery token within the context of the potential sentence boundary. It is therefore
necessary to supply a lexicon giving the part of speech distribution. If a word
is not part of any lexicon, a series of heuristics try to guess a safe probability
distribution given the word’s suffix, case, internal punctuation etc... Thanks to
the generalization provided by the part of speech categories, the system required
relatively small amounts of training data to achieve solid performance.

In our system, the user is limited to defining binary features and so pass-
ing the probability distributions to the classifier would be out of the question.
However, the authors of the Satz system performed an experiment wherein they
replaced the non-zero probabilities with ones (basically switching from part of
speech probabilities to flags indicating if a given part of speech is possible). The
results of this experiment showed that the resulting system was trained faster
and performed better than the original. Luckily our tokenizer allows the user to
easily define binary features using lists of tokens, i.e. lexicons. The only problem

would be the heuristics employed with out of vocabulary words. While all of



them can be easily expressed as regular expressions in our system, there is yet no
mechanism to make the tokenizer treat a part of speech found in a lexicon and
a part of speech guessed by a regular expression heuristic as the same feature

which inhibits generalization.

1.5 Punkt

The Punkt system [14] is an example of an unsupervised machine-learning system.
This means that Punkt does not need manually tokenized data for training, it
learns from raw untokenized text. The data Punkt actually uses for training is
the text to be tokenized and so besides the obvious advantage of not having to
manually annotate data, the Punkt system does not have to be afraid of different
text domains and genres.

The Punkt system processes the input in multiple stages. In the first stage, it
tries to determine which period-terminated words are abbreviations. A likelihood
ratio is assigned to every such token type in the text describing the strength of
the collocational tie between the type and its terminating period. A collocation
between a type and a following period is taken as evidence that the type is an
abbreviation type. This collocational score is further penalized by the length
of the type and multiplied by the number of token-internal periods. Finally, a
type’s abbreviation likelihood is also exponentially penalized for each instance
not followed by a period (so that common verbs in head-final languages are not
picked up as abbreviations). All types that score higher than a set threshold are
considered abbreviations.

After the abbreviations have been determined, every period not following
an abbreviation, an initial or a number is marked as a unambiguous sentence
boundary. Now that some sentence boundaries have already been disambiguated,
the system studies the input again to infer e.g. frequent sentence starters, which
are types which form collocations with preceding sentence boundaries. The rest
of the periods are disambiguated in the second stage which examines the specific
tokens and their contexts. Disambiguation may come from the orthographic
heuristic which examines the case of the following token with respect to how often
its type occurred lower-case and upper-case both at the start of a sentence and
mid-sentence. The orthographic heuristic is very robust and takes into account
that many words are written with upper-case first letters even mid-sentence (such
as proper nouns and German nouns). The second stage also uses the collocational
tie between the types surrounding the period and whether the following type is
a frequent sentence starter as evidence against, resp. for, a sentence boundary.

Punkt also demonstrates its language independence by giving remarkable re-



sults on 11 different languages, all without the need to provide annotated data or
perform lengthy parameter tweaking. Emulating Punkt’s behaviour using our to-
kenizer would be nearly impossible, as it would necessarily lose its independence
on available annotated data and its ability to train from the input before tokeniz-
ing it. On the other hand, our system is able to perform nontrivial tokenization
tasks (such as Chinese word segmentation) on top of the sentence boundary dis-
ambiguation. It is due to the fact that the Punkt system was designed to solve
a very specific problem using linguistic knowledge common to a lot of languages.
Our tokenizer is very general, permitting the user to tokenize and segment the
text in basically any way that is learnable through binary features expressed with

regular expressions or lexicons.

1.6 Chinese Word Segmentation

Several attempts at Chinese word segmentation were made using a maximum en-
tropy classifier. The one developed by Jin Kiat Low, Hwee Tou Ng and Wenyuan
Guo in 2005 [17] ranked amongst the highest in the Second International Chinese
Word Segmentation Bakeoff [12]. It classifies each character as either a single-
character word or as a first, intermediate or last character of a multi-character

word. The basic set, of features passed to the classifier is:

1. Co(n=—2,-1,0,1,2)

2. CChsr(n =—2,-1,0,1)
3. C.1Cy

4. Pu(Cy)

5. T(C_o)T(C_)T(Co)T(CLT(C)

C,, refers to a character at a position relative to the current one, Pu is a
predicate checking whether a character is a punctuation symbol and T is a func-
tion assigning a character class to characters. The 4 used classes are numbers,
dates (symbols for “day”, “month” and “year”), English letters and others. Feature
templates 2, 3 and 5 use conjunctions of features, which means that for all the
possible combinations of values, there is a maximum entropy feature and its cor-
responding parameter. It was this classifier which motivated the implementation
of conjunction features in our tokenizer.

The Chinese word segmenter relies on even more features derived from search-

ing the text for words in a lexicon of known words. In our tokenizer, it would be



quite complicated to check for these words due to the fact that every position is
a potential token boundary. This means that the preliminary rough tokens, on
which user-defined predicates are tested, are exactly one character long. Howev-
er, this improvement to the Chinese word segmenter is not that crucial. A bigger
issue might be the fact that the Chinese word segmenter trains a classifier to
predict the role of a character in a single or multi character word, whereas our
classifier predicts whether potential token boundaries are real token boundaries
(this means that during training the set of features for maximum entropy is quite
different).

10



2. Maximum Entropy Modelling

In this chapter we present the principles of maximum entropy modelling, how
maximum entropy models relate to exponential models and how a maximum
entropy model is induced from data. We also discuss which implementations of

the technique are available and which one was used in our system.

2.1 Maximum Entropy Models

We want to construct a probabilistic model which gives us a probability p(a, b) of
an outcom a occurring with context b. We want this model to be very close to
the observed training data, meaning that the data’s probability given our model
p is high.

However, we do not want the maximum likelihood model because we are aware
that the observed data does not cover all the possible situations. Instead, we want
a model that shares only some important properties with the observed data. We
express these properties as binary functions on the space of events E and we call
these functions featuresH. In most implementations, including ours, these binary

features are restricted to the following form

1 if a =0 and ¢(b)
Fa,b) = (2.1)
0 else

where o is an outcome and ¢ is a context predicate. We want the constructed
model p to share the expected values of these feature functions with the empirical
distribution p. This means that we want the probability of f(a,b) being 1 to be
the same in both distributions.

Let us say we have chosen several such features we want retained in our model,
now we need to select some model from the set of complying models. This is the
point where the maximum entropy principle comes into play. The basic idea of
the maximum entropy principle was nicely hinted at by Laplace in his “Principle

of Insufficient Reason” [§]:

When one has no information to distinguish between the probability

of two events, the best strategy is to consider them equally likely.

! The terminology used in computational linguistics often clashes with the one used in prob-
ability theory. What is in probability theory usually known as an outcome is here referred to
as an event. These events are pairs of contexts and outcomes, where the context is the data we
have available when we want a prediction and the outcome is what we want to predict.

2The term features is also commonly used in machine learning to denote a part of the context.
When it will be important to differentiate these two meaning in other parts of the work, the
term mazimum entropy features will be used to refer to the features defined here.

11



We would like to have a distribution which conforms to the requirements
imposed by the features but is otherwise unbiased, it is as close to uniform as
possible without violating the features’ requirements. A standard measure of the

uniformity of a distribution is entropy

H(p)= - p(x)logp(z) (2.2)

rel
We would like to find a distribution which adheres to the features’ constraints
and maximizes entropy. It can be shown [8] 23] that such a distribution is of the

following form

k
fi(z
p(x) = WHQ/( ) (2.3)
j=1
where f; for j € {1,...,k} are the features we want to retain and 0 < o, 7 <

00. More interestingly, the maximum entropy model adhering to the features’
constraints is equal to the maximum likelihood model having the shape of 2.3
(we call such models exponential models).

Given the set of features we want to retain in our model, we can now employ
an unrestricted optimization algorithm to find the parameters of the exponential
model which maximize the likelihood of the training data.

Once we wrap our minds around the definition of an exponential model and
restrain ourselves to the features from 2.1l we can easily imagine what happens
when predicting an outcome given a context (i.e. evaluating the probabilities of
the context appearing with all the possible outcomes). For each feature f; of the
shape 2.1} the probability of an outcome is multiplied by «; if and only if the
feature’s predicate ¢ holds for the current context and the outcome which we are
evaluating is equal to the feature’s desired outcome o (then the feature function’s
value is 1). So, for each pair of a predicate ¢ which holds for the given context and
an outcome o which forms a feature f; with the predicate as in 2.1l the predicate
votes either for or against the outcome o depending on the value of «;. The
value of o, estimated from the training data, is higher if the context predicate
¢ usually implies that we will see the outcome o and lower in the opposite case.

In practice, the features (in the machine learning sense of the word) being
passed to the maximum entropy classifier are the predicates which hold for the
context in question. The classified outcome is the one voted the most by the

above process.

12



2.2 Available Implementations

There are several notable implementations of maximum entropy estimators avail-
able. The one we chose for our tokenizer was the Maximum Entropy Modeling
Toolkit for Python and C-++ written by Zhang Le [16]. The toolkit offers a nice,
clean API with which we are able to feed training events to the estimator and
then launch a training procedure which finds the optimal parameters. The re-
sulting model can be easily saved to a file and loaded later. The API is complete
with functions for evaluating the probabilities of (context, outcome) pairs and
derived convenience functions for predicting outcomes from contexts. The sup-
ported parameter estimation algorithms include GIS and L-BFGS. The L-BFGS
implementation provided by Jorge Nocedal is written in Fortran with large scale
datasets in mind. When the various algorithms for estimating the parameters
of a maximum entropy model were evaluated, L-BFGS clearly outperformed the
GIS, IIS, gradient and conjugate gradient algorithms [I8§].

Other implementations were contemplated. However, they would require more
effort to integrate seamlessly into our tokenizer. The main reason behind this is
that the above-mentioned toolkit is the only one supplying a C+-+ APIL. The
other toolkits only have either command line interfaces or are written in different
languages. Of these toolkits, only a few offer anything worth the effort.

Our problem with the toolkits written in Python and Java (the most notable
being NLTK [9] and the Stanford Classifier [22]) is that while predicting an out-
come of a potential boundary, we rely on the disambiguation of the preceding
boundaries. This means that if we were to use NLTK or the Stanford Classifier
for prediction, we would have to switch from C-++ to Java or Python to perform
the disambiguation for every ambiguous boundary individually. This could be
worked around by using the toolkits only for training and then writing our own
implementation of the exponential model’s evaluate functions.

But even if we did integrate these alternative implementation, the Java im-
plementations would have a hard time outperforming the Fortran L-BFGS im-
plementation. The methods in SciPy might be more viable though.

The only alternative solution which looked intriguing is the Toolkit for Ad-
vanced Discriminative Modeling (TADM) by Robert Malouf [19]. The toolkit
lacks an API and relies only on a command line interface. This would mean
that during training the collected events would have to be stored in a file and
TADM would have to be invoked using the system function. An implementation
of an exponential model would then be needed including loading the model from
the file, evaluating the probabilities of events and predicting the most probable

outcome.

13



However, if too much time is spent estimating the model’s parameters on a
machine which might benefit from the PETSc and TAO optimizations used in
TADM, it might be worthwhile to change the tokenizer to use TADM.

14



3. Implementation

In this chapter we describe the internal design of the tokenizer and provide ratio-
nale for the choices behind it. We explore the problem of rough tokenization more
deeply as it posed one of the biggest challenges in building the system. Finally,
we talk about the multi-threading tools which were used to enable parallelism in

the tokenizer.

3.1 Overview of the System

The data flow between the various subsystems can be seen in Figure 3.1l

3.1.1 TextCleaner

Any input which is read by the tokenizer is first processed by the TextCleaner.
This unit is responsible for decoding the stream of text and optionally removing
XML markup and expanding HTML entities and character references. These
changes to the input stream (referred to as cutouts in the program) are conveyed
to the OutputFormatter so that they can be undone in the output. This allows
the tokenizer to process XML marked up content as if it was plain text. The XML
markup thus cannot be broken by and does not interfere with the tokenization

process.

3.1.2 RoughTokenizer

The RoughTokenizer’s goal is to examine the cleaned input stream and identify

both unambiguous and ambiguous token and sentence boundaries. It does so by

/annotated text/
A4

TextCleaner TextCleaner

\ FeatureExtractor ¢

RoughTokenizer Classifier

OutputFormatter

FeatureExtractor

/tokenized text/

Figure 3.1: Data flow in the entire system

15



splitting the text into what we call rough tokens. In the simplest case, rough
tokens are the whitespace delimited words of the text (the term word will be
used to mean a maximal subsequence of nonwhite characters). However, the user
can write regular expressions to define certain points within and between these
strings of nonwhitespace characters which may split them up into what end up
being the rough tokens. These user-defined points are called decision points and
they represent the ambiguous token/sentence boundaries.

There are three types of decision points. There is the MAY SPLIT, which
occurs within words and signals a potential token boundary. Then there is the
MAY BREAK _ SENTENCE, which occurs before and after certain characters
and marks a potential sentence boundary. MAY SPLIT and MAY BREAK -
SENTENCE are the decision points which split words into rough tokens. The
third type of decision point is MAY _JOIN which occurs between words and turns
the space between them from a token boundary to a potential token boundary,
making it possible for the two words to join into a single token.

The rough tokenizer detects all decision points in the text and produces a
stream of discrete rough tokens with metadata about surrounding whitespace

and decision points.

3.1.3 FeatureExtractor

The rough tokens produced by the RoughTokenizer are tagged with user-
defined properties in the FeatureExtractor. These predicate properties are
defined either using regular expressions or lists of rough tokens. In the case of
a regular expression, a rough token is said to have the property the expression
defines if and only if the regular expression matches the entire rough token. When
a property is defined using a token list, a rough token is said to have the property
if and only if it is on the list.

Because the task carried out by the FeatureExtractor is a context free
function of a single rough token’s contents, multiple FeatureExtractors can

run simultaneously, each processing a different part of the token stream.

3.1.4 Classifier

The Classifier is the interface to the Maximum Entropy Toolkit. It scans the
rough token stream for decision points and collects evidential properties from
the tokens in the surrounding context. When the tokenizer is being trained, the
Classifier also reads in an annotated version of the input and aligns it with the
rough tokens (the annotated versions have one sentence per line with the tokens

delimited by spaces). It then bundles the values of the properties in the context

16



with the correct outcome inferred from the annotated data and sends them both
to the Maximum Entropy Toolkit for training.

When a model is already trained and the tokenizer is tokenizing other data,
it queries the model for a predicted outcome given the context and uses the out-
come to annotate the rough tokens. The rough tokens are then processed by the
OutputFormatter which implements the token and sentence breaks predicted
by the model.

3.1.5 OutputFormatter

After all the token and sentence boundaries have been disambiguated by the Clas-
sifier, it is up to the OutputFormatter to convert the stream of rough tokens
into plain text where token boundaries are represented by spaces and sentence
boundaries by line breaks. It is also the duty of the OutputFormatter to undo
the changes done by the TextCleaner, which means that XML is reinserted in-
to the proper places and former HTML entities and character references replace

their expanded counterparts.

3.1.6 Encoder

The Encoder receives the text output by the OutputFormatter and transcodes
it from the internal (UTF-8) encoding to the target encoding. In addition to
changing the coding of the characters, the Encoder and the TextCleaner also
serve as additional buffers for I/O operations so that the threads which run the

pipeline from RoughTokenizer to OutputFormatter are less likely to stall on

1/0.

3.2 Modes of Execution

The tokenizer has to be trained on annotated data, it has to be able to use
that training to tokenize new input and it should also provide accurate feedback
on its performance when developing and evaluating a tokenization scheme (a
tokenization scheme is a set of configuration files controlling the action of the
RoughTokenizer, the FeatureExtractor and the Classifier). The tokenizer

thus has a few different setups for performing these varied tasks.

3.2.1 Training

When running in the training mode, the tokenizer cleans the input, identifies de-

cision points signalling potential token and sentence boundaries, tags the rough

17



/raw text/ /annotated text/
A 4 A 4

TextCleaner TextCleaner
\ FeatureExtractor ¢
RoughTokenizer : Classifier
FeatureExtractor

Figure 3.2: Data flow of the system in the training and evaluation configurations

tokens with the user’s properties and sends them to the Classifier. The Classi-
fier aligns this stream of rough tokens with the annotated text. For each decision
point, the properties of the tokens within context and the outcome inferred from
the aligned data are sent to the Maximum Entropy Toolkit to serve as training
data. After all the input files have been processed and the training examples
collected, the maximum entropy model is computed and stored in a file for later
use.

There is no output processing in the training mode as the only output pro-
duced, apart from the saved maxent model file, are warning messages about to-
ken and sentence boundaries found in the annotated version which are not even
marked as potential boundaries in the raw input. This is a signal to the user that
he should perhaps modify the tokenization scheme to account for more possible
boundaries or to check his annotated data. The setup of the system can be seen
on Figure 3.2

3.2.2 Tokenization

After a model has been trained, the tokenization mode becomes available. In this
mode the text is cleaned, converted into rough tokens and tagged with properties.
The Classifier has the trained model loaded and predicts the outcome (sentence
boundary, token boundary or no boundary) for every decision point given its
context. This outcome is used to resolve the MAY SPLIT, MAY JOIN and
MAY BREAK _ SENTENCE ambiguities and the disambiguation is stored in
the relevant rough token’s metadata. These annotated tokens are then printed
through the OutputFormatter and encoded with the Encoder. See the setup
of the system of this mode on Figure 3.3
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RoughTokenizer
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/tokenized text/

Figure 3.3: Data flow of the system in the tokenization and preparation configu-
rations

3.2.3 Evaluation

When tweaking and developing a tokenization system (the selected training data,
the configured parameters in the tokenization scheme) it is vital to have feedback
on the shortcomings of your system. The evaluation mode was designed just for
this purpose. It works in a way similar to the training mode (see Figure B.2]).
The Classifier aligns the rough tokens with the annotated text and extracts the
contextual properties from the tokens and the true outcome from the annotated
data. However, instead of recording them it uses an already trained model and
queries it for its predicted outcome. The tokenizer then outputs both the true
and the predicted outcome along with the contextual properties.

Another tool can then be used to analyze the tokenizer’s output and examine
the results and errors of the trained model. An example of such a tool would be
the included Python script analyze.py, which scans the evaluation’s output and
reports the accuracy, precision, recall and F-measure of both sentence and token
boundary detection.

This log of outcomes and contexts can be written out when using any of the
available modes but only the evaluation mode has access to both the true out-
comes from the annotated data and the outcomes predicted by the probabilistic

model.

3.2.4 Preparation

The preparation is the last and least essential mode of the tokenizer. It is similar
to the tokenization mode (see Figure 3.3]), but instead of querying the probabilis-
tic model for an outcome, the Classifier simply confirms all potential boundaries
(MAY _SPLIT becomes a token boundary and MAY BREAK SENTENCE be-
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comes a sentence boundary). This produces a file in which an annotator only has
to remove spaces and line breaks, where inappropriate, to get the correct anno-
tation.

An advantage to using this mode might be that when the user does not demand
the logging of contexts as in the evaluation mode, the time-costly FeatureEx-
tractor and Classifier can be replaced with a SimplePreparer, which only

removes the ambiguities in the above-mentioned way.

3.3 Rough Tokenization

One of the first problems encountered when designing the tokenizer was the im-
plementation of rough tokenization. The task of rough tokenization is to take the
definitions of decision points and then to be able to detect all such points in any
given input.

The possible positions for a MAY SPLIT decision point are defined by pairs
of regular expressions: a position is to be marked as a MAY SPLIT point if
and only if the first expression (prefix) matches some of the characters leading
to the position and the second expression (suffix) matches some of the characters
following it. MAY JOIN decision points are defined almost the same way, except
that the characters following the position of a MAY JOIN must start with a
string of blank characters and then continue with the string matched by the
regular expression. MAY BREAK SENTENCE points, on the other hand, are
defined simply by two sets of characters. If a position follows a character from
the first set or precedes a character from the second set, then that position is a
MAY BREAK _ SENTENCE. See Figure for an example.

3.3.1 Regular Expression Libraries

The reference implementation of the trainable tokenizer written in Perl used a
disjunctive regular expression to match the prefix of the unprocessed input. Our
original idea was to use PCRE [6] or some other regular expression implementa-
tion [I1], [7] to write a similar algorithm.

The naive approach might have us trying to search for the possible suffixes of
MAY JOINs and MAY SPLITs which are preceded by their respective prefixes.
Soon we would learn that finding one decision point may lock us out of finding
another one. For example, given the string abed and MAY SPLIT regular ex-
pression pairs a - bc and b - ¢, we match the be according to the leftmost longest
match convention properly registering the MAY SPLIT between a and be, but
we lose the opportunity to find the MAY SPLIT between b and ec.
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The 10 000$ upgrade to 2.0 wasn't worth it.
v Ao A AO

A MAY SPLIT between
[a-zA-Z0-9] \.
was n't

V¥ MAY_JOIN between
[0-9] [0-9]

® MAY_BREAK_SENTENCE after

Figure 3.4: An example sentence marked with decision points. The definition of
the decision point placement is described below the sentence. The sitting wedge
triangle represents a MAY SPLIT, the upside triangle marks a MAY _JOIN and
a circle marks a MAY BREAK SENTENCE position. The whitespace and the
decision points divide the text into rough tokens.

If we try to search for each of these pairs of regular expressions individually,
we might still miss some points as demonstrated by the following example. Let
the string in question be abab and the MAY SPLIT regular expression pair a -
b(ab)*. Any attempt to search for the suffix b(ab)* would yield the bab substring
due to the leftmost longest match convention (and never just the final b, which
means that position will not trigger a MAY SPLIT). There are solutions to this
problem such as modifying the user’s regular expression, modifying the regular
expression matching function or searching for the suffix from every position in
the text, but they are all either difficult or ineffective.

We do not want to be patching the user’s regular expressions because we would
probably have to restrict ourselves to a narrower set of regular expressions and
even then it would have been challenging to actually implement such a system
and prove its correctness. Writing our own regular expression matching engine
is also out of the scope of this work. The third option on the list, searching for
the suffix (or prefix) from every position in the text, seems like a performance
killer. Performance-wise speaking, during the planning phase of development,
prototypes of the naive method of regular expression rough tokenization were
implemented using both Boost.Regex and PCRE. The average time spent on a
10 MB file with a credible set of splitting and joining rules (breaking English con-
tractions apart, separating words from punctuation etc...) was over 10.8 seconds
for Boost.Regex and over 4.9 seconds using PCRE. The tests were performed on

a development laptop with the Intel Core 2 Duo T7500 processor.
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3.3.2 Lexical Analyzer Generators

During the initial planning, there was another interesting proposal for handling
rough tokenization which motivated the early prototypes.

The goal of rough tokenization is to scan large volumes of text and detect
patterns described by regular expressions. This kind of problem has been already
solved many times using lexical analyzer generators such as flex. These tools take
rules, which are pairs of regular expressions and actions written as code. The
lexical analyzer generator then creates a program from these rules which reads a
stream of text and tries to match a prefix of the yet unmatched input with these
regular expressions and reacts to the matches with the supplied actions. More
advanced tools enable the definition of several analyzer modes with different rules
and enables the actions to switch between them.

The lexical analyzer generator selected for our tokenizer was Quex [26]. Its
most important feature is that it is able to work on Unicode code points instead
of single-byte characters and that it uses libiconv and ICU to process text in any
encoding. Quex can also be very fast because it does not encode the resulting au-
tomaton into a table which drives some general program, but instead it generates
low level C+-+ code which mimics the behaviour of the automaton.

The naive way of rough tokenization presented in Subsection B.3.1] was imple-
mented in a prototype to evaluate the performance benefits stemming from the
use of compiled lexers generated by Quex. When run with the same tokenization
rules and on the same data as the rough tokenizers in Subsection [3.3.T], the Quex
generated lexer finished on average in a little over 0.9 seconds. But the generated
lexer was making the same mistakes as the first approaches using regular expres-
sions. As we grew to know more of the functionality available to us in Quex and
the specifics of its operation, we were able to arrive at a lexer which detects every
possible decision point and does so in about 1.9 seconds on the same data set
with which we tested the other methods. The details of this final method are
presented in Subsection [3.3.3]

3.3.3 The Solution

Many of the observations about the task at hand made in Subsection [3.3.1] still
hold when designing a Quex generated lexer. The final implementation processes
the input one character at a time. At each position in the text, rules for matching
the suffixes of possible MAY SPLITs and MAY JOINs are in play. Each of these
rules has a condition in Quex that the preceding text must match the prefix of the
respective MAY SPLIT or MAY JOIN rule. The MAY BREAK SENTENCE

rules are implemented in a similar way as their definitions are basically special-
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The 10 000$ upgrade to 2.0 wasn't worth it.
position after
current position ~ matching "."
Quex rules:

1. match \. for MAY_SPLIT,
if preceded by [a-zA-Z0-9]

2. match n't for MAY_SPLIT, if preceded by was
3. match [:space:]*¥[0-9] for MAY_JOIN,
if preceded by [0-9]

4. match anything for MAY_BREAK SENTENCE,
if preceded by the "." character

Figure 3.5: An example of real-world implemented rough tokenization for the
decision points defined in Figure[3. 4l The generated Quex lexer is at the signified
position in the input. Given its position, the lexer takes into consideration only
rules 1 and 3, as these are the only rules whose preconditions have been met.
Rule 1 can match the input at the current position and so a MAY SPLIT is
announced and the word read so far (“2”) is reported as a rough token. The lexer
now automatically advances by the length of the matched string, but we manually
step back to the original position in hope of finding more decision points at the
current position and the positions within the matched string. When no further
decision points are to be found at the current location (as is the case here), we
move one character ahead.

izations of the MAY SPLIT and MAY JOIN definitions (single characters for
prefix or suffix instead of regular expressions). An example of such Quex rules
can be seen on Figure 3.5

When the lexer matches the suffix of a decision point rule, it sends the last
characters read since the last decision point or whitespace as a rough token and
signals the decision point. Quex would now automatically advance our position in
the text right behind the matched suffix, but we override this behaviour and move
back to the position of the newly found decision point so other decision points
may be found. This alone would cause an infinite loop and so upon returning
to the original position we also scratch the detected decision point from the set
of applicable rules. If another decision point is found, we do the same until
we find all types of decision points at the current location or none of the rules
match anymore. In that case, the lowest priority action takes place which reads
another character from the stream and starts looking for decision points at the
next position.

This scratching out of rules is implemented using 8 different modes for all the
different sets of decision points we might be looking for. We start at the topmost
mode where we are looking for any of the 3 possible decision points. If one of

them is found, we continue at the same location in a mode which looks for the
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remaining 2 possible decision points. In the final implementation, there is also
a demand for unexpanded HTML entities to be treated as single rough tokens.
This demand is met by adding another variable to the state of the lexer (whether
we are about to read an entity) which results in the 16 modes seen in the current
implementation.

The rough tokenizer thus scans for a regular expression match starting from
every possible position within the text, which leads to the worst case time of
O(n?), where n is the length of the text. It is however reasonable to assume that
the regular expression matching at any position will never have to process more
than a few characters and can thus be regarded as a constant factor irrelevant of
the data being processed. This gives us a linear time complexity, which is not
unexpected given that we do a single pass over the text with only some small and

limited local computation and very little state.

3.3.4 Technical Implementation

In the finished application, the regular expressions which define the placement of
decision points are read from user-written configuration files. A Quex source file
containing modes for detecting all of the decision points referenced by the user is
then output to a temporary file. CMake [I] is invoked to probe the user’s system
for the compiling essentials, to generate a project for the user’s preferred build
system and to write the command needed to start the build to a file. This file is
read and the command within it is run, which executes Quex on the generated
source file and then compiles the result into a shared module. This process is
therefore platform-agnostic as it doesn’t rely on a specific C++ compiler or build
system and uses only CMake and Quex which are multi-platform and are required
to build the tokenizer itself.

This compiled shared module is then loaded using the libtool’s dynamic load-
ing library [2] which is a wrapper for the platform-specific dynamic loading func-
tions. The tokenizer tracks the set of files used to generate the rough tokenizer
along with their timestamps and only regenerates and recompiles it when changes

have been made.

3.4 Classification

After the RoughTokenizer converts the stream of text into rough tokens anno-
tated with MAY SPLIT, MAY JOIN and MAY BREAK SENTENCE points,
the FeatureExtractor goes next. For each rough token in the token stream, it

matches the token against a series of regular expressions and word lists which
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are represented as one big binary search tree. It marks for each token which
regular expressions it matched and in what word lists it was found. These user-
defined regular expressions and word lists define what we call “properties”, binary
predicates describing the aspects of rough tokens relevant to token and sentence
boundary disambiguation.

This stream of tokens marked with decision points and user-defined properties
then enters the Classifier. While the FeatureExtractor was driven by the files
defining the individual properties used in the tokenization scheme, the Classifier
is driven by a single mandatory file named “features”. In this file, the user selects
the features of rough tokens he deems important for the disambiguation. The
format of the file has the user specify a range of token offsets followed by a list
of relevant properties. The Classifier will then look at the rough tokens at
the given offsets from the decision point in question and check for the status of
the relevant properties evaluated by the FeatureExtractor (the offset and the
property’s name are concatenated into a string and this string is used to name
the feature passed to the maximum entropy classifier). However, these properties

do not form the only features passed to the maximum entropy classifier:

e For every rough token within the context (the smallest possible range of
tokens containing all the tokens at the offsets mentioned in the “features”
file), a feature is passed describing whether the rough token was followed

by whitespace, by a line break or by a paragraph break (multiple newlines).

e For every rough token in the context, any decision points which were found
between the token and its successor are passed as features describing the

token.

e For every rough token in the context preceding the token in question, the
disambiguation of all its decision points is passed as well, so the classifier

can see its decisions from the immediate past.

e [fseveral properties at several offsets combined together form compelling ev-
idence for disambiguation, the user can mark them as such in the “features”
file and all those properties’ values will be concatenated into a large feature
string. This way, a single parameter can be trained for each combination
of the properties’ values, which can be used e.g. to train the tokenizer on
specific bigrams (that is the case of the Chinese word segmenter evaluated
in Chapter @]).

e Apart from the user-defined regular expression and list properties, the user

may call on the predefined “%Word” and “%length” properties. The first
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“meta-property” generates a feature string containing the rough token’s
text, enabling the tokenizer to train not only on the binary features but
on unigrams and subsequently bigrams and other n-grams. The “%length”
property is special in that it passes a non-binary value to the maximum

entropy classifier equal to the length of the rough token.

e For positions within the context which lie past either end of the input (at
the beginning or at the end), an out-of-input feature is passed describing

the missing token.

A vector containing all these feature strings is passed to the maximum entropy
classifier which deciphers the feature names and maps them into the individual
trained parameters. It then evaluates the possible outcomes and returns the
most probable one. The possible outcomes are JOIN, SPLIT and BREAK -
SENTENCE. The outcome describes the space between the current rough token
in question (the token at offset 0) and its successor. Depending on the whitespace
between the token in question and its successor, the decision points are disam-
biguated (e.g. a MAY SPLIT becomes a DO _SPLIT if it lies in a position where
there did not use to be any whitespace and the tokenizer classified the position
as a SPLIT or BREAK SENTENCE).

3.5 Parallelism

One of the explicit goals when developing the tokenizer was performance. How-
ever, apart from the rough tokenization and the probing of the tokens’ properties
(the user-defined regular expressions and token lists), the algorithms were quite
straightforward. What could be tweaked, however, was the manner of their im-
plementation and execution.

When the task of rough tokenization was isolated from the problem of classi-
fying the potential token and sentence boundaries, a producer/consumer pattern
was proposed to process both tasks in parallel. As the design of the system be-
came more detailed, more of the tasks became isolated and the original idea of
a producer/consumer pattern changed into the pipeline model seen in the cur-
rent implementation. Deciding on the pipeline model also let us use libraries
which offered high-level pipeline implementations. This meant we did not have
to implement the entire system from scratch using threads and synchronization

primitives. For the performance payoff of multi-threading, see Subsection [4.2.1]
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3.5.1 The Pipeline

Threading Building Blocks [3], an open-sourced library developed by Intel, was
used for implementing the pipeline. Compared to other multi-platform parallelism
solutions, TBB offers high-level algorithms and constructs like the pipeline. It
also uses C++ classes and methods to expose its functionality instead of relying
on pragma directives like the standardized OpenMP [5].

The pipeline is constructed by setting up an array of filter objects. Each of
the filter objects must override the invocation operator and must identify itself
as either a parallel or a serial filter (parallel meaning that this filter can be run
simultaneously on multiple points of data, serial meaning that the filter processes
the input one at a time). In the tokenizer, the RoughTokenizer, the Feature-
Extractor, the Classifier and the OutputFormatter are all elements of this
pipeline (you can see the pipeline as the middle row in Figure 3. with Feature-
Extractor being a parallel filter). The TBB library invokes the first filter, the
RoughTokenizer, and passes its return value to the FeatureExtractor which
also produces a value and so on...

Originally, the values to be flowing through the pipeline were individual rough
tokens, but the overhead would have been too big. The TBB library doesn’t use
one thread per pipeline element, instead it is more similar to one thread per value.
This way the values are more likely to stay in the cache of the current processor.
So it was settled that chunks of rough tokens would be the work units traversing
the pipeline. Initially, the idea was to have them statically sized, but since the
Classifier can consume more tokens than it produces and vice versa, the chunks
are now dynamic (e.g. when processing the first chunk, the Classifier cannot
annotate the final tokens as it has to wait for the next chunk which will inform

it about the post-context of those final tokens).

3.5.2 The Input/Output Threads

Initially, the plan was for the pipeline to encapsulate all of the parts of the system.
However, it would have been cumbersome to implement the RoughTokenizer
so that it is a function which receives a chunk of text, feeds it to the buffer
of the generated lexer, tries to tokenize the incomplete chunk of text and then
sends the retrieved tokens along. The C-++ Standard Library already offers a
widely used and supported FIFO structure for transmitting continuous text, the
std::iostream. In its stringstream incarnation, it allows one agent to write
text to it using the standard output operators of C++ and then later another
agent can use the standard input operators to read and parse its contents. Such

a standard mechanism would allow us to simply pass a pointer to this stream
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to the Quex lexer as if it were a file handle and we would not have to trouble
ourselves with any string marshalling.

A class which does just this, the pipestream, was implemented by Alexander
Nasonov and published on the Boost mailing list in 2003 [20]. However, it didn’t
meet with much understanding on the list as people tended to associate the class’
name, pipe, with OS-level pipes. The pipestreams have been resurrected for this
project and they made writing the transfer of text between the TextCleaner,
the Encoder and the parts of the TBB pipeline very simple.

The pipestreams were used to connect the TextCleaner and Encoder to
the TBB pipeline. The TextCleaner and the Encoder both have a do work
method which does all the work. In the case of the TextCleaner, it uses a
Quex generated lexer to find XML markup and entities in the input file. It op-
tionally transforms these segments, reports them to the OutputFormatter and
writes the transformed input to an opipestream (an output pipestream). The
Encoder on the other hand reads from an ipipestream (an input pipestream),
transcodes the text read and writes it to the output file. The use of pipestreams
to connect the TBB pipeline world with the I/O world might also have a per-
formance advantage, because TBB pipelines are not optimized for 1/O heavy
operations and perform badly when stalling on I/O. These input/output threads
(those which run the do_work methods) might decrease the probability of a
pipeline thread waiting for I/O by filling the pipestream buffers while working on
a different CPU.
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4. Evaluation

In this chapter, we demonstrate the effectiveness of the tokenizer with several
tokenization schemes and on several datasets. In the first section, we study the
accuracy of the tokenizer using different tokenization schemes. In the second

section, we follow up with an analysis of the speed at which it processes data.

4.1 The Accuracy of the System

4.1.1 Chinese Word Segmentation

Tokenizing Latin-script languages is not very hard. We can usually get by well
enough by splitting the text at whitespaces and at boundaries between different
classes of symbols. Sometimes, we might want to be more specific and try to
tokenize English contractions as separate words. However, these problems are
quite easy to solve when compared to the task of tokenizing Chinese text. The
absence of any spaces between words forbids the use of any simple heuristic and
linguistically empowered methods must be used.

We took inspiration from the system for Chinese word segmentation presented
in Section [17] which is also based on maximum entropy models. The basic
features used in that system were ported to our formalism. The biggest difference
between the systems is the fact that the original Chinese tokenizer classified
individual characters as being single-character words or the beginning, middle or
ending characters of a multi-character word. However, the classifier used in our
system is binary and it decides for each character boundary whether it forms a
token boundary or not.

We were able to obtain the same data on which the original tokenizer was
developed, which happen to be the training data for the Second International
Chinese Word Segmentation Bakeoff [12]. The bakeoff was a competition chal-
lenging computational linguists to develop word segmentation systems for Chinese
using the supplied data for training. The provided data consists of 4 datasets pro-
vided by Academia Sinica, City University of Hong Kong, Peking University and
Microsoft Research. Each of these datasets adopts slightly different tokenization
standards and so we train and test our tokenizer on the datasets individually.
Each dataset comes with a training part and a testing part. We strictly used
only the training part when developing our tokenizer and used the testing part
only at the end to evaluate our results. The only thing we knew about the test-
ing data in advance was its size which helped us choose a reasonable size for our
heldout data.

29



Training data

Testing data

Development data

Heldout data

Testing data

Academia Sinica 39686533 1057344 942571
City University 8283422 266247 240767
Peking University 7008808 719430 718331
Microsoft Research 16100177 791333 766786

Table 4.1: The sizes of the individual parts of the bakeoff datasets in bytes.

Number of iterations
Academia Sinica 420
City University 873
Peking University 708
Microsoft Research 1053

Table 4.2: The number of iterations spent training the maximum entropy model
on the individual datasets.

First, we split our training data into a development part and a heldout part.
We chose the size of the heldout data to be roughly as big as the testing data so
we could trust our system’s performance on it to be representative of our system’s
true accuracy. The sizes of the partitioned datasets can be seen in Table [£]]

Initially, we set the event cutoff of the maximum entropy trainer to 2 as in
[17]. However, we found out we get a sizable improvement in the accuracy of
the trained tokenizer if we do not cutoff events (i.e. set the event cutoff to 1).
We then experimented with training the tokenizer and testing it on the heldout
data. Depending on how much we constrained training time, the tokenizer could
either be under-trained or over-fitted. The heldout data served as an independent
indicator telling us how close we are to the ideal balance between a detailed and
a general model. Experimentation led us to restrain the number of training
iterations to the values seen in Table (the considerable size of the Academia
Sinica combined with the absence of the event cutoff forced us to keep the number
of training iterations below 450 lest the training program hit the CPU time limit
and terminate). We can see that the number of iterations spent in training
to obtain the optimal model correlates with the size of the dataset (with the
exception of the Academia Sinica dataset, of course), because a larger dataset
usually means more bigrams and unigrams and thus more parameters to estimate.

After we established the training parameters, we trained the system on the
entire training data and checked its performance on the gold testing data. The
performance of the development system on the heldout data and of the final
system on the testing data can be seen in Tables [4.3] and [£.4]
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Accuracy | Precision | Recall | F-measure
Academia Sinica 97.56% | 97.89% | 97.82% 97.86%
City University 97.70% 98.05% | 98.11% 98.08%
Peking University 97.69% 98.29% | 97.89% 98.09%
Microsoft Research 97.67% 98.08% | 98.02% 98.05%

Accuracy | Precision | Recall | F-measure
Academia Sinica 96.33% 96.13% | 97.73% 96.92%
City University 96.87% 97.42% | 97.32% 97.37%
Peking University 96.74% 97.85% | 96.68% 97.26%
Microsoft Research 97.95% 98.33% | 98.06% 98.20%

Table 4.3: The performance of the system trained on the development data when
tokenizing the heldout data.

Table 4.4: The performance of the system trained on the entire training data
when tokenizing the gold testing data.

We were encouraged to see such performance and out of curiosity proceeded
to score our tokenizer using the same script which scored the contestants in the
bakeoff (Table 5). While our tokenizer does not perform as well as the original
word segmenter by Low, Ng and Guo [I7], it achieves a median performance
compared to the performance of the other bakeoff submissions. The result is quite
pleasing, given that the all we needed to do was to write the feature definitions

into a few files and tweak some training parameters.

4.1.2 Tokenization of Czech and English

For evaluating the accuracy of tokenizing Czech and English text, four different
methods were implemented. The Absolute Baseline relies on no other piece of
information than the current decision point and the whitespace following it to
classify boundaries. It is there to show the minimum possible line every tokenizer

should pass.
The Simple Tokenizer checks the potential sentence terminator and checks

True Words Recall | Test Words Precision | F-measure
Academia Sinica 0.933 0.919 0.926
City University 0.934 0.934 0.934
Peking University 0.923 0.933 0.928
Microsoft Research 0.951 0.952 0.951

Table 4.5: The scores assigned to our tokenizer by the official scoring script of
the Second International Chinese Word Segmentation Bakeoff.
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CzEng - Czech Segmentation

Acc. Prec. Rec. F-m.
Absolute Baseline | 80.08% | 72.72% | 99.06% | 83.87%
Simple Tokenizer 93.67% | 92.38% | 95.79% | 94.06%
Groomed Tokenizer | 95.93% | 95.26% | 96.90% | 96.07%

Table 4.6: The sentence boundary disambiguation performance of the various
methods for tokenizing Czech on the CzEng sample.

CzEng - Czech Tokenization

Acc. Prec. Rec. F-m.
Absolute Baseline | 99.29% | 99.29% | 100.00% | 99.64%
Simple Tokenizer 99.26% | 99.35% | 99.92% | 99.63%
Groomed Tokenizer | 99.36% | 99.39% | 99.97% | 99.68%

Table 4.7: The token boundary disambiguation performance of the various meth-
ods for tokenizing Czech on the CzEng sample.

whether the following word starts with an upper-case letter. It represents the
often too simple approach to tokenization.

The English-only Satz-like [21] system uses only part of speech data about
the surrounding tokens to predict a boundary.

Finally, the Groomed Tokenizer is the tokenization scheme used in the original
reference implementation, which has been supplied with lists of abbreviations and
lots of useful regular expressions.

All systems were tested both on a sample of data from CzEng and, in the case
of the English tests, also on the Brown corpus. All datasets were divided into
equally large development, heldout and testing sets to be used as in Section
As for the part of speech data of the Satz-like system, lexicons for each part of
speech were extracted from the training section of the Brown corpus for the Brown

corpus exercise and from the entire Brown corpus for the CzEng exercise. The

results of the trials can be seen in Tables [£.6] A7) A8 4.9, and 171

CzEng - English Segmentation

Acc. Prec. Rec. F-m.
Absolute Baseline | 81.27% | 67.50% | 99.91% | 80.57%
Simple Tokenizer 95.21% | 91.38% | 96.81% | 94.01%
Satz-like System 94.87% | 92.42% | 94.57% | 93.48%
Groomed Tokenizer | 97.08% | 95.66% | 96.90% | 96.27%

Table 4.8: The sentence boundary disambiguation performance of the various
methods for tokenizing English on the CzEng sample.
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CzEng - English Tokenization

Acc. Prec. Rec. F-m.
Absolute Baseline | 95.31% | 95.31 | 100.00% | 97.60%
Simple Tokenizer 95.27% | 95.31% | 99.95% | 97.58%
Satz-like System 96.84% | 96.79% | 100.00% | 98.37%
Groomed Tokenizer | 95.99% | 95.99% | 99.98% | 97.94%

Table 4.9: The token boundary disambiguation performance of the various meth-
ods for tokenizing English on the CzEng sample.

Brown Segmentation

Acc. Prec. Rec. F-m.
Absolute Baseline | 78.49% | 62.83% | 99.61% | 77.06%
Simple Tokenizer 96.47% | 93.26% | 97.30% | 95.24%
Satz-like System 99.31% | 99.58% | 98.52% | 99.05%
Groomed Tokenizer | 99.31% | 99.30% | 98.80% | 99.05%

Table 4.10: The sentence boundary disambiguation performance of the various
methods for tokenizing English on the Brown corpus.

Brown Tokenization

Acc. Prec. Rec. F-m.
Absolute Baseline | 82.71% | 85.16% | 88.74% | 86.91%
Simple Tokenizer 93.63% | 94.12% | 96.16% | 95.13%
Satz-like System 99.64% | 99.62% | 99.82% | 99.72%
Groomed Tokenizer | 99.73% | 99.72% | 99.86% | 99.79%

Table 4.11: The token boundary disambiguation performance of the various meth-
ods for tokenizing English on the Brown corpus.
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While text from the CzEng dataset proves to be more difficult to segment
than text from the Brown dataset for all but the Baseline tokenizer, the Satz-like
system’s segmentation performance suffers the most. This was not unexpected
as the Satz-like tokenizer relies on a lexicon of part of speech tags extracted from
parts of the Brown corpus. When the tokenizer was evaluated on the Brown
corpus, the lexicon was induced from the training and heldout datasets. This
gave the tokenizer’s lexicon a 99.41% coverage on the training dataset and a
99.44% coverage on the heldout dataset (the coverage is not 100% as some of the
words containing dashes or apostrophes were broken into separate rough tokens);
the coverage on the testing dataset was 95.75%. On the other hand, when the
tokenizer was evaluated on the CzEng dataset, the coverage on the training,
heldout and testing datasets was 95.80%, 95.95% and 95.66% respectively. Since
the Satz-like tokenizer relies only on part of speech data, this decrease in the
part of speech lexicon’s coverage can be severely detrimental to the tokenizer’s
performance.

The Simple tokenizer demonstrates a pretty high recall on sentence boundary
detection. This can be attributed to the fact that its decisions are governed
only by the potential sentence boundary and the case of the following word.
Since mostly every sentence will start with a capital letter, we can expect the
Simple tokenizer to notice most of them. The Simple tokenizer can however be
easily misled by multi-part abbreviations and initials in names (e.g. “U.S.A.”, “M.
Smith”). This explains why its precision is noticeably lower than its recall.

The Groomed tokenizer delivers a good performance on all the examined
datasets, which goes to show that time spent developing a tokenization scheme

can indeed pay off.

4.2 The Speed of the System

The tokenizer processes roughly 1500060000 decision points per second, which
amounts to 60000-250000 words or 3000001300000 bytes in the case of the Brown
corpus. The performance varies greatly depending on the chosen tokenization
scheme and so in this section, we will do the performance analysis for each of the

four tokenization schemes presented in Section [4.1].

4.2.1 Parallel Processing

One of the most important aspects of the tokenizer which drove the design was
parallel processing. In Chapter Bl we have seen how it encouraged us to divide

the tokenizer’s duties to several autonomous subsystems. This design enabled us
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Figure 4.1: The effect of maximum simultaneous work units on the performance
of the tokenizer. The plotted spent time is a median of 10 trials.

to perform all the tasks in the pipeline in parallel using the pipeline class from
the Threading Building Blocks library [3]. To measure the impact this design
choice made on performance, we ran the tokenizer on the entire Brown corpus
while restricting the maximum number of pipeline stages allowed to run at the
same time. The results are plotted in Figure A1l The Baseline and Groomed
tokenizers speed up by 20%—-24%, while the Simple and Satz-like tokenizers gain
a speedup of 44%.

To investigate the reason why the different tokenization schemes gain a dif-
ferent speedup and where we should optimize further to improve the processing
time, we measure the workload of the different pipeline stages. We restrict the
maximum number of simultaneous work units in the pipeline to 1, to ensure that
only one can use the CPU at a time. In each of the stages we measured the total
time spent processing the stream of data. The averaged results can be seen in
Table

From the data, we can see that the workload is more balanced in the Sim-
ple and Satz-like tokenizers, while in the Baseline and Groomed tokenizers, the
RoughTokenizer, resp. the Classifier, spend more time than all of the other stages
combined. This means that when using the Baseline or Groomed tokenizer, one
thread will be working in the RoughTokenizer, resp. the Classifier, leaving the
other threads very little work to do, which leads to only a small speedup from

the original scenario with one thread.
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Baseline | Simple | Satz-like | Groomed
RoughTokenizer 3.06 3.06 3.09 3.18
FeatureExtractor 0.28 0.67 2.49 5.13
Classifier 1.11 2.19 5.12 14.22
OutputFormatter 0.72 0.70 0.71 0.71

Table 4.12: Time (in seconds) spent in the various pipeline stages when tokenizing
the Brown corpus. In order to measure these values, the pipeline has been set up
to run only one stage at a time. The tabled time is an average of 10 trials.

Baseline | Simple | Satz-like | Groomed
Width of context 1 2 7 17
Number of user-defined properties 0 1 37 32
Number of possible features per decision 6 13 311 673
Average number of features per decision 1.53 3.98 21.04 75.38

Table 4.13: The factors which define the computational complexity of the Clas-
sifier stage. The average number of features per decision was measured on the
Brown corpus.

We can also see that the complexity of rough tokenization and output process-
ing is the same with all the tokenization schemes, which was to be expected as
there are next to no differences in these stages between the contesting tokenizers.
The FeatureExtractor’s workload scales with the number of regular expression
properties and list properties as expected (the data also shows that the multi-
ple list properties used for the part of speech lexicon in the Satz-like tokenizer
are faster to check than the individual regular expressions used in the Groomed
tokenizer).

The most important fact we can glean from the results, however, is that in
the more complex tokenizers, the Classifier is the bottleneck. The Classifier is
the subsystem responsible for checking the context surrounding each decision
point, producing a list of strings describing the features of the rough tokens in
the context and consulting the maximum entropy model for a disambiguation.

The distinguishing factors which define the computational complexity of the
Classifier are listed in Table[4.I3l The Classifier iterates over the rough tokens in
the context. Each rough token is checked for the mandatory properties (whites-
pace between tokens, presence of decision points) and strings representing the
features are created. The rough tokens at specific offsets are also checked for
the user-defined properties and strings describing these features are generated as
well. This vector of features is then deciphered by the maximum entropy toolkit.
Each feature name is mapped to a factor and the factors are added up for each

individual outcome. The outcome with the highest probability is then selected.
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Baseline | Simple | Satz-like | Groomed
Initialization 0.002 0.03 0.30 0.11
Processing 4.473 4.86 8.12 19.59
Total 4.475 4.88 8.42 19.70

Table 4.14: Time (in seconds) spent tokenizing the Brown corpus using the 4
tokenization schemes presented. Initialization is the time spent before the pipeline
is run. The tabled time is an average of 10 trials.

The amount of work needed to handle the built-in mandatory probabilities is
linear with respect to the width of the context.

The rest of the time is spent checking for the user-defined properties and
generating feature strings (a string containing the offset, name and value of a
feature). Assuming the names of user-defined properties are bound by some
constant, the worst case time spent doing this is linear to the product of the
context’s width and the number of user-defined properties. However, at some
of the offsets in the context, some of the properties might not be requested by
the user or might simply not hold for the rough token in question. We let the
tokenizers log the decision points and the features describing them and measured
how many feature strings per decision are actually generated and processed by
the maximum entropy library (the values are listed in Table [£I3]). This factor is
most indicative of the workload of the Classifier.

As the Classifier has been identified as a bottleneck of the pipeline, any at-
tempts at optimizing the performance of the tokenizer should be performed there.
The amount of time spent in the maximum entropy library is only 15%-23% of
the entire time spent in the Classifier. Improving the string manipulation and
feature representation thus seem to be sensible places to look at. In the case of
the Groomed tokenizer, more speed could be gained by culling the number of
features or narrowing the context.

The bottleneck issue might also be worked around by dividing the input and
processing multiple segments at the same time. The Classifier would still be the
bottleneck, but several instances of the pipeline (and therefore the Classifier)

would run at the same time (e.g. on different paragraphs).

4.2.2 Initialization Costs

A necessary part of processing data with the tokenizer is the execution and ini-
tialization of the tokenizer itself. We were interested in how long the initialization
takes in comparison to the processing of input. We measured the time spent in

both these stages and listed our measurements in Table [£.14]
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Baseline | Simple | Satz-like | Groomed
Size of data 530 36500 | 269000 35500

Table 4.15: Volumes of data (in bytes) which take the same time to process using
a given tokenization scheme as it takes to initialize the tokenization scheme.

It can be seen that when processing large quantities of data, the initialization
costs are negligible. However, it is quite probable that the tokenizer will be
used to process smaller files. For example, the entire Brown corpus has 6MB of
data, but it is distributed as a set of files about 11KB small. To express the
cost of initialization in more useful terms, we found the volume of data that the
tokenizer can process within the amount of time spent to initialize it (Table ELT5]).
The data shows that when using the Simple or the Groomed tokenizer, it would
take four times as long to process the Brown corpus if we were to initialize the
tokenizer before processing each file. When using the Satz-like tokenizer or any
other tokenization scheme based on large lexicons, the initialization costs are even
bigger.

The expected cost in initialization time is mitigated by the ability to run the
tokenizer on batches of files. The tokenizer can look for files to be processed in
lists of file paths stored in files or passed through the standard input. The results
are written to files whose paths are found by applying a user-specified regular
expression replacement string on the original files’ paths.

All the tokenization schemes presented in this chapter were trained and tested
using this way of execution. If large volumes of small files are to be processed
using the tokenizer, these batch facilities are essential as they make the daunting
cost of initialization marginal (as in Table LT4]).

The file lists interface also presents another opportunity for further paralleliza-
tion. If the input is already spread into small files, the files in the file lists could
be processed simultaneously by different instances of the pipeline. Something like
this is also quite easy to implement on the user’s side, where the user can divide
the files to be processed into a number of file lists appropriate for the number of
CPUs and amount of memory available to him and execute the tokenizer on each

of the file lists simultaneously.
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Conclusion

We have presented a data-driven system for tokenizing and segmenting text.
We have demonstrated the system’s versatility by combining methods based on
different techniques such as morphological dictionaries, regular expressions and
exception lists. The system proved its universal applicability in being able to act
both as a sentence boundary disambiguator for languages such as English and
Czech and as a word segmenter for languages which do not use whitespace such
as Chinese. We have also pointed to the fact that the program relies only on
multi-platform programs and libraries. While it has not been tested on Windows
or MacOS yet, care was taken at every step to ensure it would be a smooth
transition (ICU can be used instead of libiconv for character code conversion,
CMake is used for building, OS-specific matters are accessed via Boost only...).

We measured the accuracy, precision, recall and F-measure of the token and
sentence boundary disambiguation. The tests were executed with several very
different tokenization schemes and on several datasets in multiple languages. We
also measured and analyzed the tokenizer’s speed and identified the bottleneck
which should serve as an avenue for further optimization.

The natural next step would be to invent and experiment with new ways and
features for tokenizing and segmenting text. The system offers fast feedback on
the accuracy of the user’s tokenization schemes and is helpful in pointing out
positions in the text which are yet to be covered by rules for inserting decision
points. Another possible elaboration might be to change the maximum entropy
training back-end to the Toolkit for Advanced Discriminative Modelling or some

other alternative.

39



A. User Documentation

trtok - a fast and trainable tokenizer for natural languages

Trtok is a very universal performance-oriented tokenizer for processing
natural languages. It reads text and tries to correctly detect sentence

boundaries and divide the text into tokens.

Trtok does not implement any specific heuristic to perform these tasks,
instead it lets the user define rules for potential joining and splitting of
words into tokens and sentences. The final decision whether to split or join
words and whether to break sentences is left to a conditional probabilistic
model which is trained from user-supplied annotated data. The way the trainer
understands the data can be extensively customized by the user who can define

his own features and specify which features are significant for what tokens.

1) Tokenization schemes

The user might want to use trtok for processing more than 1 language or for
processing 1 language in many ways. These different ways of tokenization are
described by "tokenization schemes". Their definitions reside in the
"schemes" subdirectory of the installation directory. Every folder inside
"schemes" defines a single tokenization scheme by way of various

configuration files.

Tokenization schemes may be nested to represent a sort of scheme inheritance
where a scheme inherits all the configuration files of its ancestors unless

it redefines them by having a configuration file of the same name.
a) Rough tokenization rules

Files with a .split file extension must contain pairs of whitespace
delimited regular expressions. When tokenizing the input, every position in
every word where the prefix leading to the position matches the first
expression and the suffix following it matches the second expression is
marked as a potential token split and the word is split into two temporary

rough tokens.

Files with a .join extension have the same syntax, but they describe two
spans of text which may be potentially joined into a single token if found

separated by whitespace.

Files with a .begin and a .end extension list characters before which, resp.
after which, a potential sentence break is to be marked (and if this
potential sentence break occurs within a word, the word is split into two
rough tokens). If the newline character is to be a potential sentence
beginning or ending character, an empty line is expected in either a .begin

file or a .end file.
The grammar of the regular expressions in .split and .join files is the one
used by Quex and described in detail at

http://quex.sourceforge.net/doc/html/usage/patterns/context-free.html.

The .split and .join files may contain comments which are lines that begin

with the # symbol.
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b) User-defined properties

Files with a .rep extension contain a single regular expression from the
family of expressions allowed in PCRE (see pcre.org). A rough token is
marked as having this property if it can be matched to the regular

expression.

Files with a .listp extension define properties using lists of token types.
If a rough token’s text is exactly the same as a line from a .listp file,
then that rough token is marked as having the property defined by that
.listp file.

c) Feature selection

Every tokenization scheme must have a file named "features". For each rough
token in the vicinity of the potential split/join/sentence break, it

specifies which features are important for the decision.

A typical line starts by declaring a set of interesting offsets (0 is the
rough token preceding the decision point, -1 the one before it, +1 the one
after it, etc...). These offsets are separated by commas and intervals can

be used for convenience (e.g. -4,-2..+2,5 selects -4,-2,-1,0,1,2,5).

After the offsets comes a colon and a comma separated list of properties.
The property names are the filenames of their definitions without the
extensions and they are limited to the common identifier character set

[a-zA-Z0-9_]. The line is closed with a terminating semicolon.

Apart from these simple features, it is possible to ask for combined
features which bundle the value of different properties of tokens at
different offsets into a single feature value. These are defined on their
own line and are enclosed in parentheses. Inside the parentheses is a "~"
separated list of offset:property pairs. If a combined feature takes
properties from a single token only, the parenthesized expression can
appear on the right-hand side of a typical line instead of a simple

property name and the offsets within its definition are omitted.

Apart from the user-defined properties from the .rep and .listp files, the
tokenizer defines the non-binary property "/length" whose value is the
length of the rough tokenizer and the meta-property "/Word" which generates
a property for each rough token type.

Example:
-2..+2: YWord;

-5..5: uppercase, abbreviation, (starts_with_number

(0:fullstop ~ 1:initial)

ends_with_period);

d) Maxent training parameters

More control over the process of training the probabilistic model can be
had by manipulating the "maxent.params" file. This file is an INI-style
configuration file which lets the user set the following parameters, which

get passed directly to the training toolkit.

event_cutoff=<int> All training events which occur less

times than event_cutoff are ignored. Default 1.

41



n_iterations=<int> How many iterations at most will the

iterative method use. Default 15.

method_name=lbfgs|gis Which of the two methods L-BFGS or GIS
is to be used. L-BFGS is recommended. Default lbfgs.

smoothing_coefficient=<double> Sigma, the coefficient in Gaussian

smoothing. Default O (no smoothing).

convergence_tolerance=<double> The model is regarded as convergent
when the relative difference between the log-likelihood of the

succeeding models is < convergence_tolerance. Default 1e-05.

save_as_binary=false|true Whether to save the file in a binary
format which is faster to load and smaller if Maxent was compiled

with z1ib support. Default false.
e) File lists and filename replacement regular expressions

Files [prepare|train|heldout|tokenize|evaluate].[fl]|fnre] are for

convenience only and are described later.

2) Running the tokenizer

a) Different ways of selecting input

The first argument passed to the tokenizer selects its mode, which can be
either "prepare", "train", "tokenize" or "evaluate". The second argument is
a path relative to the directory "schemes" which selects the tokenization

scheme to be used. The rest of the arguments are input files and options.

Input files can be specified explicitly on the command line. More files can
be given using the -1 (--file-list) option which takes a path to a file and

adds every line of it as another input file.

When running in prepare mode or tokenize mode, an output file for each file
has to be specified and when running in train mode or evaluate mode, a file
with the annotated version has to be specified. These secondary files are
selected by taking the input file’s path and transforming it using a regular
expression/replacement string. The filename regular expression/replacement
string is specified using the -r (--filename-regexp) option. The strings
look like replacement commands in sed, where the first character can be any
ASCII character and that character separates the regular expression from
the replacement string and also terminates the entire string. Unlike sed,
this special character cannot be present anywhere else in the string (no
escaping). The breed of regular expressions used here is the one supported
by PCRE, the replacement strings contain the placeholders \0, \1... for the

entire matched string, first captured sequence...
Example:
trtok train en/simple/brown -1 data/brown/train.fl -r "|raw|txt|"
If no input file or file lists were given, a default file list named

<mode_name>.fl, which is part of the tokenization scheme, is used. If no

filename regular expression/replacement string is given, the one in the
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file named <mode_name>.fnre from the tokenization scheme is used. In both
cases <mode_name> is expanded to either "prepare", "train", "tokenize" or

"evaluate" depending on the current mode.

If no input file or file lists were given and there are no default file
lists defined by the tokenization scheme, then the tokenizer processes the
standard input and writes to the standard output. This is, however, only
possible for the "prepare" and "tokenize" modes. The standard input/output
combo can also be explicitly selected by specifying the input file "-" on

the command line.
b) Different modes of execution

In "prepare" mode, the tokenizer reads the input, splits it into rough
tokens and then outputs it with all possible splits and sentence breaks
performed. This format might be handy for manual annotators who then only

have to join together parts of tokens and sentences.

In "train" mode, the tokenizer reads both the input and its annotated
version. It uses the annotated data to get pairs of questions (values of
features in a given context surrounding a decision point) and answers
(whether the decision point is to become a joining of tokens, a splitting
of tokens or a sentence break). These pairs are then used to train the

probabilistic model and store it in a file under the "build" directory.

In "tokenize" mode, the tokenizer relies on the presence of an already
trained model and uses it to classify every decision point in the input

file and output the tokenized and segmented text.

In "evaluate" mode, the tokenizer reads both the input and its annotation
as in "train" mode, but now it also queries the trained model for an
opinion and compares it with the one found in the annotated data. The
tokenizer outputs a log of every context and both the predicted and correct
outcomes for later analysis. The "analyze" script provided with trtok will

let you read this output and determine the accuracy of your system.
c) Different options

If you launch trtok with no command line arguments, you will get a summary
of all the supported command line options and their meaning. These include
options for setting the encoding of the input and output files, options for
controlling the output (preserving the original tokenization, segmentation
or paragraph division), the preprocessing of input (if entities are to be
expanded for the duration of the tokenization and if they are to be kept
expanded in the output; if XML should be hidden from tokenization), options

for logging the contexts and outcomes to a third file and others.
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