
Charles University in PragueFa
ulty of Mathemati
s and Physi
sBACHELOR THESIS

Ji°í Mar²ík
Fast and Trainable Tokenizerfor Natural LanguagesInstitute of Formal and Applied Linguisti
sSupervisor of the ba
helor thesis: RNDr. Ond°ej Bojar, Ph.D.Study program: Computer S
ien
eSpe
ialization: General Computer S
ien
ePrague 2011



Dedi
ated to the work of Béla Tarr.



I de
lare that I 
arried out this ba
helor thesis independently, and only with the
ited sour
es, literature and other professional sour
es.I understand that my work relates to the rights and obligations under the A
tNo. 121/2000 Coll., the Copyright A
t, as amended, in parti
ular the fa
t thatthe Charles University in Prague has the right to 
on
lude a li
ense agreementon the use of this work as a s
hool work pursuant to Se
tion 60 paragraph 1 ofthe Copyright A
t.In ........ date ............ signature



Název prá
e: Ry
hlý a trénovatelný tokenizér pro p°irozené jazykyAutor: Ji°í Mar²íkKatedra: Ústav formální a aplikované lingvistikyVedou
í bakalá°ské prá
e: RNDr. Ond°ej Bojar Ph.D.Abstrakt: V této prá
i p°edstavujeme systém pro dezambigua
i hrani
 mezi to-keny a v¥tami. Charakteristi
kým znakem programu je jeho zna£ná kon�gurova-telnost a v²estrannost, tokenizér si dokáºe poradit nap°. i s nep°eru²ovaným £ín-ským textem. Tokenizér pouºívá klasi�kátory zaloºené na modele
h s maximálníentropií, a jedná se tudíº o systém strojového u£ení, kterému je nutné p°edloºitjiº tokenizovaná ukázková data k trénování. Program je dopln¥n nástrojem prohlá²ení úsp¥²nosti tokeniza
e, 
oº pomáhá zejména p°i ry
hlém vývoji a lad¥nítokeniza£ního pro
esu. Systém byl vyvinut pouze za pomo
i multiplatformní
hknihoven a p°i vývoji byl kladen d·raz zejména na efektivitu a správnost. Ponezbytném p°ehledu jiný
h tokenizér· a krátkém úvodu do teorie model· s ma-ximální entropií se v¥t²ina textu prá
e zabývá vlastní implementa
í tokenizéru avyhodno
ením jeho úsp¥²nosti.Klí£ová slova: tokeniza
e, segmenta
e, maximální entropie, p°edzpra
ování textu
Title: Fast and Trainable Tokenizer for Natural LanguagesAuthor: Ji°í Mar²íkDepartment: Institute of Formal and Applied Linguisti
sSupervisor: RNDr. Ond°ej Bojar Ph.D.Abstra
t: In this thesis, we present a data-driven system for disambiguatingtoken and senten
e boundaries. The implemented system is highly 
on�gurableand versatile to the point its tokenization abilities allow to segment unbrokenChinese text. The tokenizer relies on maximum entropy 
lassi�ers and requiresa sample of tokenized and segmented text as training data. The program isa

ompanied by a tool for reporting the performan
e of the tokenization whi
hhelps to rapidly develop and tune the tokenization pro
ess. The system was builtwith multi-platform libraries only and with emphasis on speed and 
orre
tness.After a ne
essary survey of other tools for text tokenization and segmentation anda short introdu
tion to maximum entropy modelling, a large part of the thesisfo
uses on the parti
ular implementation we developed and its evaluation.Keywords: tokenization, segmentation, maximum entropy, text prepro
essing



ContentsIntrodu
tion 31 A Survey of Other Solutions 51.1 RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2 MxTerminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.3 Riley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 Satz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.5 Punkt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.6 Chinese Word Segmentation . . . . . . . . . . . . . . . . . . . . . 92 Maximum Entropy Modelling 112.1 Maximum Entropy Models . . . . . . . . . . . . . . . . . . . . . . 112.2 Available Implementations . . . . . . . . . . . . . . . . . . . . . . 133 Implementation 153.1 Overview of the System . . . . . . . . . . . . . . . . . . . . . . . 153.1.1 TextCleaner . . . . . . . . . . . . . . . . . . . . . . . . . . 153.1.2 RoughTokenizer . . . . . . . . . . . . . . . . . . . . . . . . 153.1.3 FeatureExtra
tor . . . . . . . . . . . . . . . . . . . . . . . 163.1.4 Classi�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.1.5 OutputFormatter . . . . . . . . . . . . . . . . . . . . . . . 173.1.6 En
oder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.2 Modes of Exe
ution . . . . . . . . . . . . . . . . . . . . . . . . . . 173.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.2.2 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . 183.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.2.4 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 193.3 Rough Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . 203.3.1 Regular Expression Libraries . . . . . . . . . . . . . . . . . 203.3.2 Lexi
al Analyzer Generators . . . . . . . . . . . . . . . . . 223.3.3 The Solution . . . . . . . . . . . . . . . . . . . . . . . . . 223.3.4 Te
hni
al Implementation . . . . . . . . . . . . . . . . . . 243.4 Classi�
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.5 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.5.1 The Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 273.5.2 The Input/Output Threads . . . . . . . . . . . . . . . . . 274 Evaluation 294.1 The A

ura
y of the System . . . . . . . . . . . . . . . . . . . . . 294.1.1 Chinese Word Segmentation . . . . . . . . . . . . . . . . . 294.1.2 Tokenization of Cze
h and English . . . . . . . . . . . . . 314.2 The Speed of the System . . . . . . . . . . . . . . . . . . . . . . . 344.2.1 Parallel Pro
essing . . . . . . . . . . . . . . . . . . . . . . 344.2.2 Initialization Costs . . . . . . . . . . . . . . . . . . . . . . 37Con
lusion 391



A User Do
umentation 40Bibliography 44

2



Introdu
tionThe goal of this thesis was to provide a fast implementation of a system for dis-ambiguating token and senten
e boundaries and to evaluate the implementationboth in terms of its a

ura
y and its speed.Token and senten
e boundary disambiguation may seem trivial at �rst, and itusually is, but in some o

asions it might turn out to be quite 
omplex. Considerthe following 
ases:(1) On Friday, the 22nd, at around 2 a.m. Dr. T. Adams �nished the prelimi-nary examination.(2) The �eld tests were to begin on Friday, the 22nd, at around 2 a.m.Dr. T. Adams �nished the preliminary examination the night before.(3) "314 159.26$, about half of the yearly budget, was spent on o�
e rede
-oration!", protested the disgruntled employee of Vanity, S.p.A.Even as I was typesetting these examples in LATEX, I had to expli
itly marksome of the periods in the above examples as not being senten
e boundaries, asLATEX likes to insert slightly larger spa
es after senten
e terminators (so 
alledFren
h spa
ing). The heuristi
 used by LATEX is very simple: if a word-�nalpotential senten
e terminator (a period, a question mark or an ex
lamation mark)follows a 
apital letter, then it is most likely a part of an abbreviation (or aninitial) and so it does not mark the end of a senten
e1 [4℄.Su
h a simple system runs into problems in the examples given above, aswe 
an see that abbreviations do not ne
essarily end with 
apital letters andon top of that, a period may serve both as part of an abbreviation and as asenten
e terminator. Examples 1 and 2 also show us that the 
ontext neededto disambiguate the senten
e boundary may be quite far from the boundary inquestion.While getting the size of a spa
e 
orre
tly down to the last millimeter is
ertainly a noble goal, there are also some important uses for a more reliablesegmenter and tokenizer. When text is being pro
essed and parsed by automati
tools, a 
ommon �rst step is to divide the text into tokens and senten
es. Alot of the tools that then work with these tokens assume they are 
orre
t andtry to analyze them further. As a lot of these tools are getting more and morea

urate, it is important we step up the quality of the tokenization pro
ess, sothat the system's quality is not determined by something as basi
 as tokenizationand segmentation of input.1A more intuitive approa
h might be to 
he
k the 
ase of the following, not the pre
eding,word. 3



In the last 20 years, the problem started getting some re
ognition and severalsystems were demonstrated. This thesis does not aim to 
reate a new system fortokenization. This work is based on an already existing tokenizer implementedby Ond°ej Bojar during the 
onstru
tion of the UMC 0.1 Cze
h-Russian-EnglishMultilingual Corpus [15, 10℄.A key feature of the original tokenizer is its stri
t segregation of language-dependent knowledge into 
on�gurable �les. The new implementation expandson this idea and assumes next to nothing about the language being pro
essedex
ept that the senten
e and token boundaries are disambiguated by a limited
ontext window des
ribed by binary predi
ates expressed as regular expressions.The tokenizer thus o�ers a great deal of 
ustomizability and a lot of e�ort hasbeen put into ensuring that the tokenizer will behave as expe
ted and that thebehaviour is easy to understand without diverging too mu
h from the original.Performan
e, being the motivation behind the 
urrent implementation, wasalso important. Both the original and the new tokenizer rely on a C++ toolkitwhi
h handles the me
hani
s of ma
hine learning [16℄. However, the originalimplementation, being written in Perl, had to a

ess the fun
tionality through a
ommand-line interfa
e passing data through �les. The new implementation willhave the bene�ts of using the C++ API dire
tly. Where the old implementationused regular expressions to partition the input and dete
t potential token andsenten
e boundaries, the new implementation uses a lexi
al analyzer generator[26℄ to generate fast C++ 
ode, 
ompile it and load it at runtime. The newimplementation also bene�ts from the multiple CPUs found on modern 
omputersand uses a high-level parallelism library [3℄ to perform the various time-
onsumingtasks of tokenization in parallel.In Chapter 1, we will look at other systems whi
h tried to ta
kle the prob-lem and 
ompare them to our tokenizer. In Chapter 2, a brief overview of themaximum entropy method of ma
hine learning will be given. Chapter 3 will fa-miliarize us with the implementation of the tokenizer. Finally, in Chapter 4, weevaluate the speed and a

ura
y of the tokenizer on several datasets.

4



1. A Survey of Other SolutionsIn this 
hapter we present an overview of existing systems designed to disam-biguate senten
e and token boundaries. We examine systems based both onhand-written rules and systems using ma
hine learning methods su
h as maxi-mum entropy models and de
ision trees. Next, we look at a system that uses partof spee
h data to disambiguate senten
e boundaries and another system whi
huses 
ollo
ation dete
tion te
hniques. Finally we des
ribe a state-of-the-art Chi-nese word segmenter. For ea
h of these systems, we des
ribe how our tokenizer
an be used to express the same ideas about senten
e and token boundary dis-ambiguation.1.1 REThe system [13℄ referred to as RE in [14℄ is an example of a purely rule-basedsystem. It does not need any training data, but instead it relies on expli
itlinguisti
 knowledge su
h as lists of abbreviations and 
ustom regular expressions.The RE system in parti
ular works by s
anning the input text for periods andthen inspe
ting the tokens surrounding it. If the surrounding tokens do not mat
ha 
ombination of the user's regular expressions, the period is marked as a senten
eboundary.Our tokenizer also allows the user to de�ne regular expressions against whi
hneighboring tokens will be 
he
ked (not only neighboring tokens, a token at anydistan
e 
an be examined, whi
h 
an be important as we saw in the introdu
-tion). The 
ru
ial di�eren
e between the RE system and our tokenizer is that theout
omes of all these regular expression tests are not expli
itly mapped to the dis-ambiguation of the potential boundary by the programmer or the user. Instead,our system relies on already tokenized data from whi
h it learns how to 
ombinethe out
omes of these regular expression tests into a tokenization de
ision.1.2 MxTerminatorContrary to RE, MxTerminator [24℄ is a supervised ma
hine-learning system.This means that the tool has to be supplied with already tokenized data fromwhi
h the 
lassi�er infers the logi
 behind tokenization. The 
lassi�er in this
ase is based on maximum entropy models, the same mathemati
al foundationon whi
h our system is built.The MxTerminator s
ans the text for a list of potential senten
e terminators5



and presents the 
lassi�er with features of the neighboring tokens. The hard-
oded features in
lude the word 
ontaining the potential senten
e terminator,the words pre
eding and following it, the presen
e of parti
ular 
hara
ters in the
urrent word and whether the 
urrent word is a honori�
 or a 
orporate designator(e.g. Corp.). All of these are easily expressed using regular expressions and listsof tokens and so it should be quite easy to produ
e a system very similar toMxTerminator using a spe
i�
 
on�guration.There is also a more general version of the MxTerminator whi
h does not relyon pre
ompiled lists of honori�
s and other abbreviations. In this version, theMxTerminator �rst s
ans the training data and sear
hes for words 
ontaining aperiod whi
h does not serve as a senten
e terminator. The features passed to themaximum entropy 
lassi�er then 
onsist only of the trigram of words 
ontainingthe potential senten
e terminator and values des
ribing whether the individualwords belong to the abbreviations indu
ed from training data in the previousstep. With our tokenizer, the user is free to s
an the data ahead and store theindu
ed abbreviations in a �le. The tokenizer 
an then be 
on�gured to use the�le as a de�nition for the indu
ed abbreviation feature.1.3 RileyRiley [25℄ uses a method of 
lassi�
ation di�erent from the MxTerminator. In-stead of using a maximum entropy 
lassi�er, he builds a regression tree. Thefollowing features are used to disambiguate the period (let a be the word 
on-taining the period in question and b the following word):
• Probability of a o

urring at the end of a senten
e
• Probability of b o

urring at the beginning of a senten
e
• Length of a
• Length of b
• Case of a
• Case of b
• Any pun
tuation after the period
• Abbreviation 
lass of aA training dataset the size of approximately 25 million words was used toestimate the probabilities of individual words o

urring near senten
e boundaries.6



Thanks to su
h detailed information, the system was found to perform notablywell.The �rst two features used in the regression tree have a natural 
ounterpartin the maximum entropy model. When the text of a token is being passed to themaximum entropy 
lassi�er during training, it estimates a parameter for ea
h typeof token en
ountered and ea
h possible out
ome (no boundary, token boundary,senten
e boundary). What this parameter does, basi
ally, is that it des
ribes andretains in the model the probability of en
ountering a spe
i�
 type together witha spe
i�
 out
ome. The equivalent of a probability of a 
ertain type o

urringnear the senten
e boundary would therefore be the maximum entropy model'sparameter 
orresponding to the event of that type appearing together with thesenten
e boundary out
ome.As for the length features, the maximum entropy toolkit we employed uses amore general form of a maximum entropy feature whi
h allows for real featurevalues instead of only binary values (the only su
h feature supported by ourtokenizer is the length of a token). The remaining parameters 
an be des
ribedby binary features de�ned as regular expressions supplied by the user.1.4 SatzThe Satz system [21℄ is another supervised ma
hine-learning system for senten
eboundary disambiguation. It is very unique in that it does not rely on the su-per�
ial 
hara
teristi
s of the shape of the surrounding tokens. Instead, it passesto the underlying 
lassi�er the probability distribution of parts of spee
h for ev-ery token within the 
ontext of the potential senten
e boundary. It is thereforene
essary to supply a lexi
on giving the part of spee
h distribution. If a wordis not part of any lexi
on, a series of heuristi
s try to guess a safe probabilitydistribution given the word's su�x, 
ase, internal pun
tuation et
... Thanks tothe generalization provided by the part of spee
h 
ategories, the system requiredrelatively small amounts of training data to a
hieve solid performan
e.In our system, the user is limited to de�ning binary features and so pass-ing the probability distributions to the 
lassi�er would be out of the question.However, the authors of the Satz system performed an experiment wherein theyrepla
ed the non-zero probabilities with ones (basi
ally swit
hing from part ofspee
h probabilities to �ags indi
ating if a given part of spee
h is possible). Theresults of this experiment showed that the resulting system was trained fasterand performed better than the original. Lu
kily our tokenizer allows the user toeasily de�ne binary features using lists of tokens, i.e. lexi
ons. The only problemwould be the heuristi
s employed with out of vo
abulary words. While all of7



them 
an be easily expressed as regular expressions in our system, there is yet nome
hanism to make the tokenizer treat a part of spee
h found in a lexi
on anda part of spee
h guessed by a regular expression heuristi
 as the same featurewhi
h inhibits generalization.1.5 PunktThe Punkt system [14℄ is an example of an unsupervised ma
hine-learning system.This means that Punkt does not need manually tokenized data for training, itlearns from raw untokenized text. The data Punkt a
tually uses for training isthe text to be tokenized and so besides the obvious advantage of not having tomanually annotate data, the Punkt system does not have to be afraid of di�erenttext domains and genres.The Punkt system pro
esses the input in multiple stages. In the �rst stage, ittries to determine whi
h period-terminated words are abbreviations. A likelihoodratio is assigned to every su
h token type in the text des
ribing the strength ofthe 
ollo
ational tie between the type and its terminating period. A 
ollo
ationbetween a type and a following period is taken as eviden
e that the type is anabbreviation type. This 
ollo
ational s
ore is further penalized by the lengthof the type and multiplied by the number of token-internal periods. Finally, atype's abbreviation likelihood is also exponentially penalized for ea
h instan
enot followed by a period (so that 
ommon verbs in head-�nal languages are notpi
ked up as abbreviations). All types that s
ore higher than a set threshold are
onsidered abbreviations.After the abbreviations have been determined, every period not followingan abbreviation, an initial or a number is marked as a unambiguous senten
eboundary. Now that some senten
e boundaries have already been disambiguated,the system studies the input again to infer e.g. frequent senten
e starters, whi
hare types whi
h form 
ollo
ations with pre
eding senten
e boundaries. The restof the periods are disambiguated in the se
ond stage whi
h examines the spe
i�
tokens and their 
ontexts. Disambiguation may 
ome from the orthographi
heuristi
 whi
h examines the 
ase of the following token with respe
t to how oftenits type o

urred lower-
ase and upper-
ase both at the start of a senten
e andmid-senten
e. The orthographi
 heuristi
 is very robust and takes into a

ountthat many words are written with upper-
ase �rst letters even mid-senten
e (su
has proper nouns and German nouns). The se
ond stage also uses the 
ollo
ationaltie between the types surrounding the period and whether the following type isa frequent senten
e starter as eviden
e against, resp. for, a senten
e boundary.Punkt also demonstrates its language independen
e by giving remarkable re-8



sults on 11 di�erent languages, all without the need to provide annotated data orperform lengthy parameter tweaking. Emulating Punkt's behaviour using our to-kenizer would be nearly impossible, as it would ne
essarily lose its independen
eon available annotated data and its ability to train from the input before tokeniz-ing it. On the other hand, our system is able to perform nontrivial tokenizationtasks (su
h as Chinese word segmentation) on top of the senten
e boundary dis-ambiguation. It is due to the fa
t that the Punkt system was designed to solvea very spe
i�
 problem using linguisti
 knowledge 
ommon to a lot of languages.Our tokenizer is very general, permitting the user to tokenize and segment thetext in basi
ally any way that is learnable through binary features expressed withregular expressions or lexi
ons.1.6 Chinese Word SegmentationSeveral attempts at Chinese word segmentation were made using a maximum en-tropy 
lassi�er. The one developed by Jin Kiat Low, Hwee Tou Ng and WenyuanGuo in 2005 [17℄ ranked amongst the highest in the Se
ond International ChineseWord Segmentation Bakeo� [12℄. It 
lassi�es ea
h 
hara
ter as either a single-
hara
ter word or as a �rst, intermediate or last 
hara
ter of a multi-
hara
terword. The basi
 set of features passed to the 
lassi�er is:1. Cn(n = −2,−1, 0, 1, 2)2. CnCn+1(n = −2,−1, 0, 1)3. C−1C14. Pu(C0)5. T (C−2)T (C−1)T (C0)T (C1)T (C2)

Cn refers to a 
hara
ter at a position relative to the 
urrent one, Pu is apredi
ate 
he
king whether a 
hara
ter is a pun
tuation symbol and T is a fun
-tion assigning a 
hara
ter 
lass to 
hara
ters. The 4 used 
lasses are numbers,dates (symbols for �day�, �month� and �year�), English letters and others. Featuretemplates 2, 3 and 5 use 
onjun
tions of features, whi
h means that for all thepossible 
ombinations of values, there is a maximum entropy feature and its 
or-responding parameter. It was this 
lassi�er whi
h motivated the implementationof 
onjun
tion features in our tokenizer.The Chinese word segmenter relies on even more features derived from sear
h-ing the text for words in a lexi
on of known words. In our tokenizer, it would be9



quite 
ompli
ated to 
he
k for these words due to the fa
t that every position isa potential token boundary. This means that the preliminary rough tokens, onwhi
h user-de�ned predi
ates are tested, are exa
tly one 
hara
ter long. Howev-er, this improvement to the Chinese word segmenter is not that 
ru
ial. A biggerissue might be the fa
t that the Chinese word segmenter trains a 
lassi�er topredi
t the role of a 
hara
ter in a single or multi 
hara
ter word, whereas our
lassi�er predi
ts whether potential token boundaries are real token boundaries(this means that during training the set of features for maximum entropy is quitedi�erent).

10



2. Maximum Entropy ModellingIn this 
hapter we present the prin
iples of maximum entropy modelling, howmaximum entropy models relate to exponential models and how a maximumentropy model is indu
ed from data. We also dis
uss whi
h implementations ofthe te
hnique are available and whi
h one was used in our system.2.1 Maximum Entropy ModelsWe want to 
onstru
t a probabilisti
 model whi
h gives us a probability p(a, b) ofan out
ome1 a o

urring with 
ontext b. We want this model to be very 
lose tothe observed training data, meaning that the data's probability given our model
p is high.However, we do not want the maximum likelihood model be
ause we are awarethat the observed data does not 
over all the possible situations. Instead, we wanta model that shares only some important properties with the observed data. Weexpress these properties as binary fun
tions on the spa
e of events E and we 
allthese fun
tions features2. In most implementations, in
luding ours, these binaryfeatures are restri
ted to the following form

f(a, b) =







1 if a = o and φ(b)

0 else (2.1)where o is an out
ome and φ is a 
ontext predi
ate. We want the 
onstru
tedmodel p to share the expe
ted values of these feature fun
tions with the empiri
aldistribution p̄. This means that we want the probability of f(a, b) being 1 to bethe same in both distributions.Let us say we have 
hosen several su
h features we want retained in our model,now we need to sele
t some model from the set of 
omplying models. This is thepoint where the maximum entropy prin
iple 
omes into play. The basi
 idea ofthe maximum entropy prin
iple was ni
ely hinted at by Lapla
e in his �Prin
ipleof Insu�
ient Reason� [8℄:When one has no information to distinguish between the probabilityof two events, the best strategy is to 
onsider them equally likely.1The terminology used in 
omputational linguisti
s often 
lashes with the one used in prob-ability theory. What is in probability theory usually known as an out
ome is here referred toas an event. These events are pairs of 
ontexts and out
omes, where the 
ontext is the data wehave available when we want a predi
tion and the out
ome is what we want to predi
t.2The term features is also 
ommonly used in ma
hine learning to denote a part of the 
ontext.When it will be important to di�erentiate these two meaning in other parts of the work, theterm maximum entropy features will be used to refer to the features de�ned here.11



We would like to have a distribution whi
h 
onforms to the requirementsimposed by the features but is otherwise unbiased, it is as 
lose to uniform aspossible without violating the features' requirements. A standard measure of theuniformity of a distribution is entropy
H(p) = −

∑

x∈E

p(x) log p(x) (2.2)We would like to �nd a distribution whi
h adheres to the features' 
onstraintsand maximizes entropy. It 
an be shown [8, 23℄ that su
h a distribution is of thefollowing form
p(x) = π

k
∏

j=1

α
fj(x)
j (2.3)where fj for j ∈ {1, . . . , k} are the features we want to retain and 0 < αj, π <

∞. More interestingly, the maximum entropy model adhering to the features'
onstraints is equal to the maximum likelihood model having the shape of 2.3(we 
all su
h models exponential models).Given the set of features we want to retain in our model, we 
an now employan unrestri
ted optimization algorithm to �nd the parameters of the exponentialmodel whi
h maximize the likelihood of the training data.On
e we wrap our minds around the de�nition of an exponential model andrestrain ourselves to the features from 2.1, we 
an easily imagine what happenswhen predi
ting an out
ome given a 
ontext (i.e. evaluating the probabilities ofthe 
ontext appearing with all the possible out
omes). For ea
h feature fj of theshape 2.1, the probability of an out
ome is multiplied by αj if and only if thefeature's predi
ate φ holds for the 
urrent 
ontext and the out
ome whi
h we areevaluating is equal to the feature's desired out
ome o (then the feature fun
tion'svalue is 1). So, for ea
h pair of a predi
ate φ whi
h holds for the given 
ontext andan out
ome o whi
h forms a feature fj with the predi
ate as in 2.1, the predi
atevotes either for or against the out
ome o depending on the value of αj. Thevalue of αj , estimated from the training data, is higher if the 
ontext predi
ate
φ usually implies that we will see the out
ome o and lower in the opposite 
ase.In pra
ti
e, the features (in the ma
hine learning sense of the word) beingpassed to the maximum entropy 
lassi�er are the predi
ates whi
h hold for the
ontext in question. The 
lassi�ed out
ome is the one voted the most by theabove pro
ess.

12



2.2 Available ImplementationsThere are several notable implementations of maximum entropy estimators avail-able. The one we 
hose for our tokenizer was the Maximum Entropy ModelingToolkit for Python and C++ written by Zhang Le [16℄. The toolkit o�ers a ni
e,
lean API with whi
h we are able to feed training events to the estimator andthen laun
h a training pro
edure whi
h �nds the optimal parameters. The re-sulting model 
an be easily saved to a �le and loaded later. The API is 
ompletewith fun
tions for evaluating the probabilities of (context, outcome) pairs andderived 
onvenien
e fun
tions for predi
ting out
omes from 
ontexts. The sup-ported parameter estimation algorithms in
lude GIS and L-BFGS. The L-BFGSimplementation provided by Jorge No
edal is written in Fortran with large s
aledatasets in mind. When the various algorithms for estimating the parametersof a maximum entropy model were evaluated, L-BFGS 
learly outperformed theGIS, IIS, gradient and 
onjugate gradient algorithms [18℄.Other implementations were 
ontemplated. However, they would require moree�ort to integrate seamlessly into our tokenizer. The main reason behind this isthat the above-mentioned toolkit is the only one supplying a C++ API. Theother toolkits only have either 
ommand line interfa
es or are written in di�erentlanguages. Of these toolkits, only a few o�er anything worth the e�ort.Our problem with the toolkits written in Python and Java (the most notablebeing NLTK [9℄ and the Stanford Classi�er [22℄) is that while predi
ting an out-
ome of a potential boundary, we rely on the disambiguation of the pre
edingboundaries. This means that if we were to use NLTK or the Stanford Classi�erfor predi
tion, we would have to swit
h from C++ to Java or Python to performthe disambiguation for every ambiguous boundary individually. This 
ould beworked around by using the toolkits only for training and then writing our ownimplementation of the exponential model's evaluate fun
tions.But even if we did integrate these alternative implementation, the Java im-plementations would have a hard time outperforming the Fortran L-BFGS im-plementation. The methods in S
iPy might be more viable though.The only alternative solution whi
h looked intriguing is the Toolkit for Ad-van
ed Dis
riminative Modeling (TADM) by Robert Malouf [19℄. The toolkitla
ks an API and relies only on a 
ommand line interfa
e. This would meanthat during training the 
olle
ted events would have to be stored in a �le andTADM would have to be invoked using the system fun
tion. An implementationof an exponential model would then be needed in
luding loading the model fromthe �le, evaluating the probabilities of events and predi
ting the most probableout
ome. 13



However, if too mu
h time is spent estimating the model's parameters on ama
hine whi
h might bene�t from the PETS
 and TAO optimizations used inTADM, it might be worthwhile to 
hange the tokenizer to use TADM.

14



3. ImplementationIn this 
hapter we des
ribe the internal design of the tokenizer and provide ratio-nale for the 
hoi
es behind it. We explore the problem of rough tokenization moredeeply as it posed one of the biggest 
hallenges in building the system. Finally,we talk about the multi-threading tools whi
h were used to enable parallelism inthe tokenizer.3.1 Overview of the SystemThe data �ow between the various subsystems 
an be seen in Figure 3.1.3.1.1 TextCleanerAny input whi
h is read by the tokenizer is �rst pro
essed by the TextCleaner.This unit is responsible for de
oding the stream of text and optionally removingXML markup and expanding HTML entities and 
hara
ter referen
es. These
hanges to the input stream (referred to as 
utouts in the program) are 
onveyedto the OutputFormatter so that they 
an be undone in the output. This allowsthe tokenizer to pro
ess XML marked up 
ontent as if it was plain text. The XMLmarkup thus 
annot be broken by and does not interfere with the tokenizationpro
ess.3.1.2 RoughTokenizerThe RoughTokenizer's goal is to examine the 
leaned input stream and identifyboth unambiguous and ambiguous token and senten
e boundaries. It does so by

Figure 3.1: Data �ow in the entire system15



splitting the text into what we 
all rough tokens. In the simplest 
ase, roughtokens are the whitespa
e delimited words of the text (the term word will beused to mean a maximal subsequen
e of nonwhite 
hara
ters). However, the user
an write regular expressions to de�ne 
ertain points within and between thesestrings of nonwhitespa
e 
hara
ters whi
h may split them up into what end upbeing the rough tokens. These user-de�ned points are 
alled de
ision points andthey represent the ambiguous token/senten
e boundaries.There are three types of de
ision points. There is the MAY_SPLIT, whi
ho

urs within words and signals a potential token boundary. Then there is theMAY_BREAK_SENTENCE, whi
h o

urs before and after 
ertain 
hara
tersand marks a potential senten
e boundary. MAY_SPLIT and MAY_BREAK_-SENTENCE are the de
ision points whi
h split words into rough tokens. Thethird type of de
ision point is MAY_JOIN whi
h o

urs between words and turnsthe spa
e between them from a token boundary to a potential token boundary,making it possible for the two words to join into a single token.The rough tokenizer dete
ts all de
ision points in the text and produ
es astream of dis
rete rough tokens with metadata about surrounding whitespa
eand de
ision points.3.1.3 FeatureExtra
torThe rough tokens produ
ed by the RoughTokenizer are tagged with user-de�ned properties in the FeatureExtra
tor. These predi
ate properties arede�ned either using regular expressions or lists of rough tokens. In the 
ase ofa regular expression, a rough token is said to have the property the expressionde�nes if and only if the regular expression mat
hes the entire rough token. Whena property is de�ned using a token list, a rough token is said to have the propertyif and only if it is on the list.Be
ause the task 
arried out by the FeatureExtra
tor is a 
ontext freefun
tion of a single rough token's 
ontents, multiple FeatureExtra
tors 
anrun simultaneously, ea
h pro
essing a di�erent part of the token stream.3.1.4 Classi�erThe Classi�er is the interfa
e to the Maximum Entropy Toolkit. It s
ans therough token stream for de
ision points and 
olle
ts evidential properties fromthe tokens in the surrounding 
ontext. When the tokenizer is being trained, theClassi�er also reads in an annotated version of the input and aligns it with therough tokens (the annotated versions have one senten
e per line with the tokensdelimited by spa
es). It then bundles the values of the properties in the 
ontext16



with the 
orre
t out
ome inferred from the annotated data and sends them bothto the Maximum Entropy Toolkit for training.When a model is already trained and the tokenizer is tokenizing other data,it queries the model for a predi
ted out
ome given the 
ontext and uses the out-
ome to annotate the rough tokens. The rough tokens are then pro
essed by theOutputFormatter whi
h implements the token and senten
e breaks predi
tedby the model.3.1.5 OutputFormatterAfter all the token and senten
e boundaries have been disambiguated by the Clas-si�er, it is up to the OutputFormatter to 
onvert the stream of rough tokensinto plain text where token boundaries are represented by spa
es and senten
eboundaries by line breaks. It is also the duty of the OutputFormatter to undothe 
hanges done by the TextCleaner, whi
h means that XML is reinserted in-to the proper pla
es and former HTML entities and 
hara
ter referen
es repla
etheir expanded 
ounterparts.3.1.6 En
oderThe En
oder re
eives the text output by theOutputFormatter and trans
odesit from the internal (UTF-8) en
oding to the target en
oding. In addition to
hanging the 
oding of the 
hara
ters, the En
oder and the TextCleaner alsoserve as additional bu�ers for I/O operations so that the threads whi
h run thepipeline from RoughTokenizer to OutputFormatter are less likely to stall onI/O.3.2 Modes of Exe
utionThe tokenizer has to be trained on annotated data, it has to be able to usethat training to tokenize new input and it should also provide a

urate feedba
kon its performan
e when developing and evaluating a tokenization s
heme (atokenization s
heme is a set of 
on�guration �les 
ontrolling the a
tion of theRoughTokenizer, the FeatureExtra
tor and the Classi�er). The tokenizerthus has a few di�erent setups for performing these varied tasks.3.2.1 TrainingWhen running in the training mode, the tokenizer 
leans the input, identi�es de-
ision points signalling potential token and senten
e boundaries, tags the rough17



Figure 3.2: Data �ow of the system in the training and evaluation 
on�gurationstokens with the user's properties and sends them to the Classi�er. The Classi-�er aligns this stream of rough tokens with the annotated text. For ea
h de
isionpoint, the properties of the tokens within 
ontext and the out
ome inferred fromthe aligned data are sent to the Maximum Entropy Toolkit to serve as trainingdata. After all the input �les have been pro
essed and the training examples
olle
ted, the maximum entropy model is 
omputed and stored in a �le for lateruse.There is no output pro
essing in the training mode as the only output pro-du
ed, apart from the saved maxent model �le, are warning messages about to-ken and senten
e boundaries found in the annotated version whi
h are not evenmarked as potential boundaries in the raw input. This is a signal to the user thathe should perhaps modify the tokenization s
heme to a

ount for more possibleboundaries or to 
he
k his annotated data. The setup of the system 
an be seenon Figure 3.2.3.2.2 TokenizationAfter a model has been trained, the tokenization mode be
omes available. In thismode the text is 
leaned, 
onverted into rough tokens and tagged with properties.The Classi�er has the trained model loaded and predi
ts the out
ome (senten
eboundary, token boundary or no boundary) for every de
ision point given its
ontext. This out
ome is used to resolve the MAY_SPLIT, MAY_JOIN andMAY_BREAK_SENTENCE ambiguities and the disambiguation is stored inthe relevant rough token's metadata. These annotated tokens are then printedthrough the OutputFormatter and en
oded with the En
oder. See the setupof the system of this mode on Figure 3.3.
18



Figure 3.3: Data �ow of the system in the tokenization and preparation 
on�gu-rations3.2.3 EvaluationWhen tweaking and developing a tokenization system (the sele
ted training data,the 
on�gured parameters in the tokenization s
heme) it is vital to have feedba
kon the short
omings of your system. The evaluation mode was designed just forthis purpose. It works in a way similar to the training mode (see Figure 3.2).The Classi�er aligns the rough tokens with the annotated text and extra
ts the
ontextual properties from the tokens and the true out
ome from the annotateddata. However, instead of re
ording them it uses an already trained model andqueries it for its predi
ted out
ome. The tokenizer then outputs both the trueand the predi
ted out
ome along with the 
ontextual properties.Another tool 
an then be used to analyze the tokenizer's output and examinethe results and errors of the trained model. An example of su
h a tool would bethe in
luded Python s
ript analyze.py, whi
h s
ans the evaluation's output andreports the a

ura
y, pre
ision, re
all and F-measure of both senten
e and tokenboundary dete
tion.This log of out
omes and 
ontexts 
an be written out when using any of theavailable modes but only the evaluation mode has a

ess to both the true out-
omes from the annotated data and the out
omes predi
ted by the probabilisti
model.3.2.4 PreparationThe preparation is the last and least essential mode of the tokenizer. It is similarto the tokenization mode (see Figure 3.3), but instead of querying the probabilis-ti
 model for an out
ome, the Classi�er simply 
on�rms all potential boundaries(MAY_SPLIT be
omes a token boundary and MAY_BREAK_SENTENCE be-19




omes a senten
e boundary). This produ
es a �le in whi
h an annotator only hasto remove spa
es and line breaks, where inappropriate, to get the 
orre
t anno-tation.An advantage to using this mode might be that when the user does not demandthe logging of 
ontexts as in the evaluation mode, the time-
ostly FeatureEx-tra
tor and Classi�er 
an be repla
ed with a SimplePreparer, whi
h onlyremoves the ambiguities in the above-mentioned way.3.3 Rough TokenizationOne of the �rst problems en
ountered when designing the tokenizer was the im-plementation of rough tokenization. The task of rough tokenization is to take thede�nitions of de
ision points and then to be able to dete
t all su
h points in anygiven input.The possible positions for a MAY_SPLIT de
ision point are de�ned by pairsof regular expressions: a position is to be marked as a MAY_SPLIT point ifand only if the �rst expression (pre�x) mat
hes some of the 
hara
ters leadingto the position and the se
ond expression (su�x) mat
hes some of the 
hara
tersfollowing it. MAY_JOIN de
ision points are de�ned almost the same way, ex
eptthat the 
hara
ters following the position of a MAY_JOIN must start with astring of blank 
hara
ters and then 
ontinue with the string mat
hed by theregular expression. MAY_BREAK_SENTENCE points, on the other hand, arede�ned simply by two sets of 
hara
ters. If a position follows a 
hara
ter fromthe �rst set or pre
edes a 
hara
ter from the se
ond set, then that position is aMAY_BREAK_SENTENCE. See Figure 3.4 for an example.3.3.1 Regular Expression LibrariesThe referen
e implementation of the trainable tokenizer written in Perl used adisjun
tive regular expression to mat
h the pre�x of the unpro
essed input. Ouroriginal idea was to use PCRE [6℄ or some other regular expression implementa-tion [11, 7℄ to write a similar algorithm.The naive approa
h might have us trying to sear
h for the possible su�xes ofMAY_JOINs and MAY_SPLITs whi
h are pre
eded by their respe
tive pre�xes.Soon we would learn that �nding one de
ision point may lo
k us out of �ndinganother one. For example, given the string ab
d and MAY_SPLIT regular ex-pression pairs a - b
 and b - 
, we mat
h the b
 a

ording to the leftmost longestmat
h 
onvention properly registering the MAY_SPLIT between a and b
, butwe lose the opportunity to �nd the MAY_SPLIT between b and 
.20



The 10 000$ upgrade to 2.0 wasn't worth it.

MAY_SPLIT between

[a-zA-Z0-9] \.

.

[0-9][0-9]

MAY_JOIN between

MAY_BREAK_SENTENCE after

was n't

Figure 3.4: An example senten
e marked with de
ision points. The de�nition ofthe de
ision point pla
ement is des
ribed below the senten
e. The sitting wedgetriangle represents a MAY_SPLIT, the upside triangle marks a MAY_JOIN anda 
ir
le marks a MAY_BREAK_SENTENCE position. The whitespa
e and thede
ision points divide the text into rough tokens.If we try to sear
h for ea
h of these pairs of regular expressions individually,we might still miss some points as demonstrated by the following example. Letthe string in question be abab and the MAY_SPLIT regular expression pair a -b(ab)*. Any attempt to sear
h for the su�x b(ab)* would yield the bab substringdue to the leftmost longest mat
h 
onvention (and never just the �nal b, whi
hmeans that position will not trigger a MAY_SPLIT). There are solutions to thisproblem su
h as modifying the user's regular expression, modifying the regularexpression mat
hing fun
tion or sear
hing for the su�x from every position inthe text, but they are all either di�
ult or ine�e
tive.We do not want to be pat
hing the user's regular expressions be
ause we wouldprobably have to restri
t ourselves to a narrower set of regular expressions andeven then it would have been 
hallenging to a
tually implement su
h a systemand prove its 
orre
tness. Writing our own regular expression mat
hing engineis also out of the s
ope of this work. The third option on the list, sear
hing forthe su�x (or pre�x) from every position in the text, seems like a performan
ekiller. Performan
e-wise speaking, during the planning phase of development,prototypes of the naive method of regular expression rough tokenization wereimplemented using both Boost.Regex and PCRE. The average time spent on a10 MB �le with a 
redible set of splitting and joining rules (breaking English 
on-tra
tions apart, separating words from pun
tuation et
...) was over 10.8 se
ondsfor Boost.Regex and over 4.9 se
onds using PCRE. The tests were performed ona development laptop with the Intel Core 2 Duo T7500 pro
essor.
21



3.3.2 Lexi
al Analyzer GeneratorsDuring the initial planning, there was another interesting proposal for handlingrough tokenization whi
h motivated the early prototypes.The goal of rough tokenization is to s
an large volumes of text and dete
tpatterns des
ribed by regular expressions. This kind of problem has been alreadysolved many times using lexi
al analyzer generators su
h as �ex. These tools takerules, whi
h are pairs of regular expressions and a
tions written as 
ode. Thelexi
al analyzer generator then 
reates a program from these rules whi
h reads astream of text and tries to mat
h a pre�x of the yet unmat
hed input with theseregular expressions and rea
ts to the mat
hes with the supplied a
tions. Moreadvan
ed tools enable the de�nition of several analyzer modes with di�erent rulesand enables the a
tions to swit
h between them.The lexi
al analyzer generator sele
ted for our tokenizer was Quex [26℄. Itsmost important feature is that it is able to work on Uni
ode 
ode points insteadof single-byte 
hara
ters and that it uses libi
onv and ICU to pro
ess text in anyen
oding. Quex 
an also be very fast be
ause it does not en
ode the resulting au-tomaton into a table whi
h drives some general program, but instead it generateslow level C++ 
ode whi
h mimi
s the behaviour of the automaton.The naive way of rough tokenization presented in Subse
tion 3.3.1 was imple-mented in a prototype to evaluate the performan
e bene�ts stemming from theuse of 
ompiled lexers generated by Quex. When run with the same tokenizationrules and on the same data as the rough tokenizers in Subse
tion 3.3.1, the Quexgenerated lexer �nished on average in a little over 0.9 se
onds. But the generatedlexer was making the same mistakes as the �rst approa
hes using regular expres-sions. As we grew to know more of the fun
tionality available to us in Quex andthe spe
i�
s of its operation, we were able to arrive at a lexer whi
h dete
ts everypossible de
ision point and does so in about 1.9 se
onds on the same data setwith whi
h we tested the other methods. The details of this �nal method arepresented in Subse
tion 3.3.3.3.3.3 The SolutionMany of the observations about the task at hand made in Subse
tion 3.3.1 stillhold when designing a Quex generated lexer. The �nal implementation pro
essesthe input one 
hara
ter at a time. At ea
h position in the text, rules for mat
hingthe su�xes of possible MAY_SPLITs and MAY_JOINs are in play. Ea
h of theserules has a 
ondition in Quex that the pre
eding text must mat
h the pre�x of therespe
tive MAY_SPLIT or MAY_JOIN rule. The MAY_BREAK_SENTENCErules are implemented in a similar way as their de�nitions are basi
ally spe
ial-22



The 10 000$ upgrade to 2.0 wasn't worth it.

1. match \. for MAY_SPLIT,

    if preceded by [a-zA-Z0-9]

2. match n't for MAY_SPLIT, if preceded by was

3. match [:space:]*[0-9] for MAY_JOIN,

    if preceded by [0-9]

4. match anything for MAY_BREAK_SENTENCE,

    if preceded by the "." character

current position

position after

matching "."

Quex rules:

Figure 3.5: An example of real-world implemented rough tokenization for thede
ision points de�ned in Figure 3.4. The generated Quex lexer is at the signi�edposition in the input. Given its position, the lexer takes into 
onsideration onlyrules 1 and 3, as these are the only rules whose pre
onditions have been met.Rule 1 
an mat
h the input at the 
urrent position and so a MAY_SPLIT isannoun
ed and the word read so far (�2�) is reported as a rough token. The lexernow automati
ally advan
es by the length of the mat
hed string, but we manuallystep ba
k to the original position in hope of �nding more de
ision points at the
urrent position and the positions within the mat
hed string. When no furtherde
ision points are to be found at the 
urrent lo
ation (as is the 
ase here), wemove one 
hara
ter ahead.izations of the MAY_SPLIT and MAY_JOIN de�nitions (single 
hara
ters forpre�x or su�x instead of regular expressions). An example of su
h Quex rules
an be seen on Figure 3.5.When the lexer mat
hes the su�x of a de
ision point rule, it sends the last
hara
ters read sin
e the last de
ision point or whitespa
e as a rough token andsignals the de
ision point. Quex would now automati
ally advan
e our position inthe text right behind the mat
hed su�x, but we override this behaviour and moveba
k to the position of the newly found de
ision point so other de
ision pointsmay be found. This alone would 
ause an in�nite loop and so upon returningto the original position we also s
rat
h the dete
ted de
ision point from the setof appli
able rules. If another de
ision point is found, we do the same untilwe �nd all types of de
ision points at the 
urrent lo
ation or none of the rulesmat
h anymore. In that 
ase, the lowest priority a
tion takes pla
e whi
h readsanother 
hara
ter from the stream and starts looking for de
ision points at thenext position.This s
rat
hing out of rules is implemented using 8 di�erent modes for all thedi�erent sets of de
ision points we might be looking for. We start at the topmostmode where we are looking for any of the 3 possible de
ision points. If one ofthem is found, we 
ontinue at the same lo
ation in a mode whi
h looks for the23



remaining 2 possible de
ision points. In the �nal implementation, there is alsoa demand for unexpanded HTML entities to be treated as single rough tokens.This demand is met by adding another variable to the state of the lexer (whetherwe are about to read an entity) whi
h results in the 16 modes seen in the 
urrentimplementation.The rough tokenizer thus s
ans for a regular expression mat
h starting fromevery possible position within the text, whi
h leads to the worst 
ase time of
O(n2), where n is the length of the text. It is however reasonable to assume thatthe regular expression mat
hing at any position will never have to pro
ess morethan a few 
hara
ters and 
an thus be regarded as a 
onstant fa
tor irrelevant ofthe data being pro
essed. This gives us a linear time 
omplexity, whi
h is notunexpe
ted given that we do a single pass over the text with only some small andlimited lo
al 
omputation and very little state.3.3.4 Te
hni
al ImplementationIn the �nished appli
ation, the regular expressions whi
h de�ne the pla
ement ofde
ision points are read from user-written 
on�guration �les. A Quex sour
e �le
ontaining modes for dete
ting all of the de
ision points referen
ed by the user isthen output to a temporary �le. CMake [1℄ is invoked to probe the user's systemfor the 
ompiling essentials, to generate a proje
t for the user's preferred buildsystem and to write the 
ommand needed to start the build to a �le. This �le isread and the 
ommand within it is run, whi
h exe
utes Quex on the generatedsour
e �le and then 
ompiles the result into a shared module. This pro
ess istherefore platform-agnosti
 as it doesn't rely on a spe
i�
 C++ 
ompiler or buildsystem and uses only CMake and Quex whi
h are multi-platform and are requiredto build the tokenizer itself.This 
ompiled shared module is then loaded using the libtool's dynami
 load-ing library [2℄ whi
h is a wrapper for the platform-spe
i�
 dynami
 loading fun
-tions. The tokenizer tra
ks the set of �les used to generate the rough tokenizeralong with their timestamps and only regenerates and re
ompiles it when 
hangeshave been made.3.4 Classi�
ationAfter the RoughTokenizer 
onverts the stream of text into rough tokens anno-tated with MAY_SPLIT, MAY_JOIN and MAY_BREAK_SENTENCE points,the FeatureExtra
tor goes next. For ea
h rough token in the token stream, itmat
hes the token against a series of regular expressions and word lists whi
h24



are represented as one big binary sear
h tree. It marks for ea
h token whi
hregular expressions it mat
hed and in what word lists it was found. These user-de�ned regular expressions and word lists de�ne what we 
all �properties�, binarypredi
ates des
ribing the aspe
ts of rough tokens relevant to token and senten
eboundary disambiguation.This stream of tokens marked with de
ision points and user-de�ned propertiesthen enters the Classi�er. While the FeatureExtra
tor was driven by the �lesde�ning the individual properties used in the tokenization s
heme, the Classi�eris driven by a single mandatory �le named �features�. In this �le, the user sele
tsthe features of rough tokens he deems important for the disambiguation. Theformat of the �le has the user spe
ify a range of token o�sets followed by a listof relevant properties. The Classi�er will then look at the rough tokens atthe given o�sets from the de
ision point in question and 
he
k for the status ofthe relevant properties evaluated by the FeatureExtra
tor (the o�set and theproperty's name are 
on
atenated into a string and this string is used to namethe feature passed to the maximum entropy 
lassi�er). However, these propertiesdo not form the only features passed to the maximum entropy 
lassi�er:
• For every rough token within the 
ontext (the smallest possible range oftokens 
ontaining all the tokens at the o�sets mentioned in the �features��le), a feature is passed des
ribing whether the rough token was followedby whitespa
e, by a line break or by a paragraph break (multiple newlines).
• For every rough token in the 
ontext, any de
ision points whi
h were foundbetween the token and its su

essor are passed as features des
ribing thetoken.
• For every rough token in the 
ontext pre
eding the token in question, thedisambiguation of all its de
ision points is passed as well, so the 
lassi�er
an see its de
isions from the immediate past.
• If several properties at several o�sets 
ombined together form 
ompelling ev-iden
e for disambiguation, the user 
an mark them as su
h in the �features��le and all those properties' values will be 
on
atenated into a large featurestring. This way, a single parameter 
an be trained for ea
h 
ombinationof the properties' values, whi
h 
an be used e.g. to train the tokenizer onspe
i�
 bigrams (that is the 
ase of the Chinese word segmenter evaluatedin Chapter 4).
• Apart from the user-de�ned regular expression and list properties, the usermay 
all on the prede�ned �%Word� and �%length� properties. The �rst25



�meta-property� generates a feature string 
ontaining the rough token'stext, enabling the tokenizer to train not only on the binary features buton unigrams and subsequently bigrams and other n-grams. The �%length�property is spe
ial in that it passes a non-binary value to the maximumentropy 
lassi�er equal to the length of the rough token.
• For positions within the 
ontext whi
h lie past either end of the input (atthe beginning or at the end), an out-of-input feature is passed des
ribingthe missing token.A ve
tor 
ontaining all these feature strings is passed to the maximum entropy
lassi�er whi
h de
iphers the feature names and maps them into the individualtrained parameters. It then evaluates the possible out
omes and returns themost probable one. The possible out
omes are JOIN, SPLIT and BREAK_-SENTENCE. The out
ome des
ribes the spa
e between the 
urrent rough tokenin question (the token at o�set 0) and its su

essor. Depending on the whitespa
ebetween the token in question and its su

essor, the de
ision points are disam-biguated (e.g. a MAY_SPLIT be
omes a DO_SPLIT if it lies in a position wherethere did not use to be any whitespa
e and the tokenizer 
lassi�ed the positionas a SPLIT or BREAK_SENTENCE).3.5 ParallelismOne of the expli
it goals when developing the tokenizer was performan
e. How-ever, apart from the rough tokenization and the probing of the tokens' properties(the user-de�ned regular expressions and token lists), the algorithms were quitestraightforward. What 
ould be tweaked, however, was the manner of their im-plementation and exe
ution.When the task of rough tokenization was isolated from the problem of 
lassi-fying the potential token and senten
e boundaries, a produ
er/
onsumer patternwas proposed to pro
ess both tasks in parallel. As the design of the system be-
ame more detailed, more of the tasks be
ame isolated and the original idea ofa produ
er/
onsumer pattern 
hanged into the pipeline model seen in the 
ur-rent implementation. De
iding on the pipeline model also let us use librarieswhi
h o�ered high-level pipeline implementations. This meant we did not haveto implement the entire system from s
rat
h using threads and syn
hronizationprimitives. For the performan
e payo� of multi-threading, see Subse
tion 4.2.1

26



3.5.1 The PipelineThreading Building Blo
ks [3℄, an open-sour
ed library developed by Intel, wasused for implementing the pipeline. Compared to other multi-platformparallelismsolutions, TBB o�ers high-level algorithms and 
onstru
ts like the pipeline. Italso uses C++ 
lasses and methods to expose its fun
tionality instead of relyingon pragma dire
tives like the standardized OpenMP [5℄.The pipeline is 
onstru
ted by setting up an array of �lter obje
ts. Ea
h ofthe �lter obje
ts must override the invo
ation operator and must identify itselfas either a parallel or a serial �lter (parallel meaning that this �lter 
an be runsimultaneously on multiple points of data, serial meaning that the �lter pro
essesthe input one at a time). In the tokenizer, the RoughTokenizer, the Feature-Extra
tor, the Classi�er and the OutputFormatter are all elements of thispipeline (you 
an see the pipeline as the middle row in Figure 3.1 with Feature-Extra
tor being a parallel �lter). The TBB library invokes the �rst �lter, theRoughTokenizer, and passes its return value to the FeatureExtra
tor whi
halso produ
es a value and so on...Originally, the values to be �owing through the pipeline were individual roughtokens, but the overhead would have been too big. The TBB library doesn't useone thread per pipeline element, instead it is more similar to one thread per value.This way the values are more likely to stay in the 
a
he of the 
urrent pro
essor.So it was settled that 
hunks of rough tokens would be the work units traversingthe pipeline. Initially, the idea was to have them stati
ally sized, but sin
e theClassi�er 
an 
onsume more tokens than it produ
es and vi
e versa, the 
hunksare now dynami
 (e.g. when pro
essing the �rst 
hunk, the Classi�er 
annotannotate the �nal tokens as it has to wait for the next 
hunk whi
h will informit about the post-
ontext of those �nal tokens).3.5.2 The Input/Output ThreadsInitially, the plan was for the pipeline to en
apsulate all of the parts of the system.However, it would have been 
umbersome to implement the RoughTokenizerso that it is a fun
tion whi
h re
eives a 
hunk of text, feeds it to the bu�erof the generated lexer, tries to tokenize the in
omplete 
hunk of text and thensends the retrieved tokens along. The C++ Standard Library already o�ers awidely used and supported FIFO stru
ture for transmitting 
ontinuous text, thestd::iostream. In its stringstream in
arnation, it allows one agent to writetext to it using the standard output operators of C++ and then later anotheragent 
an use the standard input operators to read and parse its 
ontents. Su
ha standard me
hanism would allow us to simply pass a pointer to this stream27



to the Quex lexer as if it were a �le handle and we would not have to troubleourselves with any string marshalling.A 
lass whi
h does just this, the pipestream, was implemented by AlexanderNasonov and published on the Boost mailing list in 2003 [20℄. However, it didn'tmeet with mu
h understanding on the list as people tended to asso
iate the 
lass'name, pipe, with OS-level pipes. The pipestreams have been resurre
ted for thisproje
t and they made writing the transfer of text between the TextCleaner,the En
oder and the parts of the TBB pipeline very simple.The pipestreams were used to 
onne
t the TextCleaner and En
oder tothe TBB pipeline. The TextCleaner and the En
oder both have a do_workmethod whi
h does all the work. In the 
ase of the TextCleaner, it uses aQuex generated lexer to �nd XML markup and entities in the input �le. It op-tionally transforms these segments, reports them to the OutputFormatter andwrites the transformed input to an opipestream (an output pipestream). TheEn
oder on the other hand reads from an ipipestream (an input pipestream),trans
odes the text read and writes it to the output �le. The use of pipestreamsto 
onne
t the TBB pipeline world with the I/O world might also have a per-forman
e advantage, be
ause TBB pipelines are not optimized for I/O heavyoperations and perform badly when stalling on I/O. These input/output threads(those whi
h run the do_work methods) might de
rease the probability of apipeline thread waiting for I/O by �lling the pipestream bu�ers while working ona di�erent CPU.

28



4. EvaluationIn this 
hapter, we demonstrate the e�e
tiveness of the tokenizer with severaltokenization s
hemes and on several datasets. In the �rst se
tion, we study thea

ura
y of the tokenizer using di�erent tokenization s
hemes. In the se
ondse
tion, we follow up with an analysis of the speed at whi
h it pro
esses data.4.1 The A

ura
y of the System4.1.1 Chinese Word SegmentationTokenizing Latin-s
ript languages is not very hard. We 
an usually get by wellenough by splitting the text at whitespa
es and at boundaries between di�erent
lasses of symbols. Sometimes, we might want to be more spe
i�
 and try totokenize English 
ontra
tions as separate words. However, these problems arequite easy to solve when 
ompared to the task of tokenizing Chinese text. Theabsen
e of any spa
es between words forbids the use of any simple heuristi
 andlinguisti
ally empowered methods must be used.We took inspiration from the system for Chinese word segmentation presentedin Se
tion 1.6 [17℄ whi
h is also based on maximum entropy models. The basi
features used in that system were ported to our formalism. The biggest di�eren
ebetween the systems is the fa
t that the original Chinese tokenizer 
lassi�edindividual 
hara
ters as being single-
hara
ter words or the beginning, middle orending 
hara
ters of a multi-
hara
ter word. However, the 
lassi�er used in oursystem is binary and it de
ides for ea
h 
hara
ter boundary whether it forms atoken boundary or not.We were able to obtain the same data on whi
h the original tokenizer wasdeveloped, whi
h happen to be the training data for the Se
ond InternationalChinese Word Segmentation Bakeo� [12℄. The bakeo� was a 
ompetition 
hal-lenging 
omputational linguists to develop word segmentation systems for Chineseusing the supplied data for training. The provided data 
onsists of 4 datasets pro-vided by A
ademia Sini
a, City University of Hong Kong, Peking University andMi
rosoft Resear
h. Ea
h of these datasets adopts slightly di�erent tokenizationstandards and so we train and test our tokenizer on the datasets individually.Ea
h dataset 
omes with a training part and a testing part. We stri
tly usedonly the training part when developing our tokenizer and used the testing partonly at the end to evaluate our results. The only thing we knew about the test-ing data in advan
e was its size whi
h helped us 
hoose a reasonable size for ourheldout data. 29



Training data Testing dataDevelopment data Heldout data Testing dataA
ademia Sini
a 39686533 1057344 942571City University 8283422 266247 240767Peking University 7008808 719430 718331Mi
rosoft Resear
h 16100177 791333 766786Table 4.1: The sizes of the individual parts of the bakeo� datasets in bytes.Number of iterationsA
ademia Sini
a 420City University 873Peking University 708Mi
rosoft Resear
h 1053Table 4.2: The number of iterations spent training the maximum entropy modelon the individual datasets.First, we split our training data into a development part and a heldout part.We 
hose the size of the heldout data to be roughly as big as the testing data sowe 
ould trust our system's performan
e on it to be representative of our system'strue a

ura
y. The sizes of the partitioned datasets 
an be seen in Table 4.1.Initially, we set the event 
uto� of the maximum entropy trainer to 2 as in[17℄. However, we found out we get a sizable improvement in the a

ura
y ofthe trained tokenizer if we do not 
uto� events (i.e. set the event 
uto� to 1).We then experimented with training the tokenizer and testing it on the heldoutdata. Depending on how mu
h we 
onstrained training time, the tokenizer 
ouldeither be under-trained or over-�tted. The heldout data served as an independentindi
ator telling us how 
lose we are to the ideal balan
e between a detailed anda general model. Experimentation led us to restrain the number of trainingiterations to the values seen in Table 4.2 (the 
onsiderable size of the A
ademiaSini
a 
ombined with the absen
e of the event 
uto� for
ed us to keep the numberof training iterations below 450 lest the training program hit the CPU time limitand terminate). We 
an see that the number of iterations spent in trainingto obtain the optimal model 
orrelates with the size of the dataset (with theex
eption of the A
ademia Sini
a dataset, of 
ourse), be
ause a larger datasetusually means more bigrams and unigrams and thus more parameters to estimate.After we established the training parameters, we trained the system on theentire training data and 
he
ked its performan
e on the gold testing data. Theperforman
e of the development system on the heldout data and of the �nalsystem on the testing data 
an be seen in Tables 4.3 and 4.4.30



A

ura
y Pre
ision Re
all F-measureA
ademia Sini
a 97.56% 97.89% 97.82% 97.86%City University 97.70% 98.05% 98.11% 98.08%Peking University 97.69% 98.29% 97.89% 98.09%Mi
rosoft Resear
h 97.67% 98.08% 98.02% 98.05%Table 4.3: The performan
e of the system trained on the development data whentokenizing the heldout data. A

ura
y Pre
ision Re
all F-measureA
ademia Sini
a 96.33% 96.13% 97.73% 96.92%City University 96.87% 97.42% 97.32% 97.37%Peking University 96.74% 97.85% 96.68% 97.26%Mi
rosoft Resear
h 97.95% 98.33% 98.06% 98.20%Table 4.4: The performan
e of the system trained on the entire training datawhen tokenizing the gold testing data.We were en
ouraged to see su
h performan
e and out of 
uriosity pro
eededto s
ore our tokenizer using the same s
ript whi
h s
ored the 
ontestants in thebakeo� (Table 4.5). While our tokenizer does not perform as well as the originalword segmenter by Low, Ng and Guo [17℄, it a
hieves a median performan
e
ompared to the performan
e of the other bakeo� submissions. The result is quitepleasing, given that the all we needed to do was to write the feature de�nitionsinto a few �les and tweak some training parameters.4.1.2 Tokenization of Cze
h and EnglishFor evaluating the a

ura
y of tokenizing Cze
h and English text, four di�erentmethods were implemented. The Absolute Baseline relies on no other pie
e ofinformation than the 
urrent de
ision point and the whitespa
e following it to
lassify boundaries. It is there to show the minimum possible line every tokenizershould pass.The Simple Tokenizer 
he
ks the potential senten
e terminator and 
he
ksTrue Words Re
all Test Words Pre
ision F-measureA
ademia Sini
a 0.933 0.919 0.926City University 0.934 0.934 0.934Peking University 0.923 0.933 0.928Mi
rosoft Resear
h 0.951 0.952 0.951Table 4.5: The s
ores assigned to our tokenizer by the o�
ial s
oring s
ript ofthe Se
ond International Chinese Word Segmentation Bakeo�.31



CzEng - Cze
h SegmentationA

. Pre
. Re
. F-m.Absolute Baseline 80.08% 72.72% 99.06% 83.87%Simple Tokenizer 93.67% 92.38% 95.79% 94.06%Groomed Tokenizer 95.93% 95.26% 96.90% 96.07%Table 4.6: The senten
e boundary disambiguation performan
e of the variousmethods for tokenizing Cze
h on the CzEng sample.CzEng - Cze
h TokenizationA

. Pre
. Re
. F-m.Absolute Baseline 99.29% 99.29% 100.00% 99.64%Simple Tokenizer 99.26% 99.35% 99.92% 99.63%Groomed Tokenizer 99.36% 99.39% 99.97% 99.68%Table 4.7: The token boundary disambiguation performan
e of the various meth-ods for tokenizing Cze
h on the CzEng sample.whether the following word starts with an upper-
ase letter. It represents theoften too simple approa
h to tokenization.The English-only Satz-like [21℄ system uses only part of spee
h data aboutthe surrounding tokens to predi
t a boundary.Finally, the Groomed Tokenizer is the tokenization s
heme used in the originalreferen
e implementation, whi
h has been supplied with lists of abbreviations andlots of useful regular expressions.All systems were tested both on a sample of data from CzEng and, in the 
aseof the English tests, also on the Brown 
orpus. All datasets were divided intoequally large development, heldout and testing sets to be used as in Se
tion 4.1.1.As for the part of spee
h data of the Satz-like system, lexi
ons for ea
h part ofspee
h were extra
ted from the training se
tion of the Brown 
orpus for the Brown
orpus exer
ise and from the entire Brown 
orpus for the CzEng exer
ise. Theresults of the trials 
an be seen in Tables 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11.CzEng - English SegmentationA

. Pre
. Re
. F-m.Absolute Baseline 81.27% 67.50% 99.91% 80.57%Simple Tokenizer 95.21% 91.38% 96.81% 94.01%Satz-like System 94.87% 92.42% 94.57% 93.48%Groomed Tokenizer 97.08% 95.66% 96.90% 96.27%Table 4.8: The senten
e boundary disambiguation performan
e of the variousmethods for tokenizing English on the CzEng sample.32



CzEng - English TokenizationA

. Pre
. Re
. F-m.Absolute Baseline 95.31% 95.31 100.00% 97.60%Simple Tokenizer 95.27% 95.31% 99.95% 97.58%Satz-like System 96.84% 96.79% 100.00% 98.37%Groomed Tokenizer 95.99% 95.99% 99.98% 97.94%Table 4.9: The token boundary disambiguation performan
e of the various meth-ods for tokenizing English on the CzEng sample.
Brown SegmentationA

. Pre
. Re
. F-m.Absolute Baseline 78.49% 62.83% 99.61% 77.06%Simple Tokenizer 96.47% 93.26% 97.30% 95.24%Satz-like System 99.31% 99.58% 98.52% 99.05%Groomed Tokenizer 99.31% 99.30% 98.80% 99.05%Table 4.10: The senten
e boundary disambiguation performan
e of the variousmethods for tokenizing English on the Brown 
orpus.
Brown TokenizationA

. Pre
. Re
. F-m.Absolute Baseline 82.71% 85.16% 88.74% 86.91%Simple Tokenizer 93.63% 94.12% 96.16% 95.13%Satz-like System 99.64% 99.62% 99.82% 99.72%Groomed Tokenizer 99.73% 99.72% 99.86% 99.79%Table 4.11: The token boundary disambiguation performan
e of the various meth-ods for tokenizing English on the Brown 
orpus.

33



While text from the CzEng dataset proves to be more di�
ult to segmentthan text from the Brown dataset for all but the Baseline tokenizer, the Satz-likesystem's segmentation performan
e su�ers the most. This was not unexpe
tedas the Satz-like tokenizer relies on a lexi
on of part of spee
h tags extra
ted fromparts of the Brown 
orpus. When the tokenizer was evaluated on the Brown
orpus, the lexi
on was indu
ed from the training and heldout datasets. Thisgave the tokenizer's lexi
on a 99.41% 
overage on the training dataset and a99.44% 
overage on the heldout dataset (the 
overage is not 100% as some of thewords 
ontaining dashes or apostrophes were broken into separate rough tokens);the 
overage on the testing dataset was 95.75%. On the other hand, when thetokenizer was evaluated on the CzEng dataset, the 
overage on the training,heldout and testing datasets was 95.80%, 95.95% and 95.66% respe
tively. Sin
ethe Satz-like tokenizer relies only on part of spee
h data, this de
rease in thepart of spee
h lexi
on's 
overage 
an be severely detrimental to the tokenizer'sperforman
e.The Simple tokenizer demonstrates a pretty high re
all on senten
e boundarydete
tion. This 
an be attributed to the fa
t that its de
isions are governedonly by the potential senten
e boundary and the 
ase of the following word.Sin
e mostly every senten
e will start with a 
apital letter, we 
an expe
t theSimple tokenizer to noti
e most of them. The Simple tokenizer 
an however beeasily misled by multi-part abbreviations and initials in names (e.g. �U.S.A.�, �M.Smith�). This explains why its pre
ision is noti
eably lower than its re
all.The Groomed tokenizer delivers a good performan
e on all the examineddatasets, whi
h goes to show that time spent developing a tokenization s
heme
an indeed pay o�.4.2 The Speed of the SystemThe tokenizer pro
esses roughly 15000�60000 de
ision points per se
ond, whi
hamounts to 60000�250000 words or 300000�1300000 bytes in the 
ase of the Brown
orpus. The performan
e varies greatly depending on the 
hosen tokenizations
heme and so in this se
tion, we will do the performan
e analysis for ea
h of thefour tokenization s
hemes presented in Se
tion 4.1.4.2.1 Parallel Pro
essingOne of the most important aspe
ts of the tokenizer whi
h drove the design wasparallel pro
essing. In Chapter 3, we have seen how it en
ouraged us to dividethe tokenizer's duties to several autonomous subsystems. This design enabled us34



05
1015
2025
30

1 2 3 4 5 6 7 8 9 10Se
ondsspe
nttokenizin
gtheBrown

orpus

Maximum number of simultaneous work units

Groomed TokenizerSatz-like TokenizerSimple TokenizerBaseline Tokenizer

Figure 4.1: The e�e
t of maximum simultaneous work units on the performan
eof the tokenizer. The plotted spent time is a median of 10 trials.to perform all the tasks in the pipeline in parallel using the pipeline 
lass fromthe Threading Building Blo
ks library [3℄. To measure the impa
t this design
hoi
e made on performan
e, we ran the tokenizer on the entire Brown 
orpuswhile restri
ting the maximum number of pipeline stages allowed to run at thesame time. The results are plotted in Figure 4.1. The Baseline and Groomedtokenizers speed up by 20%�24%, while the Simple and Satz-like tokenizers gaina speedup of 44%.To investigate the reason why the di�erent tokenization s
hemes gain a dif-ferent speedup and where we should optimize further to improve the pro
essingtime, we measure the workload of the di�erent pipeline stages. We restri
t themaximum number of simultaneous work units in the pipeline to 1, to ensure thatonly one 
an use the CPU at a time. In ea
h of the stages we measured the totaltime spent pro
essing the stream of data. The averaged results 
an be seen inTable 4.12.From the data, we 
an see that the workload is more balan
ed in the Sim-ple and Satz-like tokenizers, while in the Baseline and Groomed tokenizers, theRoughTokenizer, resp. the Classi�er, spend more time than all of the other stages
ombined. This means that when using the Baseline or Groomed tokenizer, onethread will be working in the RoughTokenizer, resp. the Classi�er, leaving theother threads very little work to do, whi
h leads to only a small speedup fromthe original s
enario with one thread. 35



Baseline Simple Satz-like GroomedRoughTokenizer 3.06 3.06 3.09 3.18FeatureExtra
tor 0.28 0.67 2.49 5.13Classi�er 1.11 2.19 5.12 14.22OutputFormatter 0.72 0.70 0.71 0.71Table 4.12: Time (in se
onds) spent in the various pipeline stages when tokenizingthe Brown 
orpus. In order to measure these values, the pipeline has been set upto run only one stage at a time. The tabled time is an average of 10 trials.Baseline Simple Satz-like GroomedWidth of 
ontext 1 2 7 17Number of user-de�ned properties 0 1 37 32Number of possible features per de
ision 6 13 311 673Average number of features per de
ision 1.53 3.98 21.04 75.38Table 4.13: The fa
tors whi
h de�ne the 
omputational 
omplexity of the Clas-si�er stage. The average number of features per de
ision was measured on theBrown 
orpus.We 
an also see that the 
omplexity of rough tokenization and output pro
ess-ing is the same with all the tokenization s
hemes, whi
h was to be expe
ted asthere are next to no di�eren
es in these stages between the 
ontesting tokenizers.The FeatureExtra
tor's workload s
ales with the number of regular expressionproperties and list properties as expe
ted (the data also shows that the multi-ple list properties used for the part of spee
h lexi
on in the Satz-like tokenizerare faster to 
he
k than the individual regular expressions used in the Groomedtokenizer).The most important fa
t we 
an glean from the results, however, is that inthe more 
omplex tokenizers, the Classi�er is the bottlene
k. The Classi�er isthe subsystem responsible for 
he
king the 
ontext surrounding ea
h de
isionpoint, produ
ing a list of strings des
ribing the features of the rough tokens inthe 
ontext and 
onsulting the maximum entropy model for a disambiguation.The distinguishing fa
tors whi
h de�ne the 
omputational 
omplexity of theClassi�er are listed in Table 4.13. The Classi�er iterates over the rough tokens inthe 
ontext. Ea
h rough token is 
he
ked for the mandatory properties (whites-pa
e between tokens, presen
e of de
ision points) and strings representing thefeatures are 
reated. The rough tokens at spe
i�
 o�sets are also 
he
ked forthe user-de�ned properties and strings des
ribing these features are generated aswell. This ve
tor of features is then de
iphered by the maximum entropy toolkit.Ea
h feature name is mapped to a fa
tor and the fa
tors are added up for ea
hindividual out
ome. The out
ome with the highest probability is then sele
ted.36



Baseline Simple Satz-like GroomedInitialization 0.002 0.03 0.30 0.11Pro
essing 4.473 4.86 8.12 19.59Total 4.475 4.88 8.42 19.70Table 4.14: Time (in se
onds) spent tokenizing the Brown 
orpus using the 4tokenization s
hemes presented. Initialization is the time spent before the pipelineis run. The tabled time is an average of 10 trials.The amount of work needed to handle the built-in mandatory probabilities islinear with respe
t to the width of the 
ontext.The rest of the time is spent 
he
king for the user-de�ned properties andgenerating feature strings (a string 
ontaining the o�set, name and value of afeature). Assuming the names of user-de�ned properties are bound by some
onstant, the worst 
ase time spent doing this is linear to the produ
t of the
ontext's width and the number of user-de�ned properties. However, at someof the o�sets in the 
ontext, some of the properties might not be requested bythe user or might simply not hold for the rough token in question. We let thetokenizers log the de
ision points and the features des
ribing them and measuredhow many feature strings per de
ision are a
tually generated and pro
essed bythe maximum entropy library (the values are listed in Table 4.13). This fa
tor ismost indi
ative of the workload of the Classi�er.As the Classi�er has been identi�ed as a bottlene
k of the pipeline, any at-tempts at optimizing the performan
e of the tokenizer should be performed there.The amount of time spent in the maximum entropy library is only 15%�23% ofthe entire time spent in the Classi�er. Improving the string manipulation andfeature representation thus seem to be sensible pla
es to look at. In the 
ase ofthe Groomed tokenizer, more speed 
ould be gained by 
ulling the number offeatures or narrowing the 
ontext.The bottlene
k issue might also be worked around by dividing the input andpro
essing multiple segments at the same time. The Classi�er would still be thebottlene
k, but several instan
es of the pipeline (and therefore the Classi�er)would run at the same time (e.g. on di�erent paragraphs).4.2.2 Initialization CostsA ne
essary part of pro
essing data with the tokenizer is the exe
ution and ini-tialization of the tokenizer itself. We were interested in how long the initializationtakes in 
omparison to the pro
essing of input. We measured the time spent inboth these stages and listed our measurements in Table 4.14.37



Baseline Simple Satz-like GroomedSize of data 530 36500 269000 35500Table 4.15: Volumes of data (in bytes) whi
h take the same time to pro
ess usinga given tokenization s
heme as it takes to initialize the tokenization s
heme.It 
an be seen that when pro
essing large quantities of data, the initialization
osts are negligible. However, it is quite probable that the tokenizer will beused to pro
ess smaller �les. For example, the entire Brown 
orpus has 6MB ofdata, but it is distributed as a set of �les about 11KB small. To express the
ost of initialization in more useful terms, we found the volume of data that thetokenizer 
an pro
ess within the amount of time spent to initialize it (Table 4.15).The data shows that when using the Simple or the Groomed tokenizer, it wouldtake four times as long to pro
ess the Brown 
orpus if we were to initialize thetokenizer before pro
essing ea
h �le. When using the Satz-like tokenizer or anyother tokenization s
heme based on large lexi
ons, the initialization 
osts are evenbigger.The expe
ted 
ost in initialization time is mitigated by the ability to run thetokenizer on bat
hes of �les. The tokenizer 
an look for �les to be pro
essed inlists of �le paths stored in �les or passed through the standard input. The resultsare written to �les whose paths are found by applying a user-spe
i�ed regularexpression repla
ement string on the original �les' paths.All the tokenization s
hemes presented in this 
hapter were trained and testedusing this way of exe
ution. If large volumes of small �les are to be pro
essedusing the tokenizer, these bat
h fa
ilities are essential as they make the daunting
ost of initialization marginal (as in Table 4.14).The �le lists interfa
e also presents another opportunity for further paralleliza-tion. If the input is already spread into small �les, the �les in the �le lists 
ouldbe pro
essed simultaneously by di�erent instan
es of the pipeline. Something likethis is also quite easy to implement on the user's side, where the user 
an dividethe �les to be pro
essed into a number of �le lists appropriate for the number ofCPUs and amount of memory available to him and exe
ute the tokenizer on ea
hof the �le lists simultaneously.

38



Con
lusionWe have presented a data-driven system for tokenizing and segmenting text.We have demonstrated the system's versatility by 
ombining methods based ondi�erent te
hniques su
h as morphologi
al di
tionaries, regular expressions andex
eption lists. The system proved its universal appli
ability in being able to a
tboth as a senten
e boundary disambiguator for languages su
h as English andCze
h and as a word segmenter for languages whi
h do not use whitespa
e su
has Chinese. We have also pointed to the fa
t that the program relies only onmulti-platform programs and libraries. While it has not been tested on Windowsor Ma
OS yet, 
are was taken at every step to ensure it would be a smoothtransition (ICU 
an be used instead of libi
onv for 
hara
ter 
ode 
onversion,CMake is used for building, OS-spe
i�
 matters are a

essed via Boost only. . . ).We measured the a

ura
y, pre
ision, re
all and F-measure of the token andsenten
e boundary disambiguation. The tests were exe
uted with several verydi�erent tokenization s
hemes and on several datasets in multiple languages. Wealso measured and analyzed the tokenizer's speed and identi�ed the bottlene
kwhi
h should serve as an avenue for further optimization.The natural next step would be to invent and experiment with new ways andfeatures for tokenizing and segmenting text. The system o�ers fast feedba
k onthe a

ura
y of the user's tokenization s
hemes and is helpful in pointing outpositions in the text whi
h are yet to be 
overed by rules for inserting de
isionpoints. Another possible elaboration might be to 
hange the maximum entropytraining ba
k-end to the Toolkit for Advan
ed Dis
riminative Modelling or someother alternative.

39



A. User Do
umentationtrtok - a fast and trainable tokenizer for natural languages------------------------------------------------------------Trtok is a very universal performan
e-oriented tokenizer for pro
essingnatural languages. It reads text and tries to 
orre
tly dete
t senten
eboundaries and divide the text into tokens.Trtok does not implement any spe
ifi
 heuristi
 to perform these tasks,instead it lets the user define rules for potential joining and splitting ofwords into tokens and senten
es. The final de
ision whether to split or joinwords and whether to break senten
es is left to a 
onditional probabilisti
model whi
h is trained from user-supplied annotated data. The way the trainerunderstands the data 
an be extensively 
ustomized by the user who 
an definehis own features and spe
ify whi
h features are signifi
ant for what tokens.1) Tokenization s
hemes-----------------------The user might want to use trtok for pro
essing more than 1 language or forpro
essing 1 language in many ways. These different ways of tokenization aredes
ribed by "tokenization s
hemes". Their definitions reside in the"s
hemes" subdire
tory of the installation dire
tory. Every folder inside"s
hemes" defines a single tokenization s
heme by way of various
onfiguration files.Tokenization s
hemes may be nested to represent a sort of s
heme inheritan
ewhere a s
heme inherits all the 
onfiguration files of its an
estors unlessit redefines them by having a 
onfiguration file of the same name.a) Rough tokenization rulesFiles with a .split file extension must 
ontain pairs of whitespa
edelimited regular expressions. When tokenizing the input, every position inevery word where the prefix leading to the position mat
hes the firstexpression and the suffix following it mat
hes the se
ond expression ismarked as a potential token split and the word is split into two temporaryrough tokens.Files with a .join extension have the same syntax, but they des
ribe twospans of text whi
h may be potentially joined into a single token if foundseparated by whitespa
e.Files with a .begin and a .end extension list 
hara
ters before whi
h, resp.after whi
h, a potential senten
e break is to be marked (and if thispotential senten
e break o

urs within a word, the word is split into tworough tokens). If the newline 
hara
ter is to be a potential senten
ebeginning or ending 
hara
ter, an empty line is expe
ted in either a .beginfile or a .end file.The grammar of the regular expressions in .split and .join files is the oneused by Quex and des
ribed in detail athttp://quex.sour
eforge.net/do
/html/usage/patterns/
ontext-free.html.The .split and .join files may 
ontain 
omments whi
h are lines that beginwith the # symbol. 40



b) User-defined propertiesFiles with a .rep extension 
ontain a single regular expression from thefamily of expressions allowed in PCRE (see p
re.org). A rough token ismarked as having this property if it 
an be mat
hed to the regularexpression.Files with a .listp extension define properties using lists of token types.If a rough token's text is exa
tly the same as a line from a .listp file,then that rough token is marked as having the property defined by that.listp file.
) Feature sele
tionEvery tokenization s
heme must have a file named "features". For ea
h roughtoken in the vi
inity of the potential split/join/senten
e break, itspe
ifies whi
h features are important for the de
ision.A typi
al line starts by de
laring a set of interesting offsets (0 is therough token pre
eding the de
ision point, -1 the one before it, +1 the oneafter it, et
...). These offsets are separated by 
ommas and intervals 
anbe used for 
onvenien
e (e.g. -4,-2..+2,5 sele
ts -4,-2,-1,0,1,2,5).After the offsets 
omes a 
olon and a 
omma separated list of properties.The property names are the filenames of their definitions without theextensions and they are limited to the 
ommon identifier 
hara
ter set[a-zA-Z0-9_℄. The line is 
losed with a terminating semi
olon.Apart from these simple features, it is possible to ask for 
ombinedfeatures whi
h bundle the value of different properties of tokens atdifferent offsets into a single feature value. These are defined on theirown line and are en
losed in parentheses. Inside the parentheses is a "^"separated list of offset:property pairs. If a 
ombined feature takesproperties from a single token only, the parenthesized expression 
anappear on the right-hand side of a typi
al line instead of a simpleproperty name and the offsets within its definition are omitted.Apart from the user-defined properties from the .rep and .listp files, thetokenizer defines the non-binary property "%length" whose value is thelength of the rough tokenizer and the meta-property "%Word" whi
h generatesa property for ea
h rough token type.Example:-2..+2: %Word;-5..5: upper
ase, abbreviation, (starts_with_number ^ ends_with_period);(0:fullstop ^ 1:initial)d) Maxent training parametersMore 
ontrol over the pro
ess of training the probabilisti
 model 
an behad by manipulating the "maxent.params" file. This file is an INI-style
onfiguration file whi
h lets the user set the following parameters, whi
hget passed dire
tly to the training toolkit.event_
utoff=<int> All training events whi
h o

ur lesstimes than event_
utoff are ignored. Default 1.41



n_iterations=<int> How many iterations at most will theiterative method use. Default 15.method_name=lbfgs|gis Whi
h of the two methods L-BFGS or GISis to be used. L-BFGS is re
ommended. Default lbfgs.smoothing_
oeffi
ient=<double> Sigma, the 
oeffi
ient in Gaussiansmoothing. Default 0 (no smoothing).
onvergen
e_toleran
e=<double> The model is regarded as 
onvergentwhen the relative differen
e between the log-likelihood of thesu

eeding models is < 
onvergen
e_toleran
e. Default 1e-05.save_as_binary=false|true Whether to save the file in a binaryformat whi
h is faster to load and smaller if Maxent was 
ompiledwith zlib support. Default false.e) File lists and filename repla
ement regular expressionsFiles [prepare|train|heldout|tokenize|evaluate℄.[fl|fnre℄ are for
onvenien
e only and are des
ribed later.2) Running the tokenizer------------------------a) Different ways of sele
ting inputThe first argument passed to the tokenizer sele
ts its mode, whi
h 
an beeither "prepare", "train", "tokenize" or "evaluate". The se
ond argument isa path relative to the dire
tory "s
hemes" whi
h sele
ts the tokenizations
heme to be used. The rest of the arguments are input files and options.Input files 
an be spe
ified expli
itly on the 
ommand line. More files 
anbe given using the -l (--file-list) option whi
h takes a path to a file andadds every line of it as another input file.When running in prepare mode or tokenize mode, an output file for ea
h filehas to be spe
ified and when running in train mode or evaluate mode, a filewith the annotated version has to be spe
ified. These se
ondary files aresele
ted by taking the input file's path and transforming it using a regularexpression/repla
ement string. The filename regular expression/repla
ementstring is spe
ified using the -r (--filename-regexp) option. The stringslook like repla
ement 
ommands in sed, where the first 
hara
ter 
an be anyASCII 
hara
ter and that 
hara
ter separates the regular expression fromthe repla
ement string and also terminates the entire string. Unlike sed,this spe
ial 
hara
ter 
annot be present anywhere else in the string (noes
aping). The breed of regular expressions used here is the one supportedby PCRE, the repla
ement strings 
ontain the pla
eholders \0, \1... for theentire mat
hed string, first 
aptured sequen
e...Example:trtok train en/simple/brown -l data/brown/train.fl -r "|raw|txt|"If no input file or file lists were given, a default file list named<mode_name>.fl, whi
h is part of the tokenization s
heme, is used. If nofilename regular expression/repla
ement string is given, the one in the42



file named <mode_name>.fnre from the tokenization s
heme is used. In both
ases <mode_name> is expanded to either "prepare", "train", "tokenize" or"evaluate" depending on the 
urrent mode.If no input file or file lists were given and there are no default filelists defined by the tokenization s
heme, then the tokenizer pro
esses thestandard input and writes to the standard output. This is, however, onlypossible for the "prepare" and "tokenize" modes. The standard input/output
ombo 
an also be expli
itly sele
ted by spe
ifying the input file "-" onthe 
ommand line.b) Different modes of exe
utionIn "prepare" mode, the tokenizer reads the input, splits it into roughtokens and then outputs it with all possible splits and senten
e breaksperformed. This format might be handy for manual annotators who then onlyhave to join together parts of tokens and senten
es.In "train" mode, the tokenizer reads both the input and its annotatedversion. It uses the annotated data to get pairs of questions (values offeatures in a given 
ontext surrounding a de
ision point) and answers(whether the de
ision point is to be
ome a joining of tokens, a splittingof tokens or a senten
e break). These pairs are then used to train theprobabilisti
 model and store it in a file under the "build" dire
tory.In "tokenize" mode, the tokenizer relies on the presen
e of an alreadytrained model and uses it to 
lassify every de
ision point in the inputfile and output the tokenized and segmented text.In "evaluate" mode, the tokenizer reads both the input and its annotationas in "train" mode, but now it also queries the trained model for anopinion and 
ompares it with the one found in the annotated data. Thetokenizer outputs a log of every 
ontext and both the predi
ted and 
orre
tout
omes for later analysis. The "analyze" s
ript provided with trtok willlet you read this output and determine the a

ura
y of your system.
) Different optionsIf you laun
h trtok with no 
ommand line arguments, you will get a summaryof all the supported 
ommand line options and their meaning. These in
ludeoptions for setting the en
oding of the input and output files, options for
ontrolling the output (preserving the original tokenization, segmentationor paragraph division), the prepro
essing of input (if entities are to beexpanded for the duration of the tokenization and if they are to be keptexpanded in the output; if XML should be hidden from tokenization), optionsfor logging the 
ontexts and out
omes to a third file and others.

43



Bibliography[1℄ CMake - Cross Platform Make.URL http://
make.org/[2℄ GNU Libtool - The GNU Portable Library Tool.URL http://www.gnu.org/software/libtool/[3℄ IntelR© Threading Building Blo
ks 3.0 for Open Sour
e.URL http://threadingbuildingblo
ks.org/[4℄ LATEX WikiBook / Formatting.URL http://en.wikibooks.org/wiki/LaTeX/Formatting[5℄ The OpenMP API.URL http://openmp.org/wp/[6℄ PCRE - Perl Compatible Regular Expressions.URL http://www.p
re.org/[7℄ re2 - an e�
ient, prin
ipled regular expression library.URL http://
ode.google.
om/p/re2/[8℄ Berger, A.L., Pietra, V.J.D., and Pietra, S.A.D. A maximum en-tropy approa
h to natural language pro
essing. Computational linguisti
s,22(1):39�71, 1996.[9℄ Bird, S., Loper, E., and Klein, E. Natural Language Toolkit.URL http://www.nltk.org/[10℄ Bojar, O. Trainable Tokenizer v.0.1.URL http://ufal.mff.
uni.
z/euromatrixplus/downloads.html[11℄ Dawes, B., Williams, A., Prus, V., Henney, K., Järvi, J., Dimov,P., and Abrahams, D. et al. Boost C++ Libraries (�lesystem, thread,program_options, lexi
al_
ast, ref).URL http://www.boost.org/[12℄ Emerson, T. Se
ond International Chinese Word Segmentation Bakeo�,2005.URL http://www.sighan.org/bakeoff2005/[13℄ Grefenstette, G. and Tapanainen, P. What is a Word, what is a Sen-ten
e?: Problems of Tokenisation. Citeseer, 1994.44

http://cmake.org/
http://www.gnu.org/software/libtool/
http://threadingbuildingblocks.org/
http://en.wikibooks.org/wiki/LaTeX/Formatting
http://openmp.org/wp/
http://www.pcre.org/
http://code.google.com/p/re2/
http://www.nltk.org/
http://ufal.mff.cuni.cz/euromatrixplus/downloads.html
http://www.boost.org/
http://www.sighan.org/bakeoff2005/


[14℄ Kiss, T. and Strunk, J. Unsupervised multilingual senten
e boundary de-te
tion. Computational Linguisti
s, 32(4):485�525, 2006.[15℄ Klyueva, N. and Bojar, O. UMC 0.1: Cze
h-Russian-English MultilingualCorpus. In Pro
. of International Conferen
e Corpus Linguisti
s, pp. 188�195. 2008.URL http://ufal.mff.
uni.
z/euromatrixplus/downloads.html[16℄ Le, Zhang. Maximum entropy modeling toolkit for Python and C++. 2004.URL http://homepages.inf.ed.a
.uk/lzhang10/maxent_toolkit.html[17℄ Low, J.K., Ng, H.T., and Guo, W. A maximum entropy approa
h to Chi-nese word segmentation. In Pro
eedings of the Fourth SIGHAN Workshopon Chinese Language Pro
essing, vol. 1612164. Jeju Island, Korea, 2005.[18℄ Malouf, R. A 
omparison of algorithms for maximum entropy parame-ter estimation. In pro
eedings of the 6th 
onferen
e on Natural languagelearning-Volume 20, pp. 1�7. Asso
iation for Computational Linguisti
s,2002.[19℄ Malouf, R., Baldridge, J., and Osborne, M. The Toolkit for Advan
edDis
riminative Modeling, 2005.URL http://tadm.sour
eforge.net/[20℄ Nasonov, A. �Any interest in io-stream like pipe?� An implementation ofof pipestreams, 2003.URL http://lists.boost.org/Ar
hives/boost/2003/08/51289.php[21℄ Palmer, D.D. and Hearst, M.A. Adaptive multilingual senten
e boundarydisambiguation. Computational Linguisti
s, 23(2):241�267, 1997.[22℄ Rafferty, A., Kleeman, A., Finkel, J., and Manning, C. StanfordClassi�er, 2007.URL http://nlp.stanford.edu/downloads/
lassifier.shtml[23℄ Ratnaparkhi, A. A simple introdu
tion to maximum entropy models fornatural language pro
essing. IRCS Te
hni
al Reports Series, p. 81, 1997.[24℄ Reynar, J.C. and Ratnaparkhi, A. A maximum entropy approa
h toidentifying senten
e boundaries. In Pro
eedings of the �fth 
onferen
e onApplied natural language pro
essing, pp. 16�19. Asso
iation for Computa-tional Linguisti
s, 1997.
45

http://ufal.mff.cuni.cz/euromatrixplus/downloads.html
http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
http://tadm.sourceforge.net/
http://lists.boost.org/Archives/boost/2003/08/51289.php
http://nlp.stanford.edu/downloads/classifier.shtml


[25℄ Riley, M.D. Some appli
ations of tree-based modelling to spee
h and lan-guage. In Pro
eedings of the workshop on Spee
h and Natural Language,pp. 339�352. Asso
iation for Computational Linguisti
s, 1989.[26℄ S
häfer, F.-R. Quex - Fast Universal Lexi
al Analyzer Generator.URL http://quex.sour
eforge.net/

46

http://quex.sourceforge.net/


List of Tables4.1 Bakeo� dataset sizes . . . . . . . . . . . . . . . . . . . . . . . . . 304.2 Number of training iterations for Chinese segmentation . . . . . . 304.3 Development performan
e of Chinese segmenter . . . . . . . . . . 314.4 Final performan
e of Chinese segmenter . . . . . . . . . . . . . . 314.5 Chinese Word Segmentation s
ores . . . . . . . . . . . . . . . . . 314.6 Segmentation performan
e on Cze
h . . . . . . . . . . . . . . . . 324.7 Tokenization performan
e on Cze
h . . . . . . . . . . . . . . . . . 324.8 Segmentation performan
e on English CzEng . . . . . . . . . . . . 324.9 Tokenization performan
e on English CzEng . . . . . . . . . . . . 334.10 Segmentation performan
e on Brown . . . . . . . . . . . . . . . . 334.11 Tokenization performan
e on Brown . . . . . . . . . . . . . . . . . 334.12 Time spent in individual pipeline elements . . . . . . . . . . . . . 364.13 Computational 
omplexity of the Classi�er stage . . . . . . . . . . 364.14 Time spent in individual initialization steps . . . . . . . . . . . . 374.15 Time spent initializing expressed as time spent pro
essing data . . 38

47


	Introduction
	A Survey of Other Solutions
	RE
	MxTerminator
	Riley
	Satz
	Punkt
	Chinese Word Segmentation

	Maximum Entropy Modelling
	Maximum Entropy Models
	Available Implementations

	Implementation
	Overview of the System
	TextCleaner
	RoughTokenizer
	FeatureExtractor
	Classifier
	OutputFormatter
	Encoder

	Modes of Execution
	Training
	Tokenization
	Evaluation
	Preparation

	Rough Tokenization
	Regular Expression Libraries
	Lexical Analyzer Generators
	The Solution
	Technical Implementation

	Classification
	Parallelism
	The Pipeline
	The Input/Output Threads


	Evaluation
	The Accuracy of the System
	Chinese Word Segmentation
	Tokenization of Czech and English

	The Speed of the System
	Parallel Processing
	Initialization Costs


	Conclusion
	User Documentation
	Bibliography

