Exercises to Properties of axiomatic theories

(January 15, 2024)

Exercises

1. Let P and Q be unary and R a binary predicate. Prove that the following sentences are logically valid, but reverting the outermost implication yields (in all cases) a formula that is not logically valid:
$\exists x(P(x) \& Q(x)) \rightarrow \exists x P(x) \& \exists x Q(x)$,
$\forall x P(x) \vee \forall x Q(x) \rightarrow \forall x(P(x) \vee Q(x))$,
$\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)$,
$\forall x(P(x) \rightarrow Q(x)) \rightarrow(\forall x P(x) \rightarrow \forall x Q(x))$,
$\forall x(P(x) \rightarrow Q(x)) \rightarrow(\exists x P(x) \rightarrow \exists x Q(x))$.
2. Which of $\forall x(P(x) \rightarrow \forall y P(y)), \exists x(P(x) \rightarrow \forall y P(y))$ and $\exists x(\exists y P(y) \rightarrow P(x))$ are logically valid sentences?
3. For every sentence from the previous two exercises that is logically valid prove its provability in the Hilbert-style calculus. Use tautological consequences and the fact that all tautologies are provable, but avoid using the predicate completeness theorem (otherwise there would be nothing to do).
4. Show that $\Delta, \psi \models \varphi$ if and only if $\Delta \models \psi \rightarrow \varphi$ for any formulas φ and ψ and any set Δ of formulas.
5. Theories T and S are equivalent if every axiom of S is a consequence of T, and at the same time every axiom of T os a consequence of S. Prove that T and S are equivalent if and only if they have the same models (that is, every model of T is a model of S and vice versa).
6. Let φ be a formula in a language L. Consider the conditions (i) there exists a number n and terms t_{1}, \ldots, t_{n} of L such that $\varphi_{x}\left(t_{1}\right) \vee \ldots \vee \varphi_{x}\left(t_{n}\right)$ is a logically valid formula, and (ii) the formula $\exists x \varphi$ is logically valid. Show that (ii) is a consequence of (i) but (ii) \Rightarrow (i) is not necessarily true.
Hint. Let L be $\{P\}$ and let φ be the formula $P(x) \rightarrow \forall v P(v)$. Since there are no function symbols, t_{1}, \ldots, t_{n} must be variables, say z_{1}, \ldots, z_{n} with possible repetitions. However, no disjunction of the form $\bigvee_{i}\left(P\left(z_{i}\right) \rightarrow \forall v P(v)\right)$ is logically valid.
7. The claim that if φ is open, then conditions (i) and (ii) in the previous exercise are equivalent is true and is known as the Hilbert-Ackermann theorem. This theorem was omitted in the course. Explain that one term would not be enough: if φ is an open formula in L and $\exists x \varphi$ is logically valid, then there may not exist a single term t of L such that $\varphi_{x}(t)$ is logically valid.
Hint. Pick the language $\{P, F\}$ containing a unary predicate and a unary function and consider the formula $P(x) \vee \neg P(F(x))$. The term t must have the form $F^{(m)}(z)$ where z is a variable.
8. For the formula φ from the above hint find an n and terms t_{1}, \ldots, t_{n} of L such that $\varphi_{x}\left(t_{1}\right) \vee \ldots \vee \varphi_{x}\left(t_{n}\right)$ is logically valid.
9. Let the language of T be $\{\in\}$ and let its axioms be
$\forall x \forall y(\forall v(v \in x \equiv v \in y) \rightarrow x=y)$,
$\exists x \forall v \neg(v \in x)$,
$\forall x \forall y \exists z \forall v(v \in x \vee v=y \rightarrow v \in z)$.
(a) Use finite models to show that $\forall x(x \notin x)$ and $\neg \exists x \forall v(v \in x)$ cannot be proved in T.
(b) Prove that none of the axioms of T is provable from the remaining two.
10. Let T be a theory with an empty language and no axioms. Describe all models of T. Find an extension S of T formulated in the same (empty) language such that S is consistent and has no finite models.
11. For each of the structures $\langle\mathrm{N},<\rangle,\langle\mathrm{Z},<\rangle$ a $\langle\mathrm{Q},<\rangle$ find a sentence that is valid in it but is not valid in the remaining two structures. Can also the structures \mathbb{R} and \mathbb{Q} be distinguished by the validity of some sentence? And what about $\langle\mathrm{Z},+\rangle$ and $\langle\mathrm{Q},+\rangle$?
12. Show that the structures $\langle\mathrm{R},<\rangle$ a $\langle\mathrm{R}-\{0\},<\rangle$ are not isomorphic. Prove that they are elementarily equivalent.
Hint. Every nonempty set bounded from above has the least upper bound in $\langle\mathrm{R},<\rangle$. This is not true about $\langle\mathrm{R}-\{0\},<\rangle$. The two structures are models of the same complete theory.
13. Use Vaught's test to show that the theory S from Exercise 10 is complete.
14. Show that if T is equivalent (in the sense of Exercise 5) to some finite set of sentences, then it is equivalent to its own finite subset. Conclude that the theory S from Exercise 10 is not finitely axiomatizable. The theory SUCC is not finitely axiomatizable either.
15. Prove that if a class \mathcal{C} of structures for a language L is axiomatizable and its complement $-\mathcal{C}$ (that is, the class of all structures for L that are not in \mathcal{C}) is axiomatizable as well, then both \mathcal{C} and $-\mathcal{C}$ are finitely axiomatizable.
16. Show that the class of all connected graphs, understood as structures for a language with a binary predicate as the only symbol, is not axiomatizable.
17. Consider the class of all structures $\langle D, P\rangle$ for a language with a unary predicate such that both P and $D-P$ are infinite. Prove that this class is axiomatizable. Is it finitely axiomatizable? For which κ is the corresponding theory κ-categorical?
18. Show that the theory whose axioms are Q1-Q5 is a conservative extension of the theory with axioms Q1-Q3.
19. Use the same method to prove that adding the axioms Q4 and Q5 to SUCC yields a conservative extension of SUCC. Prove the same using the following fact: every consistent extension of a complete theory is a conservative extension. Explain that this fact is true. Prove that also $\operatorname{Th}(\langle\mathrm{N},+, 0, \mathrm{~s}\rangle)$ is a conservative extension of SUCC. Explain that this last claim cannot be proved using the method from the previous exercise: no expansion of the structure $\langle\mathrm{N}, 0, \mathrm{~s}\rangle+\langle\mathrm{Z}, \mathrm{s}\rangle$ is a model of $\operatorname{Th}(\langle\mathrm{N},+, 0, \mathrm{~s}\rangle)$.
Hint. There is no realization of the symbol + such that the sentences $\forall x \exists y(x=y+y \vee x=\mathrm{S}(y+y))$ and $\forall x \forall y \forall z(z+x=z+y \rightarrow x=y)$ are valid.
20. Let γ be the sentence $\forall x(\mathrm{~S}(\mathrm{~S}(\mathrm{~S}(x)))=x \rightarrow \exists y(((y+x)+x)+x=y))$. Prove it in Q. Finish a proof, invented by Jan Urbánek, that Q is not a conservative extension of the theory Q1-Q5.
Hint. To prove γ in Q , work with $y=x \cdot x$. To show Q1-Q5 $\ngtr \gamma$, add three nonstandard elements a, b and c to the structure \mathbb{N} and define that $\mathrm{S}^{\mathcal{M}}(a)=b, \mathrm{~S}^{\mathcal{M}}(b)=c$ and $\mathrm{S}^{\mathcal{M}}(c)=a$. Define $+{ }^{\mathcal{M}}$ so that it extends $+{ }^{\mathbb{N}}$ and satisfies $a+{ }^{\mathcal{M}} a=b+{ }^{\mathcal{M}} a=c$ and $c+{ }^{\mathcal{M}} a=a$.
21. Put $M=\mathrm{N} \cup\{a, b\}$ and let a successor function on M be defined so that the successor of a standard number n, the element a and the element b are $n+1, b$ and a respectively. Show that there are (multiple) ways how to define addition and multiplication on M so that the resulting structure \mathcal{M} is a model of Q .
22. Find out which of the following sentences are provable in Q:
$\forall x(x \leq x)$
$\forall x \forall y(x+y=0 \rightarrow x=0$ \& $y=0)$
$\forall x(x \leq 0 \rightarrow x=0)$
$\forall x \forall y(x \leq y \equiv \mathrm{~S}(x) \leq \mathrm{S}(y))$

$$
\begin{aligned}
& \forall x(0 \leq x) \\
& \forall x(0 \cdot x=0) \\
& \forall x(x \cdot \overline{1}=x) \\
& \forall x \forall y \exists z(x \leq z \& y \leq z) \\
& \forall x \neg(x<x) \\
& \forall x \forall y(x \leq y \rightarrow x<y \vee x=y)
\end{aligned}
$$

$$
\begin{aligned}
& \forall x \forall y(x<y \rightarrow x<\mathrm{S}(y)) \\
& \forall x \forall y(\mathrm{~S}(x)<y \rightarrow x<y) \\
& \forall x \forall y(x \cdot y=0 \rightarrow x=0 \vee y=0) \\
& \forall x(x \leq \overline{1} \rightarrow x=0 \vee x=\overline{1}) \\
& \forall x \forall y \forall z((z+y)+x=z+(y+x))
\end{aligned}
$$

Hint. Unprovability can be proved by a suitable choice of operations in the previous exercise, and just two models are sufficient.
23. Show that every natural number is a definable element of $\langle\mathrm{N},<\rangle$. Furthermore, let R be the relation $\{[a, b] ;|a-b|=1\}$. Prove that every natural number is a definable element of $\langle\mathrm{N}, R\rangle$.
24. Use Post's theorem to prove that if $X \subseteq \mathrm{~N}^{q}$ and $Y \subseteq \mathrm{~N}^{q}$ are $R E$ sets such that $X \cup Y$ is recursive and $X \cap Y=\emptyset$, then both X and Y are recursive.
25. Show that if $f: \mathrm{N} \rightarrow \mathrm{N}$ is a strictly increasing recursive function, then its range is recursive.
26. Prove that if $R \subseteq \mathrm{~N}^{2}$ is an equivalence having only finitely many classes (equivalence classes) and is $R E$, then R must be recursive.
Hint. Let $A_{1} \ldots, A_{n}$ be a list of all equivalence classes of R. Explain in detail the following facts. Every A_{i} is $R E$, its complement is $R E$ as well, and R can be defined in terms of $A_{1} \ldots, A_{n}$ via a recursive condition.
27. A function $f: \mathrm{N}^{q} \rightarrow \mathrm{~N}$ defined as $f\left(n_{1}, \ldots, n_{q}\right)=1$ for $\left[n_{1}, \ldots, n_{q}\right] \in A$ and $f\left(n_{1}, \ldots, n_{q}\right)=0$ for $\left[n_{1}, \ldots, n_{q}\right] \notin A$ is called characteristic function of a set $A \subseteq \mathrm{~N}^{q}$. It is clear that if $\varphi(\underline{x}, y)$ defines the graph of a characteristic function f of A and is Σ_{1}, then $\varphi(\underline{x}, \overline{1})$ defines A and $\varphi(\underline{x}, 0)$ defines $-A$. Thus $A \in \Delta_{1}$. Show that the converse is also true: the characteristic function of a recursive set must be recursive.
28. Show that if A is an r-ary recursive (or $R E$, or Π_{1}) condition and g_{1}, \ldots, g_{r} are recursive functions of q variables, then $\left\{\left[n_{1}, \ldots, n_{q}\right] ; A\left(g_{1}(\underline{n}), \ldots, g_{r}(\underline{n})\right\}\right.$ is recursive (or $R E$, or Π_{1} respectively). Put otherwise, substituting recursive functions into a Δ_{1} (or $R E$, or Π_{1}) condition yields a Δ_{1} (or $R E$, or Π_{1}) condition.
29. Prove that $\operatorname{Thm}(T)=\bigcap\{\operatorname{Thm}(S) ; S$ is a complete extension of $T\}$ holds for any theory T. Conclude that if the number of all complete extensions of T formulated in the same language is finite, and all of them are decidable, then T is decidable. It follows that the theory obtained from DNO by removing the axioms postulating the existence of the greatest and the least individual is decidable.
30. Let T be a recursively axiomatizable extension of Q such that T is formulated in the arithmetic language and is sound (in the sense that $\mathbb{N} \models T$). Find out whether the following claims are true.
(a) If φ and ψ are sentences such that $T \vdash \varphi \vee \psi$, then $T \vdash \varphi$ or $T \vdash \psi$.
(b) if φ and ψ are Σ_{1}-sentences such that $T \vdash \varphi \vee \psi$, then $T \vdash \varphi$ or $T \vdash \psi$.

Hint. In (a), use Gödel's first incompleteness theorem. In (b) apply the Σ-completeness theorem separately to φ and to ψ.
31. In the same situation find out whether the following claims are true.
(a) If $\exists x \varphi(x)$ is an arithmetic sentence such that $T \vdash \exists x \varphi(x)$, then there exists a number n such that $T \vdash \varphi(\bar{n})$.
(b) If $\exists x \varphi(x)$ is an arithmetic sentence such that $T \vdash \exists x \varphi(x)$ and $\varphi \in \Delta_{0}$, then there exists a number n such that $T \vdash \varphi(\bar{n})$.

Hint. In (a) pick a formula $\psi(y) \in \Delta_{0}$ such that $\mathbb{N} \models \forall y \psi(y)$ and $T \nvdash \forall y \psi(y)$. The existence of a formula like that is guaranteed by Gödel's first incompleteness theorem. Then consider the sentence $\exists x \forall y(\psi(y) \vee \neg \psi(x))$.

