
Exercises to Properties of axiomatic theories
(January 15, 2024)

Exercises
1. Let P and Q be unary and R a binary predicate. Prove that the following

sentences are logically valid, but reverting the outermost implication yields
(in all cases) a formula that is not logically valid:
∃x(P (x) &Q(x)) → ∃xP (x) & ∃xQ(x),
∀xP (x) ∨ ∀xQ(x) → ∀x(P (x) ∨Q(x)),
∃x∀yR(x, y) → ∀y∃xR(x, y),
∀x(P (x) →Q(x)) → (∀xP (x) → ∀xQ(x)),
∀x(P (x) →Q(x)) → (∃xP (x) → ∃xQ(x)).

2. Which of ∀x(P (x) → ∀yP (y)), ∃x(P (x) → ∀yP (y)) and ∃x(∃yP (y) → P (x))
are logically valid sentences?

3. For every sentence from the previous two exercises that is logically valid prove
its provability in the Hilbert-style calculus. Use tautological consequences
and the fact that all tautologies are provable, but avoid using the predicate
completeness theorem (otherwise there would be nothing to do).

4. Show that ∆, ψ |= φ if and only if ∆ |= ψ→φ for any formulas φ and ψ and
any set ∆ of formulas.

5. Theories T and S are equivalent if every axiom of S is a consequence of T ,
and at the same time every axiom of T os a consequence of S. Prove that T
and S are equivalent if and only if they have the same models (that is, every
model of T is a model of S and vice versa).

6. Let φ be a formula in a language L. Consider the conditions (i) there exists a
number n and terms t1, . . , tn of L such that φx(t1)∨ . . ∨φx(tn) is a logically
valid formula, and (ii) the formula ∃xφ is logically valid. Show that (ii) is a
consequence of (i) but (ii) ⇒ (i) is not necessarily true.
Hint. Let L be {P} and let φ be the formula P (x)→∀vP (v). Since there are
no function symbols, t1, . . , tn must be variables, say z1, . . , zn with possible
repetitions. However, no disjunction of the form

∨
i(P (zi) → ∀vP (v)) is

logically valid.
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7. The claim that if φ is open, then conditions (i) and (ii) in the previous exer-
cise are equivalent is true and is known as the Hilbert-Ackermann theorem.
This theorem was omitted in the course. Explain that one term would not
be enough: if φ is an open formula in L and ∃xφ is logically valid, then there
may not exist a single term t of L such that φx(t) is logically valid.
Hint. Pick the language {P, F} containing a unary predicate and a unary
function and consider the formula P (x) ∨ ¬P (F (x)). The term t must have
the form F (m)(z) where z is a variable.

8. For the formula φ from the above hint find an n and terms t1, . . , tn of L
such that φx(t1) ∨ . . ∨ φx(tn) is logically valid.

9. Let the language of T be {∈} and let its axioms be
∀x∀y(∀v(v ∈ x ≡ v ∈ y) → x = y),
∃x∀v¬(v ∈ x),
∀x∀y∃z∀v(v ∈ x ∨ v = y → v ∈ z).

(a) Use finite models to show that ∀x(x ̸∈ x) and ¬∃x∀v(v ∈ x) cannot be
proved in T .
(b) Prove that none of the axioms of T is provable from the remaining two.

10. Let T be a theory with an empty language and no axioms. Describe all
models of T . Find an extension S of T formulated in the same (empty)
language such that S is consistent and has no finite models.

11. For each of the structures ⟨N, <⟩, ⟨Z, <⟩ a ⟨Q, <⟩ find a sentence that is valid
in it but is not valid in the remaining two structures. Can also the structures
R and Q be distinguished by the validity of some sentence? And what about
⟨Z,+⟩ and ⟨Q,+⟩?

12. Show that the structures ⟨R, <⟩ a ⟨R − {0}, <⟩ are not isomorphic. Prove
that they are elementarily equivalent.
Hint. Every nonempty set bounded from above has the least upper bound
in ⟨R, <⟩. This is not true about ⟨R − {0}, <⟩. The two structures are
models of the same complete theory.

13. Use Vaught’s test to show that the theory S from Exercise 10 is complete.

14. Show that if T is equivalent (in the sense of Exercise 5) to some finite set of
sentences, then it is equivalent to its own finite subset. Conclude that the
theory S from Exercise 10 is not finitely axiomatizable. The theory SUCC
is not finitely axiomatizable either.
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15. Prove that if a class C of structures for a language L is axiomatizable and its
complement −C (that is, the class of all structures for L that are not in C)
is axiomatizable as well, then both C and −C are finitely axiomatizable.

16. Show that the class of all connected graphs, understood as structures for a
language with a binary predicate as the only symbol, is not axiomatizable.

17. Consider the class of all structures ⟨D,P ⟩ for a language with a unary pred-
icate such that both P and D − P are infinite. Prove that this class is
axiomatizable. Is it finitely axiomatizable? For which κ is the correspond-
ing theory κ-categorical?

18. Show that the theory whose axioms are Q1–Q5 is a conservative extension
of the theory with axioms Q1–Q3.

19. Use the same method to prove that adding the axioms Q4 and Q5 to SUCC
yields a conservative extension of SUCC. Prove the same using the follow-
ing fact: every consistent extension of a complete theory is a conservative
extension. Explain that this fact is true. Prove that also Th(⟨N,+, 0, s⟩) is
a conservative extension of SUCC. Explain that this last claim cannot be
proved using the method from the previous exercise: no expansion of the
structure ⟨N, 0, s⟩+⟨Z, s⟩ is a model of Th(⟨N,+, 0, s⟩).
Hint. There is no realization of the symbol + such that the sentences
∀x∃y(x = y + y ∨ x = S(y + y)) and ∀x∀y∀z(z + x = z + y → x = y) are
valid.

20. Let γ be the sentence ∀x(S(S(S(x))) = x → ∃y(((y + x) + x) + x = y)).
Prove it in Q. Finish a proof, invented by Jan Urbánek, that Q is not a
conservative extension of the theory Q1–Q5.
Hint. To prove γ in Q, work with y = x · x. To show Q1–Q5 ̸⊢ γ, add
three nonstandard elements a, b and c to the structure N and define that
SM(a) = b, SM(b) = c and SM(c) = a. Define +M so that it extends +N

and satisfies a+M a = b+M a = c and c+M a = a.

21. Put M = N ∪ {a, b} and let a successor function on M be defined so that
the successor of a standard number n, the element a and the element b are
n + 1, b and a respectively. Show that there are (multiple) ways how to
define addition and multiplication on M so that the resulting structure M
is a model of Q.

22. Find out which of the following sentences are provable in Q:
∀x(x ≤ x) ∀x∀y(x+ y = 0 → x = 0 & y = 0)
∀x(x ≤ 0 → x = 0) ∀x∀y(x ≤ y ≡ S(x) ≤ S(y))
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∀x(0 ≤ x) ∀x∀y(x < y → x < S(y))
∀x(0 · x = 0) ∀x∀y(S(x) < y → x < y)
∀x(x · 1 = x) ∀x∀y(x · y = 0 → x = 0 ∨ y = 0)
∀x∀y∃z(x ≤ z & y ≤ z) ∀x(x ≤ 1 → x = 0 ∨ x = 1)
∀x¬(x < x) ∀x∀y∀z((z + y) + x = z + (y + x)).
∀x∀y(x ≤ y → x < y ∨ x = y)

Hint. Unprovability can be proved by a suitable choice of operations in the
previous exercise, and just two models are sufficient.

23. Show that every natural number is a definable element of ⟨N, <⟩. Further-
more, let R be the relation { [a, b] ; |a − b| = 1 }. Prove that every natural
number is a definable element of ⟨N, R⟩.

24. Use Post’s theorem to prove that if X ⊆ Nq and Y ⊆ Nq are RE sets such
that X ∪ Y is recursive and X ∩ Y = ∅, then both X and Y are recursive.

25. Show that if f : N → N is a strictly increasing recursive function, then its
range is recursive.

26. Prove that if R ⊆ N2 is an equivalence having only finitely many classes
(equivalence classes) and is RE, then R must be recursive.
Hint. Let A1 . . , An be a list of all equivalence classes of R. Explain in detail
the following facts. Every Ai is RE, its complement is RE as well, and R can
be defined in terms of A1 . . , An via a recursive condition.

27. A function f : Nq → N defined as f(n1, . . , nq) = 1 for [n1, . . , nq] ∈ A and
f(n1, . . , nq) = 0 for [n1, . . , nq] /∈ A is called characteristic function of a
set A ⊆ Nq. It is clear that if φ(x, y) defines the graph of a characteristic
function f of A and is Σ1, then φ(x, 1) defines A and φ(x, 0) defines −A.
Thus A ∈ ∆1. Show that the converse is also true: the characteristic function
of a recursive set must be recursive.

28. Show that if A is an r-ary recursive (or RE, or Π1) condition and g1, . . , gr

are recursive functions of q variables, then { [n1, . . , nq] ; A(g1(n), . . , gr(n)} is
recursive (or RE, or Π1 respectively). Put otherwise, substituting recursive
functions into a ∆1 (or RE, or Π1) condition yields a ∆1 (or RE, or Π1)
condition.

29. Prove that Thm(T ) =
∩

{ Thm(S) ; S is a complete extension of T } holds
for any theory T . Conclude that if the number of all complete extensions of T
formulated in the same language is finite, and all of them are decidable, then
T is decidable. It follows that the theory obtained from DNO by removing
the axioms postulating the existence of the greatest and the least individual
is decidable.
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30. Let T be a recursively axiomatizable extension of Q such that T is formulated
in the arithmetic language and is sound (in the sense that N |= T ). Find out
whether the following claims are true.
(a) If φ and ψ are sentences such that T ⊢ φ ∨ ψ, then T ⊢ φ or T ⊢ ψ.
(b) if φ and ψ are Σ1-sentences such that T ⊢ φ ∨ ψ, then T ⊢ φ or T ⊢ ψ.
Hint. In (a), use Gödel’s first incompleteness theorem. In (b) apply the
Σ-completeness theorem separately to φ and to ψ.

31. In the same situation find out whether the following claims are true.
(a) If ∃xφ(x) is an arithmetic sentence such that T ⊢ ∃xφ(x), then there
exists a number n such that T ⊢ φ(n).
(b) If ∃xφ(x) is an arithmetic sentence such that T ⊢ ∃xφ(x) and φ ∈ ∆0,
then there exists a number n such that T ⊢ φ(n).
Hint. In (a) pick a formula ψ(y) ∈ ∆0 such that N |= ∀yψ(y) and T ̸⊢ ∀yψ(y).
The existence of a formula like that is guaranteed by Gödel’s first incom-
pleteness theorem. Then consider the sentence ∃x∀y(ψ(y) ∨ ¬ψ(x)).
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