Proof Theory of Classical Logic

Its Basics with an Emphasis on Quantitative Aspects

Short course at Notre Dame

Jan 25: Predicate Gentzen Calculus

Outline

Predicate Gentzen calculus

The statement of cut-eliminability theorem

Cut elimination, first steps

Quantifier rules of the calculus GK

Addendum to last talk

A proof of a formula φ is defined as a proof of the sequent $\langle \Rightarrow \varphi \rangle$. A proof of φ from a set Σ of assumptions is a proof of a sequent $\langle \Gamma \Rightarrow \varphi \rangle$ where $\Gamma \subseteq \Sigma$ is finite.

Two specification rules

$$\exists \mathsf{r}: \ \frac{\langle \Gamma \Rightarrow \Delta, \varphi_{\mathsf{x}}(t) \rangle}{\langle \Gamma \Rightarrow \Delta, \exists \mathsf{x} \varphi \rangle} \qquad \qquad \forall \mathsf{I}: \ \frac{\langle \Gamma, \varphi_{\mathsf{x}}(t) \Rightarrow \Delta \rangle}{\langle \Gamma, \forall \mathsf{x} \varphi \Rightarrow \Delta \rangle}$$

where t is a term substitutable for x in φ .

Two generalization rules

$$\exists I: \ \frac{\langle \Gamma, \varphi_x(y) \Rightarrow \Delta \rangle}{\langle \Gamma, \exists x \varphi \Rightarrow \Delta \rangle} \qquad \qquad \exists I: \ \frac{\langle \Gamma \Rightarrow \Delta, \varphi_x(y) \rangle}{\langle \Gamma \Rightarrow \Delta, \forall x \varphi \rangle}$$

where the variable y is substitutable for x in φ , has no free occurences in the principal formula, and has no free occurences in $\Gamma \cup \Delta$.

< 🗗 >

Example, soundness

Example proof

$$\frac{\langle P(v) \Rightarrow P(v), \forall y P(y) \rangle}{\langle \Rightarrow P(v), P(v) \rightarrow \forall y P(y) \rangle} \frac{\langle \forall y P(v), P(z) \Rightarrow \forall y P(y) \rangle}{\langle \Rightarrow P(v), \exists x (P(x) \rightarrow \forall y P(y)) \rangle} \frac{\langle \forall y P(y), P(z) \Rightarrow \forall y P(y) \rangle}{\langle \forall y P(y) \Rightarrow P(z) \rightarrow \forall y P(y) \rangle}$$
$$\frac{\langle \forall y P(y), \forall y P(y) \rangle}{\langle \forall y P(y) \Rightarrow \exists x (P(x) \rightarrow \forall y P(y)) \rangle}$$

Homework

Consider a language $\{P, F\}$ with a unary predicate and a unary function. Find a proof of the sentence $\exists x (P(F(x)) \lor \neg P(x))$.

Definition

A counter-example to a sequent $\langle \Gamma \Rightarrow \Delta \rangle$ is a first-order structure **D** and an evaluation of variables *e* such that **D** $\models \varphi[e]$ for each $\varphi \in \Gamma$, and **D** $\not\models \varphi[e]$ for each $\varphi \in \Delta$. A sequent $\langle \Gamma \Rightarrow \Delta \rangle$ is logically valid if it has no counter-example.

The subformula property

Definition

Subformulas are defined as one would expect, but $\varphi_x(t)$, where t is a term substitutable for x in φ , is considered a subformula of both $\forall x \varphi$ and $\exists x \varphi$.

Theorem (subformula property)

Any formula in a cut-free proof \mathcal{P} is a subformula of some formula in the final sequent of \mathcal{P} . Moreover, if rules for \rightarrow and \neg are never used in \mathcal{P} , then any formula in an antecedent (succedent) of \mathcal{P} is a subformula of some formula in antecedent (or succedent, respectively) of the final sequent of \mathcal{P} .

Regular stuff, cut rank

Definition

A sequent is regular of no variable is simultaneously free and bound in it.

Definition

A proof is regular of no variable is simultaneously free and bound in it, and if moreover, an eigenvariable of a generalization inference never occurs outside the subtree of \mathcal{P} generated by that inference.

Definition

Depth of a proof \mathcal{P} is denoted $d(\mathcal{P})$. Depth $d(\varphi)$ of a formula φ is depth of φ written as a tree. (Cut) rank $r(\mathcal{P})$ of a proof \mathcal{P} is $\sup\{1 + d(\varphi); \varphi \text{ a cut formula in } \mathcal{P}\}.$

< 🗗 >

First steps

Lemma 1 (regularization)

For every proof of a regular sequent there exists a regular proof of the same sequent having the same depth and rank.

Lemma 2 (substitution)

Assume that z is a variable that is not generalized in a proof \mathcal{P} , and no variable of a term t is generalized or quantified in \mathcal{P} . Then $\mathcal{P}_x(t)$, the result of substitution of t for all occurences of z in \mathcal{P} , is a proof.

Lemma 3 (weakening)

Let \mathcal{P} be a proof of a sequent $\langle \Gamma \Rightarrow \Delta \rangle$, let no variable free in $\Gamma \cup \Delta$ be generalized in \mathcal{P} . Then adding Π to all antecedents, and adding Λ to all succedents, yields a proof.

< @ >