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Quantifier rules of the calculus GK

Addendum to last talk
A proof of a formula ϕ is defined as a proof of the
sequent 〈 ⇒ ϕ 〉. A proof of ϕ from a set Σ of assumptions
is a proof of a sequent 〈 Γ ⇒ ϕ 〉 where Γ ⊆ Σ is finite.

Two specification rules

∃r:
〈 Γ ⇒ ∆, ϕx(t) 〉

〈 Γ ⇒ ∆,∃xϕ 〉
∀l:

〈 Γ, ϕx(t) ⇒ ∆ 〉

〈 Γ,∀xϕ ⇒ ∆ 〉

where t is a term substitutable for x in ϕ.

Two generalization rules

∃l:
〈 Γ, ϕx(y) ⇒ ∆ 〉

〈 Γ,∃xϕ ⇒ ∆ 〉
∃l:

〈 Γ ⇒ ∆, ϕx(y) 〉

〈 Γ ⇒ ∆,∀xϕ 〉

where the variable y is substitutable for x in ϕ, has no free
occurences in the principal formula, and has no free occurences
in Γ ∪ ∆.
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Example, soundness

Example proof

〈P(v) ⇒ P(v),∀yP(y) 〉

〈 ⇒ P(v), P(v) →∀yP(y) 〉

〈 ⇒ P(v),∃x(P(x) →∀yP(y)) 〉

〈 ⇒ ∀yP(y),∃x(P(x) →∀yP(y)) 〉

〈 ∀yP(y), P(z) ⇒ ∀yP(y)) 〉

〈 ∀yP(y) ⇒ P(z) →∀yP(y)) 〉

〈 ∀yP(y) ⇒ ∃x(P(x) →∀yP(y)) 〉

〈 ⇒ ∃x(P(x) →∀yP(y)) 〉

Homework
Consider a language {P, F} with a unary predicate and a unary
function. Find a proof of the sentence ∃x(P(F (x)) ∨ ¬P(x)).

Definition
A counter-example to a sequent 〈 Γ ⇒ ∆ 〉 is a first-order
structure D and an evaluation of variables e such that D |= ϕ[e]
for each ϕ ∈ Γ, and D /|= ϕ[e] for each ϕ ∈ ∆.
A sequent 〈 Γ ⇒ ∆ 〉 is logically valid if it has no counter-example.
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The subformula property

Definition
Subformulas are defined as one would expect, but ϕx(t), where
t is a term substitutable for x in ϕ, is considered a subformula of
both ∀xϕ and ∃xϕ.

Theorem (subformula property)

Any formula in a cut-free proof P is a subformula of some formula
in the final sequent of P. Moreover, if rules for → and ¬ are never
used in P, then any formula in an antecedent (succedent) of P
is a subformula of some formula in antecedent (or succedent,
respectively) of the final sequent of P.
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Regular stuff, cut rank

Definition
A sequent is regular of no variable is simultaneously
free and bound in it.

Definition
A proof is regular of no variable is simultaneously free and bound
in it, and if moreover, an eigenvariable of a generalization inference
never occurs outside the subtree of P generated by that inference.

Definition
Depth of a proof P is denoted d(P). Depth d(ϕ) of a formula ϕ is
depth of ϕ written as a tree. (Cut) rank r(P) of a proof P is
sup{ 1 + d(ϕ) ; ϕ a cut formula in P }.
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First steps

Lemma 1 (regularization)

For every proof of a regular sequent there exists a regular proof of
the same sequent having the same depth and rank.

Lemma 2 (substitution)

Assume that z is a variable that is not generalized in a proof P,
and no variable of a term t is generalized or quantified in P.
Then Px(t), the result of substitution of t for all occurences of z

in P, is a proof.

Lemma 3 (weakening)

Let P be a proof of a sequent 〈 Γ ⇒ ∆ 〉, let no variable free
in Γ ∪ ∆ be generalized in P. Then adding Π to all antecedents,
and adding Λ to all succedents, yields a proof.
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