Proof Theory of Classical Logic

Its Basics with an Emphasis on Quantitative Aspects

Short course at Notre Dame

Jan 29: Steps in Cut Elimination

Outline

Depth of formulas and proofs, cut rank

Some technical lemmas

The essential lemmas: inversion and reduction

< 🗗 >

Depth and cut rank, regularization

Addenda

From now on, we assume the following modification of the calculus GK: principal formulas of *initial sequent* must be *atomic*.

Definition

A proof is regular of no variable is simultaneously free and bound in it, and if moreover, an eigenvariable of a generalization inference never occurs outside the subproof of \mathcal{P} generated by that inference.

Definition

Depth of a proof \mathcal{P} is denoted $d(\mathcal{P})$. Depth $d(\varphi)$ of a formula φ is depth of φ written as a tree. (Cut) rank $r(\mathcal{P})$ of a proof \mathcal{P} is $\sup\{1 + d(\varphi); \varphi \text{ a cut formula in } \mathcal{P}\}.$

Lemma 1 (regularization)

For every proof of a regular sequent there exists a regular proof of the same sequent having the same depth and rank.

< 🗗 🕨

Substitution and weakening

Lemma 2 (substitution)

Assume that z is a variable that is not generalized in a proof \mathcal{P} , and no variable of a term t is generalized or quantified in \mathcal{P} . Then $\mathcal{P}_x(t)$, the result of substitution of t for all occurences of z in \mathcal{P} , is a proof.

Lemma 3 (weakening)

Let \mathcal{P} be a proof of a sequent $\langle \Gamma \Rightarrow \Delta \rangle$, let no variable free in $\Gamma \cup \Delta$ be generalized in \mathcal{P} . Then adding Π to all antecedents, and adding Λ to all succedents, yields a proof.

Inversion

Lemma 4 (inversion)

(a) In each line of the following table, if the left sequent has a regular proof, then the right sequent (both right sequents) has a proof of same or lower cut rank and depth:

$\langle \Gamma \Rightarrow \Delta, \varphi \rightarrow \psi \rangle$	$\langle \Gamma, \varphi \Rightarrow \Delta, \psi \rangle$
$\langle \Gamma \Rightarrow \Delta, \varphi \& \psi \rangle$	$\langle \Gamma \Rightarrow \Delta, \varphi \rangle, \langle \Gamma \Rightarrow \Delta, \psi \rangle$
$\langle \Gamma \Rightarrow \Delta, \varphi \lor \psi \rangle$	$\langle \Gamma \Rightarrow \Delta, \varphi, \psi \rangle$
$\langle \Gamma \Rightarrow \Delta, \neg \varphi \rangle$	$\langle \Gamma, \varphi \Rightarrow \Delta \rangle$
$\langle \Gamma, \varphi { ightarrow} \psi \Rightarrow \Delta \rangle$	$\langle \Gamma \Rightarrow \Delta, \varphi \rangle, \langle \Gamma, \psi \Rightarrow \Delta \rangle$
$\langle \Gamma, \varphi \& \psi \Rightarrow \Delta \rangle$	$\langle \Gamma, \varphi, \psi \Rightarrow \Delta \rangle$
$\langle \Gamma, \varphi \lor \psi \Rightarrow \Delta \rangle$	$\langle \Gamma, \varphi \Rightarrow \Delta \rangle, \langle \Gamma, \psi \Rightarrow \Delta \rangle$
$\langle \Gamma, \neg \varphi \Rightarrow \Delta \rangle$	$\langle \Gamma \Rightarrow \Delta, \varphi \rangle.$

(b) If \mathcal{P} is a regular proof of $\langle \Gamma \Rightarrow \Delta, \forall x \varphi \rangle$ (or $\langle \Gamma, \exists x \varphi \Rightarrow \Delta \rangle$) and if no variable of term t is generalized or quantified in \mathcal{P} , then $\langle \Gamma \Rightarrow \Delta, \varphi_x(t) \rangle$ (or $\langle \Gamma, \varphi_x(t) \Rightarrow \Delta \rangle$, respectively) has a proof of same or lower cut rank and depth.

Reduction

Lemma 5 (reduction)

Consider a regular proof \mathcal{P}_0 :

$$\frac{\left\langle \begin{array}{c} \mathcal{P}_{1} \\ \langle \Gamma \Rightarrow \Delta, \theta \rangle \\ \langle \Gamma, \Pi \Rightarrow \Delta, \Lambda \rangle \end{array} \right\rangle}{\left\langle \Gamma, \Pi \Rightarrow \Delta, \Lambda \right\rangle}$$

such that $r(\mathcal{P}_1) \leq d(\theta)$ and $r(\mathcal{P}_2) \leq d(\theta)$. Then $\langle \Gamma, \Pi \Rightarrow \Delta, \Lambda \rangle$ has a proof of rank at most $d(\theta)$ and depth at most $d(\mathcal{P}_1) + d(\mathcal{P}_2)$.

< 🗗 >