
Proof Theory of Classical Logic

Its Basics with an Emphasis on Quantitative Aspects

Short course at Notre Dame

Feb 1: The Cut-Eliminability Theorem



Outline

Reduction and cut lowering lemmas

Cut eliminability, consequences



Essential steps in cut elimination

Lemma 5 (reduction)

Consider a regular proof P0:

〈 Γ ⇒ ∆, θ 〉
A
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〈Π, θ ⇒ Λ 〉
C
C
C
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P2

〈 Γ, Π ⇒ ∆, Λ 〉

such that r(P1) ≤ d(θ) and r(P2) ≤ d(θ). Then 〈 Γ, Π ⇒ ∆, Λ 〉
has a proof of rank at most d(θ) and depth at most d(P1)+d(P2).

Lemma 6 (cut lowering)

Let P be a regular proof with r(P) > 0.
Then there exists a proof P ′ of the same sequent satisfying
r(P ′) < r(P) and d(P ′) ≤ 2d(P).
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Cut-eliminability, upper bounds

Definition (hyper-exponential function)

2y

0 = y , 2y

x+1 = 22y

x .

Theorem (cut eliminability)

For every proof P of a regular sequent there exists a cut-free

proof P ′ of the same sequent satisfying d(P ′) ≤ 2
d(P)
r(P) .

Theorem (Gentzen’s midsequent theorem)

Every provable regular sequent containing only prenex formulas has
a cut-free proof containing a sequent S0 such that

◮ no quantifier inferences are above S0,

◮ no propositional inferences are below S0.

Hypothesis (or, unfinished calculation)

A regular cut-free proof of depth n can be converted to a
“midsequent proof” of depth (n − 1) + 2n−1. So of depth 2n.
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Hilbert-Ackermann theorem

Theorem (Hilbert-Ackermann)

Let ϕ be an open (i.e., quantifier-free) formula such that ∃xϕ is
logically valid. Then there exists a number n and terms t1, . . , tn
such that ϕx(t1) ∨ . . ∨ ϕx(tn) is a tautology.

Homework
Show that the theorem is not true for arbitrary formulas
(possibly containing quantifiers).
Show that one cannot insist on n = 1.
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