Proof Theory of Classical Logic

Its Basics with an Emphasis on Quantitative Aspects

Short course at Notre Dame

Feb 1: The Cut-Eliminability Theorem

Outline

Reduction and cut lowering lemmas

Cut eliminability, consequences

Essential steps in cut elimination

Lemma 5 (reduction)

Consider a regular proof \mathcal{P}_0 :

$$\begin{array}{c|c}
 & & & & & \\
\hline & & &$$

such that $r(\mathcal{P}_1) \leq d(\theta)$ and $r(\mathcal{P}_2) \leq d(\theta)$. Then $\langle \Gamma, \Pi \Rightarrow \Delta, \Lambda \rangle$ has a proof of rank at most $d(\theta)$ and depth at most $d(\mathcal{P}_1) + d(\mathcal{P}_2)$.

Lemma 6 (cut lowering)

Let \mathcal{P} be a regular proof with $r(\mathcal{P}) > 0$. Then there exists a proof \mathcal{P}' of the same sequent satisfying $r(\mathcal{P}') < r(\mathcal{P})$ and $d(\mathcal{P}') \leq 2^{d(\mathcal{P})}$.

Essential steps in cut elimination

Lemma 5 (reduction)

Consider a regular proof \mathcal{P}_0 :

such that $r(\mathcal{P}_1) \leq d(\theta)$ and $r(\mathcal{P}_2) \leq d(\theta)$. Then $\langle \Gamma, \Pi \Rightarrow \Delta, \Lambda \rangle$ has a proof of rank at most $d(\theta)$ and depth at most $d(\mathcal{P}_1) + d(\mathcal{P}_2)$.

Lemma 6 (cut lowering)

Let \mathcal{P} be a regular proof with $r(\mathcal{P}) > 0$. Then there exists a proof \mathcal{P}' of the same sequent satisfying $r(\mathcal{P}') < r(\mathcal{P})$ and $d(\mathcal{P}') \leq 2^{d(\mathcal{P})}$.

Definition (hyper-exponential function) $2_0^y = y, \qquad 2_{x+1}^y = 2^{2_x^y}.$

Theorem (cut eliminability)

For every proof \mathcal{P} of a regular sequent there exists a cut-free proof \mathcal{P}' of the same sequent satisfying $d(\mathcal{P}') \leq 2_{r(\mathcal{P})}^{d(\mathcal{P})}$.

Theorem (Gentzen's midsequent theorem)

Every provable regular sequent containing only prenex formulas has a cut-free proof containing a sequent S_0 such that

- no quantifier inferences are above S_0 ,
- no propositional inferences are below S_0 .

Hypothesis (or, unfinished calculation)

A regular cut-free proof of depth *n* can be converted to a "midsequent proof" of depth $(n-1) + 2^{n-1}$. So of depth 2^n

Definition (hyper-exponential function) $2_0^y = y, \qquad 2_{x+1}^y = 2^{2_x^y}.$

Theorem (cut eliminability)

For every proof \mathcal{P} of a regular sequent there exists a cut-free proof \mathcal{P}' of the same sequent satisfying $d(\mathcal{P}') \leq 2_{r(\mathcal{P})}^{d(\mathcal{P})}$.

Theorem (Gentzen's midsequent theorem)

Every provable regular sequent containing only prenex formulas has a cut-free proof containing a sequent \mathcal{S}_0 such that

- no quantifier inferences are above S_0 ,
- no propositional inferences are below S_0 .

Hypothesis (or, unfinished calculation)

A regular cut-free proof of depth *n* can be converted to a "midsequent proof" of depth $(n-1) + 2^{n-1}$. So of depth 2^n

Definition (hyper-exponential function) $2_0^y = y, \qquad 2_{x+1}^y = 2^{2_x^y}.$

Theorem (cut eliminability)

For every proof $\mathcal P$ of a regular sequent there exists a cut-free proof $\mathcal P'$ of the same sequent satisfying $d(\mathcal P') \leq 2^{d(\mathcal P)}_{r(\mathcal P)}.$

Theorem (Gentzen's midsequent theorem)

Every provable regular sequent containing only prenex formulas has a cut-free proof containing a sequent \mathcal{S}_0 such that

- no quantifier inferences are above \mathcal{S}_{0} ,
- no propositional inferences are below S_0 .

Hypothesis (or, unfinished calculation)

A regular cut-free proof of depth *n* can be converted to a "midsequent proof" of depth $(n-1) + 2^{n-1}$. So of depth 2^n

Definition (hyper-exponential function) $2_0^y = y, \qquad 2_{x+1}^y = 2^{2_x^y}.$

Theorem (cut eliminability)

For every proof $\mathcal P$ of a regular sequent there exists a cut-free proof $\mathcal P'$ of the same sequent satisfying $d(\mathcal P') \leq 2^{d(\mathcal P)}_{r(\mathcal P)}.$

Theorem (Gentzen's midsequent theorem)

Every provable regular sequent containing only prenex formulas has a cut-free proof containing a sequent \mathcal{S}_0 such that

- no quantifier inferences are above \mathcal{S}_{0} ,
- no propositional inferences are below S_0 .

Hypothesis (or, unfinished calculation)

A regular cut-free proof of depth n can be converted to a "midsequent proof" of depth $(n-1) + 2^{n-1}$. So of depth 2^n .

Hilbert-Ackermann theorem

Theorem (Hilbert-Ackermann)

Let φ be an open (i.e., quantifier-free) formula such that $\exists x \varphi$ is logically valid. Then there exists a number *n* and terms t_1, \ldots, t_n such that $\varphi_x(t_1) \lor \ldots \lor \varphi_x(t_n)$ is a tautology.

Homework

Show that the theorem is not true for arbitrary formulas (possibly containing quantifiers). Show that one cannot insist on n = 1.

Hilbert-Ackermann theorem

Theorem (Hilbert-Ackermann)

Let φ be an open (i.e., quantifier-free) formula such that $\exists x \varphi$ is logically valid. Then there exists a number *n* and terms t_1, \ldots, t_n such that $\varphi_x(t_1) \lor \ldots \lor \varphi_x(t_n)$ is a tautology.

Homework

Show that the theorem is not true for arbitrary formulas (possibly containing quantifiers).

Show that one cannot insist on n = 1.