Proof Theory of Classical Logic

Its Basics with an Emphasis on Quantitative Aspects

Short course at Notre Dame

Feb 8: Minimal Depth of a Cut-Free Proof

Outline

Analysis of cut-free proofs of $\langle\,\mathsf{PEX}\,\Rightarrow\,\mathrm{P}(\mathrm{E}^{(n)}(0))\,\rangle$

Inductive formulas and Solovay's shortening method

4 🗗 ▶

Some summary

- (a) A proof $\mathcal P$ of a regular prenex sequent (one containing prenex formulas only) can be converted to a midsequent proof (a cut-free proof in which all propositional steps precede all quantifier steps) of depth $2^{\mathrm{d}(\mathcal P)}_{\mathrm{r}(\mathcal P)+1}$.
- (b) The set PEX contains 10 "mathematical" axioms and 7 identity axioms, prenex formulas only. $\langle PEX \Rightarrow \forall x P(x) \rangle$ and $\langle PEX \Rightarrow \forall x \forall y (P(x) \& P(y) \rightarrow P(x+y)) \rangle$ are examples of unprovable sequents. The sequent $\langle PEX \Rightarrow P(E^{(n)}(0)) \rangle$ is provable, but we need more information about its proof(s).

Minimal depth of a proof of $\langle PEX \Rightarrow P(E^{(n)}(0)) \rangle$

Theorem

Any midsequent proof of $\langle PEX \Rightarrow P(E^{(n)}(0)) \rangle$ has depth at least 2^0_n .

Proof

Let $\mathcal P$ be a midsequent proof of $\langle \operatorname{PEX} \Rightarrow \operatorname{P}(\operatorname{E}^{(n)}(0)) \rangle$. Let $\mathcal S$ be its midsequent, and denote $m=2^0_n$. Succedent of $\mathcal S$ must be $\{\operatorname{P}(\operatorname{E}^{(n)}(0))\}$, and all inferences below $\mathcal S$, i.e. all quantifier inferences in entire $\mathcal P$, must be $\forall I$. We can assume that $\mathcal P$ contains no free variables. So antecedent of $\mathcal S$ contains open sentences of 17 kinds, substitutional instances of 17 axioms of PEX. Each atomic subformula of a formula in $\mathcal S$ has the form $t_1=t_2$ or $\operatorname{P}(t)$, where t_1 , t_2 , and t are closed terms. Let |t| denote the "true" value of a term t, i.e. the number m such that $\mathbf M_0\models \overline m=t$ where $\mathbf M_0$ is the standard (or any) model of PEX.

Minimal depth . . .

Proof (continued)

Put

$$X = \{ |t| ; P(t) \rightarrow P(S(t)) \text{ occurs in } S \text{ and } |t| < m \}.$$

If $X \neq \{0, ..., m-1\}$, fix $j_0 < m$, $j_0 \notin X$, and define a truth evaluation ν as follows:

$$v(t_1 = t_2) = 1 \Leftrightarrow |t_1| = |t_2|,$$

 $v(P(t)) = 1 \Leftrightarrow |t| \leq j_0.$

Then $v(P(E^{(n)}(0))) = 0$, but one can verify that all formulas φ in the antecedent of $\mathcal S$ have $v(\varphi) = 1$. This is a contradiction, $\mathcal S$ is a tautological sequent.

So $X=\{0,m-1\}$, there are at least m different sentences of the form $\mathrm{P}(t) \to \mathrm{P}(\mathrm{S}(t))$ in \mathcal{S} , and the path from \mathcal{S} down to $\langle \operatorname{PEX} \Rightarrow \mathrm{P}(\mathrm{E}^{(n)}(0)) \rangle$ has depth at least m, i.e. 2^0_n .

Working with inductive formulas

Definition

Let T have a language containing 0 and S. A formula $\varphi(x)$ is inductive in T if $T \vdash \varphi(0) \& \forall x (\varphi(x) \to \varphi(S(x)))$.

Definition

Formulas l_0, l_1, l_2, \ldots and J_0, J_1, J_2, \ldots are defined as follows:

$$I_0(x) \equiv P(x),$$

 $J_n(x) \equiv \forall y (I_n(y) \rightarrow I_n(y+x)),$
 $I_{n+1}(x) \equiv J_n(x) \& J_n(E(x)).$

Theorem (Solovay shortening)

For each n, the following 8 sentences are provable in PEX.

- (a) $J_n \subseteq I_n$, J_n contains 0 and is closed under S and +.
- (b) $I_{n+1} \subseteq J_n$, I_{n+1} contains 0 and is closed under S.
- (c) $\forall x (x \in I_{n+1} \to E(x) \in J_n)$.

4 🗇 ▶

√ 🗇 →