Proof Theory of Classical Logic

Its Basics with an Emphasis on Quantitative Aspects

Short course at Notre Dame

Feb 15: A Much Shorter Proof Containing Cuts

Outline

Measuring proofs suggested by Solovay's method

Summary

4 🗗 ▶

Preliminaries

Theorem (about formulas I_n and J_n)

Let $J_n = \{ x ; \forall y \in I_n(y + x \in I_n) \}$, $I_{n+1} = J_n \cap \{ x ; E(x) \in J_n \}$, and $I_0 = P$. Then the following 8 sentences are provable in PEX for each n.

- (a) $J_n \subseteq I_n$, J_n contains 0 and is closed under S and +.
- (b) $I_{n+1} \subseteq J_n$, I_{n+1} contains 0 and is closed under S.
- (c) $\forall x (x \in I_{n+1} \rightarrow E(x) \in J_n)$.

Lemma (identity theorem)

Let \underline{x} and \underline{y} denote x_1, \dots, x_k and y_1, \dots, y_k , let $\varphi(\underline{x})$ be a formula whose all free variables are among x_1, \dots, x_k . Then both sequents

$$\langle \mathsf{PEX} \Rightarrow \forall \underline{x} \forall \underline{y} (\underline{x} = \underline{y} \to (\varphi(\underline{x}) \to \varphi(\underline{x}))) \rangle,$$

 $\langle \mathsf{PEX} \Rightarrow \forall \underline{x} \forall y (\underline{x} = \underline{y} \to (\varphi(\underline{y}) \to \varphi(\underline{x}))) \rangle,$

where $\underline{x} = \underline{y}$ is $x_1 = y_1 \& \ldots \& x_k = y_k$, have a cut-free proof of depth $\mathcal{O}(\mathrm{d}(\varphi))$.

Measuring proofs

Theorem

Each of the eight sentences in the theorem about I_n and J_n has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n)$.

Theorem

The sentence $\forall x(I_{n+1}(x) \to I_n(E(x)))$ has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n)$.

Theorem (main theorem)

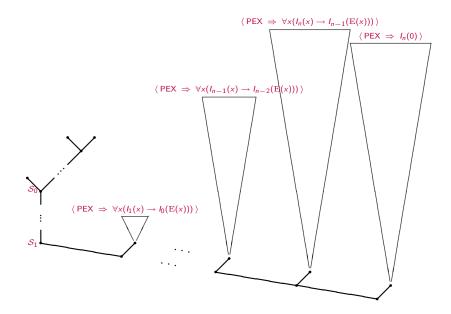
The sentence $P(E^{(n)}(0))$ has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n)$.

Proof of main theorem

Proof

```
Let \mathcal{S}_0 be the sequent \langle \operatorname{PEX}, I_n(0), I_n(0) \rightarrow I_{n-1}(\operatorname{E}(0)), I_n(0) \rightarrow I_{n-1}(\operatorname{E}(0)), \vdots
I_1(\operatorname{E}^{(n-1)}(0)) \rightarrow I_0(\operatorname{E}^{(n)}(0)) \Rightarrow I_0(\operatorname{E}^{(n)}(0)) \rangle. \text{ Then } n \ \forall I \text{ inferences yield the following sequent } \mathcal{S}_1: \\ \langle \operatorname{PEX}, I_n(0), \\ \forall x (I_n(x) \rightarrow I_{n-1}(\operatorname{E}(x))), \\ \vdots \\ \forall x (I_1(x) \rightarrow I_0(\operatorname{E}(x))) \Rightarrow I_0(\operatorname{E}^{(n)}(0)) \rangle. \\ \text{Then } n+1 \text{ cuts yield the desired proof of } \langle \operatorname{PEX} \Rightarrow \operatorname{P}(\operatorname{E}^{(n)}(0)) \rangle. \\ \text{The whole proof looks as depicted on the following frame and has depth } \mathcal{O}(n). \text{ Since } \operatorname{d}(I_n) = 3n \text{ and } \operatorname{d}(J_n) = 3n+2, \text{ the proof has also rank } \mathcal{O}(n). }
```

The proof constructed in the proof of main theorem



4 🗇 ▶

4 🗇 →

Summary

We have a benchmark sequent $\langle \operatorname{PEX} \Rightarrow \operatorname{P}(\operatorname{E}^{(n)}(0)) \rangle$. The cut-eliminability theorem guarantees the existence of its midsequent proof having depth $2_{\mathcal{O}(n)}^{\mathcal{O}(n)}$. We know that all midsequent proof have depth 2_n^0 . So some improvements might be possible, but the hyper-exponential growth in cut elimination theorem is necessary.