Proof Theory of Classical Logic

Its Basics with an Emphasis on Quantitative Aspects

Short course at Notre Dame

Feb 15: A Much Shorter Proof Containing Cuts

Measuring proofs suggested by Solovay's method

Summary

Preliminaries

Theorem (about formulas I_n and J_n)

Let $J_n = \{x ; \forall y \in I_n(y + x \in I_n)\}$, $I_{n+1} = J_n \cap \{x ; E(x) \in J_n\}$, and $I_0 = P$. Then the following 8 sentences are provable in PEX for each *n*.

(a) J_n ⊆ I_n, J_n contains 0 and is closed under S and +.
(b) I_{n+1} ⊆ J_n, I_{n+1} contains 0 and is closed under S.
(c) ∀x(x ∈ I_{n+1} → E(x) ∈ J_n).

Lemma (identity theorem)

Let \underline{x} and \underline{y} denote x_1, \ldots, x_k and y_1, \ldots, y_k , let $\varphi(\underline{x})$ be a formula whose all free variables are among x_1, \ldots, x_k . Then both sequents

$$\langle \mathsf{PEX} \Rightarrow \forall \underline{x} \forall \underline{y} (\underline{x} = \underline{y} \to (\varphi(\underline{x}) \to \varphi(\underline{x}))) \rangle, \\ \langle \mathsf{PEX} \Rightarrow \forall \underline{x} \forall \underline{y} (\underline{x} = \underline{y} \to (\varphi(\underline{y}) \to \varphi(\underline{x}))) \rangle,$$

where $\underline{x} = \underline{y}$ is $x_1 = y_1 \& \ldots \& x_k = y_k$, have a cut-free proof of depth $\mathcal{O}(d(\varphi))$.

Preliminaries

Theorem (about formulas I_n and J_n)

Let $J_n = \{x ; \forall y \in I_n(y + x \in I_n)\}$, $I_{n+1} = J_n \cap \{x ; E(x) \in J_n\}$, and $I_0 = P$. Then the following 8 sentences are provable in PEX for each *n*.

(a) J_n ⊆ I_n, J_n contains 0 and is closed under S and +.
(b) I_{n+1} ⊆ J_n, I_{n+1} contains 0 and is closed under S.
(c) ∀x(x ∈ I_{n+1} → E(x) ∈ J_n).

Lemma (identity theorem)

Let \underline{x} and \underline{y} denote x_1, \ldots, x_k and y_1, \ldots, y_k , let $\varphi(\underline{x})$ be a formula whose all free variables are among x_1, \ldots, x_k . Then both sequents

$$\langle \mathsf{PEX} \Rightarrow \forall \underline{x} \forall \underline{y} (\underline{x} = \underline{y} \to (\varphi(\underline{x}) \to \varphi(\underline{x}))) \rangle, \\ \langle \mathsf{PEX} \Rightarrow \forall \underline{x} \forall \underline{y} (\underline{x} = \underline{y} \to (\varphi(\underline{y}) \to \varphi(\underline{x}))) \rangle,$$

where $\underline{x} = \underline{y}$ is $x_1 = y_1$ & ... & $x_k = y_k$, have a cut-free proof of depth $\mathcal{O}(d(\varphi))$.

Measuring proofs

Theorem

Each of the eight sentences in the theorem about I_n and J_n has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n)$.

Theorem

The sentence $\forall x(I_{n+1}(x) \rightarrow I_n(\mathbf{E}(x)))$ has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n)$.

Theorem (main theorem)

The sentence $\mathrm{P}(\mathrm{E}^{(n)}(0))$ has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n).$

Measuring proofs

Theorem

Each of the eight sentences in the theorem about I_n and J_n has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n)$.

Theorem

The sentence $\forall x(I_{n+1}(x) \rightarrow I_n(E(x)))$ has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n)$.

Theorem (main theorem)

The sentence $\mathrm{P}(\mathrm{E}^{(n)}(0))$ has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n).$

Measuring proofs

Theorem

Each of the eight sentences in the theorem about I_n and J_n has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n)$.

Theorem

The sentence $\forall x(I_{n+1}(x) \rightarrow I_n(E(x)))$ has a proof with depth $\mathcal{O}(n)$ and rank $\mathcal{O}(n)$.

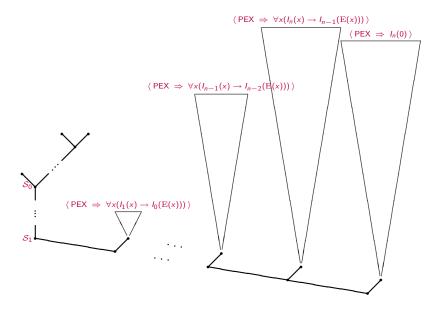
Theorem (main theorem)

The sentence $P(E^{(n)}(0))$ has a proof with depth O(n) and rank O(n).

Proof of main theorem

Proof Let \mathcal{S}_0 be the sequent $\langle PEX, I_n(0), \rangle$ $I_n(0) \to I_{n-1}(E(0)),$ $I_1(E^{(n-1)}(0)) \to I_0(E^{(n)}(0)) \Rightarrow I_0(E^{(n)}(0))$. Then $n \forall I$ inferences yield the following sequent S_1 : $\langle PEX, I_n(0), \rangle$ $\forall x(I_n(x) \rightarrow I_{n-1}(\mathbf{E}(x))),$ $\forall x(I_1(x) \to I_0(\mathbf{E}(x))) \Rightarrow I_0(\mathbf{E}^{(n)}(0)) \rangle.$ Then n + 1 cuts yield the desired proof of $(\text{PEX} \Rightarrow P(E^{(n)}(0)))$. The whole proof looks as depicted on the following frame and has depth $\mathcal{O}(n)$. Since $d(I_n) = 3n$ and $d(J_n) = 3n + 2$, the proof has also rank $\mathcal{O}(n)$.

The proof constructed in the proof of main theorem



Summary

We have a benchmark sequent $\langle PEX \Rightarrow P(E^{(n)}(0)) \rangle$. The cut-eliminability theorem guarantees the existence of its midsequent proof having depth $2_{\mathcal{O}(n)}^{\mathcal{O}(n)}$. We know that all midsequent proof have depth 2_n^0 . So some improvements might be possible, but the hyper-exponential growth in cut elimination theorem is necessary.