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Abstract

Axiomatization of Gödel-Dummett predicate logics S2G, S3G, and PG,
where PG is the weakest logic in which all prenex operations are sound,
and the relationships of these logics to logics known from the literature
are discussed. Examples of non-prenexable formulas are given for those
logics where some prenex operation is not available. Inter-expressibility
of quantifiers is explored for each of the considered logics.

1 Introduction

Mathematical fuzzy logics are particular many-valued logics, usually having the
real interval [0, 1] as its (standard) set of truth values (truth value set). So
does Gödel (Gödel-Dummett, in some sources) predicate fuzzy logic BG (also
denoted G∀, GR, or G[0,1]). Truth function of implication → of the logic BG is
the function ⇒ where a⇒b = 1 if a ≤ b and a⇒b = b otherwise. Truth functions
of symbols &, ∨, ∀, and ∃ are in BG defined naturally as min, max, inf, and
sup respectively. Further important Gödel-Dummett logics are obtained by
retaining the truth functions but restricting the truth value set. For example
the logic Gm for natural m ≥ 2 is based on finite truth value set containing,
besides the extremal values 0 and 1, only m − 2 intermediate values, thus G2

being the classical two-valued logic.
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It is known that BG is axiomatizable, see e.g. [10]. Its Hilbert-style calculus
can be obtained by adding two axiomatic schemas, the propositional prelinearity
schema (ϕ→ ψ) ∨ (ψ→ ϕ) and one quantifier schema

S1: ∀x(ψ ∨ ϕ(x))→ ψ ∨ ∀xϕ(x),

where x is not free in ψ, to the Hilbert calculus for intuitionistic predicate
logic, as defined e.g. in [5]. Each of the logics Gm is axiomatizable as well; its
axiomatization can be obtained by adding the schema

(ϕ1 → ϕ2) ∨ (ϕ2 → ϕ3) ∨ . . ∨ (ϕm → ϕm+1)

to the calculus for the logic BG (see [7]).
Baaz, Preining, and Zach in the paper [1], which is an essential source for

the present paper, define two more Gödel-Dummett logics G↓ and G↑ based
on the countably infinite sets {0} ∪ { 1

k ; k ≥ 1 } and {1} ∪ { 1 − 1
k ; k ≥ 1 }

respectively, and prove that BG ⊆ G↓ ⊆ G↑ =
⋂

m≥2 Gm. They also consider
two more schemas

S2: (ψ→∃xϕ(x))→∃x(ψ→ ϕ(x)),
S3: (∀xϕ(x)→ ψ)→∃x(ϕ(x)→ ψ),

where again x is not free in ψ, and show that S2 is sound w.r.t. G↓ while
both schemas S2 and S3 are sound w.r.t. G↑. It follows from results in [1]
about axiomatizability (of prenex fragments) of logics based on a truth value set
V ⊆ [0, 1] that G↓ and G↑ neither are axiomatizable nor have an axiomatizable
prenex fragment. These results were sharpened by P. Hájek in [4], who proved
that G↓ is non-arithmetical while G↑ is Π2-complete.

Recall that in classical logic prenex operations are expressed in terms of
eight equivalences, i.e. sixteen implications. Out of these implications, thirteen
are sound in intuitionistic logic, and the schemas S1–S3 are the only three of
them that are not intuitionistically sound. This paper is motivated by study of
axiomatically given logics based on the schemas S1–S3, i.e. of logics suggested
by axioms of prenexability. We introduce logics S2G, S3G, and PG defined by
adding the schema S2, or the schema S3, or both of them, to the axioms of the
basic logic BG. Since we find natural to stipulate that the class of Gödel-Dum-
mett logics be closed under schematic extensions, we relax the definition of
Gödel-Dummett logic so that it includes the logics S2G, S3G, and PG (and
DNS, also defined below). So we understand the expression “Gödel-Dummett
logics” of [1] as “Gödel-Dummett logics based on a truth value set”.

We explore the relationships between our axiomatically given logics and the
logics known from the literature, justifying the diagram in Fig. 1 below. To do so
we use semantical methods regardless of the fact that we have no completeness
theorems for most of the logics we consider.
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Concerning prenex operations, the paper [1] says that “G↑ is the only Gödel
logic in which every formula is equivalent to a prenex formula”. Evidently, this
statement is to be understood as saying that among the infinite-valued logics GV

considered in [1], i.e. based on an infinite truth value set V , the logic G↑ is the
only one in which all prenex operations are sound. In our setting it is the
logic PG which is the weakest logic in which all prenex operations are sound.
However, we still find prenexability an interesting topic, because (i) non-sound-
ness of some prenex operation does not automatically entail an existence of a
formula which is not prenexable, and (ii) the existence of a formula which is not
prenexable in the logic G↓ does not seem to be directly deducible from [1]. We
give examples of formulas that are not prenexable in the logics G↓ and S3G.
The question whether there exists a logic G which allows prenexability while
some of the classical prenex operations is not sound in G is one of the problems
we leave open.

Finally we consider inter-expressibility of quantifiers in the logics in ques-
tion. We show that the quantifier ∀ is not expressible in terms of ∃ and logical
connectives even in the three-valued logic G3. On the other hand, and this is
perhaps a little bit more surprising, we show that in a quite wide class of logics
the quantifier ∃ is expressible in terms of ∀ and logical connectives, while in
some other logics including the basic logic BG it is not expressible.

2 Preliminaries, semantics, examples

We deal with predicate formulas built up from atomic formulas using propo-
sitional symbols and quantifiers ∀ and ∃. Atomic formulas are as in classical
first-order predicate logic, built from function and predicate symbols belonging
to certain first-order language L. Propositional symbols are ⊥, →, &, and ∨.
We also use symbols for negation and equivalence: ¬ϕ and ϕ ≡ ψ stand for
ϕ→⊥ and (ϕ→ψ) & (ψ→ϕ) respectively. For omitting parenthesis, we assign
the implication → lower priority than conjunction & and disjunction ∨, but
higher than equivalence ≡. So, for example, ϕ≡ψ1 & ψ2→χ is a shorthand for
ϕ≡ ((ψ1 & ψ2)→ χ).

A truth value set is defined as a closed subset V of the real interval [0, 1]
such that {0, 1} ⊆ V . A many-valued realization of (or a fuzzy structure for)
a language L based on the truth value set V is a pair J = (D, s) where D
is a non-empty domain and s a valuation function which maps n-ary relation
symbols to functions from Dn to V and n-ary function symbols to functions
from Dn to D. Let J (ϕ)[e] denote the truth value of a formula ϕ under an
evaluation e of (free) variables. This function is defined naturally on atomic
formulas, and extends to all formulas via the truth functions of logical symbols.
In Gödel-Dummett logics, the truth function of implication → is the function ⇒
mentioned above: a⇒ b = 1 if a ≤ b and a⇒ b = b otherwise. Truth functions of
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&, ∨, ∀, and ∃ are min, max, inf, and sup respectively, and truth function of the
formula ⊥ is 0. Note that closedness of the truth value set ensures the existence
of infima and suprema, and see [1] for more details. If ϕ(x1, . . , xn) is a formula
whose free variables are among x1, . . , xn and e an evaluation of variables sending
x1, . . , xn to a1, . . , an respectively then we write J (ϕ(x1, . . , xn))[a1, . . , an] or
simply J (ϕ(a1, . . , an)) instead of J (ϕ)[e]. Thus letters from the beginning of
Latin alphabet denote elements of a domain of a fuzzy structure, while letters
from the end denote variables. We also write e.g. a instead of a1, . . , an. So
expressions like ϕ(x) or J (ϕ(a)) are also possible.

A formula ϕ is valid in a fuzzy structure J if J (ϕ)[e] = 1 for each evalua-
tion e of variables. A counter-example for a formula ϕ based on a truth value
set V is a fuzzy structure J based on V and an evaluation e of variables such
that J (ϕ)[e] < 1. A logic is any deductively closed set, i.e. any set of formulas
closed under the modus ponens and generalization rules. It is easy to verify
that the set of all formulas valid in a fuzzy structure J (or valid in a Kripke
structure, as defined below in Section 4) is a logic in this sense. Also the set of
all formulas having no counter-example based on a set V is a logic; we denote
this logic GV and call a (Gödel-Dummett) logic based on a truth value set V .
The set GV is the set of all formulas that are logically true w.r.t. the set V , i.e.
that are logical truths of the logic GV . If a formula or all instances of a schema
are logically true w.r.t. V then we say that the formula or the schema is sound
in (or sound w.r.t.) the logic GV . Evidently, if V2 ⊆ V1 then GV1 ⊆ GV2 . As
already noted, the logics BG, G↓, G↑, and Gm are the logics based on the sets

VR = [0, 1],

V↑ = {1} ∪ { 1− 1
k ; k ≥ 1 },

V↓ = {0} ∪ { 1
k ; k ≥ 1 },

Vm = {0, 1
2 , 2

3 , . . , m−2
m−1 , 1},

respectively. We define a Gödel-Dummett logic as any logic containing the
logic BG.

It is straightforward to verify that the usual axioms and rules of intuitionistic
Hilbert-style calculus, as well as the schema S1 and the prelinearity schema, are
logically true w.r.t. the set VR, i.e. the corresponding calculus is sound w.r.t. the
logic BG. Moreover this calculus is known to be complete w.r.t. the logic BG, so
BG is an axiomatizable logic. One can also verify that the schema S3 is logically
true w.r.t. every set V such that any infimum in V is simultaneously a minimum;
thus S3 is sound in G↑. Similarly, the schema S2 is logically true w.r.t. every V
such that any supremum in V , except possibly 1, is simultaneously a maximum;
thus S2 is sound in both G↓ and G↑.

Example 1 Let {P} be a language with a single unary predicate. Take an
infinite domain D, take V = {0, 1

2} ∪ { 1
2 + 1

k ; k ≥ 2 } and let a valua-
tion function be defined so that J (P (a)) assumes all possible values from V
except 0 and 1

2 . Then J (∀xP (x)) = 1
2 , and J (P (a) → ∀yP (y)) = 1

2 for
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each a ∈ D. So J is a fuzzy structure which is a counter-example for the
sentence ∃x(P (x)→ ∀yP (y)) ∨ ¬∀xP (x). On the other hand, since any supre-
mum in V is simultaneously a maximum, every instance of S2 is valid in J . One
can further check that ∃x(P (x)→∀yP (y)) ∨ ¬∀xP (x) is a logical truth of G↓.

Example 2 While A ∨ ¬A, i.e. the Principle of Excluded Middle, is generally
not a logical truth of the logic BG, the principle ¬¬A ∨ ¬A can be proved
using the prelinearity schema. So if ϕ(x) is any formula then the formulas
∀x(¬¬ϕ(x)∨¬ϕ(x)) and ∀x(¬¬ϕ(x)∨∃y¬ϕ(y)) are provable in BG. Using the
schema S1 we obtain ∀x¬¬ϕ(x)∨ ∃x¬ϕ(x). From this and the fact that ∀x¬ is
intuitionistically equivalent to ¬∃x we easily get ¬¬∃x¬ϕ(x)→∃x¬ϕ(x), which
is thus an interesting example of a logically true schema of the logic BG.

3 Some more schemas and logics

Besides the schemas S1–S3 defined in the introduction we also consider the
following:

C↓: ∃x(∃yϕ(y)→ ϕ(x)),
DNS: ∀x¬¬ϕ(x)→¬¬∀xϕ(x),
E: ∀x(∀y(ϕ(y)→ ϕ(x))→ ϕ(x))→∃xϕ(x),
C↑: ∃x(ϕ(x)→∀yϕ(y)).

The schemas C↓ and C↑ are taken from [1], while DNS is a known principle,
Double Negation Shift. The only really new schema is the schema E. We show
that over the logic BG all the schemas we have mentioned so far fall into only
three non-equivalent groups. Some of the implications are known or folklore.

Theorem 1 (a) The schemas S2, C↓, and E are equivalent over the intuition-
istic predicate logic.
(b) Also the schemas S3 and C↑ are equivalent over the intuitionistic logic.
(c) The schemas DNS and ¬∀xϕ(x)→∃x¬ϕ(x) are equivalent over the logic BG
and follow from the schema S3.

Proof The proofs of S2 ⇒ C↓ and S3 ⇒ C↑ are straightforward (and mentioned
in [1]). We prove C↓ ⇒ E and E ⇒ S2, leaving C↑ ⇒ S3 as an exercise. We
only give informal proofs; the reader should have no difficulties with formalizing
them in the Hilbert calculus.

C↓ ⇒ E. Assume that ∀x(∀y(ϕ(y)→ ϕ(x))→ ϕ(x)). Apply this assumption to
a z satisfying ∃yϕ(y)→ϕ(z); such a z exists by C↓. So ∀y(ϕ(y)→ϕ(z))→ϕ(z).
An intuitionistically sound prenex operation yields (∃yϕ(y) → ϕ(z)) → ϕ(z).
This and the assumption ∃yϕ(y)→ ϕ(z) yields ϕ(z). So indeed, ∃xϕ(x).
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Figure 1: Relationships between Gödel-Dummett logics

E ⇒ S2. Assume that ψ→∃xϕ(x), we want to verify that ∃x(ψ→ϕ(x)). By E,
it is sufficient to verify that

∀x(∀y((ψ→ ϕ(y))→ (ψ→ ϕ(x)))→ (ψ→ ϕ(x))),

which is the same as
∀x(∀y(ϕ(y) & ψ→ ϕ(x)) & ψ→ ϕ(x)).

So let x satisfying ∀y((ϕ(y) & ψ) → ϕ(x)) & ψ be given. We want to verify
that ϕ(x). From ψ and the assumption ψ→∃xϕ(x) we have a z such that ϕ(z),
and we can apply ∀y(. .) to this z. So ϕ(z) & ψ→ϕ(x). Since both ϕ(z) and ψ,
we indeed have ϕ(x).

Finally the implication ⇐ in (c) is easy and the implication ⇒ follows from the
principle ¬¬∃x¬(. .)→∃x¬(. .) mentioned in Example 2 and from the fact that
∀x¬(. .) is intuitionistically equivalent to ¬∃x(. .). Also ¬∀xϕ(x) → ∃x¬ϕ(x)
follows easily from S3 by substituting ⊥ for ψ.

Having Theorem 1, we define some more Gödel-Dummett predicate logics.
The logics S2G and S3G are the extensions of BG by the schemas S2 and S3

respectively. The logic PG (where P stands for “prenex”) is the extension of BG
by both S2 and S3. The logic DNS is the extension of BG by the schema DNS.

Theorem 2 The relationships between the logics BG, S2G, DNS, S3G, PG,
G↓, G↑, and Gm where m ≥ 2 are as shown in Fig. 1, where arrows indicate
strict inclusion.

Proof The fact that DNS ⊆ S3G was stated in Theorem 1(c). The remaining
inclusions are immediate. As to non-inclusions, DNS 6⊆ G↓, S3G 6⊆ DNS, and
S2G 6⊆ S3G are evident or known from [1]. Also the formula from Example 1 is
a formula in S3G−DNS. It remains to prove that G↓ 6⊆ PG. We already know
that if J is based on a truth value set V in which all infima are minima and
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all suprema except possibly 1 are maxima then both S2 and S3 are valid in J .
The problem is that if V satisfies the above condition on infima and suprema
then V is finite or isomorphic to V↑, and then in turn J is a model of G↑, which
is not what we need. So we have to use a more subtle method than (thinking
about characteristic classes of logics) mentioned above or in [1]. We construct
a fuzzy structure J0 based on a set V such that S2 is valid in J0 despite the
fact that V has a subset whose supremum is not a maximum. Then we exhibit
a sentence λ such that J0 is a counter-example for λ, but λ is a logical truth of
the logic G↓.

As in our other examples, J0 will be a structure for the language {P} with a sin-
gle unary predicate symbol. Let the domain D of J0 be the set {ai; i ∈ N}∪{aω},
where aω = 1

2 and ai = 1
2 − 1

i+3 . Put J0(P (aα)) = aα for α ≤ ω. So
each J0(P (b)) equals neither 0 nor 1 and aω is the only limit point of the
range of the function b 7→ J0(P (b)). The set D, and also the set V = D∪{0, 1}
of all truth values, if equipped with the natural topology, are compact spaces.
The set D in fact plays two roles: it is the domain of the structure J0, and
it simultaneously is the set of all intermediate truth values. The key property
of the structure J0 is the following: if the truth values 1

2 and 1 are identified
then the truth functions of all logical symbols, and in turn the truth functions
defined by all formulas, are continuous.

More precisely, let Q be the function from V to D ∪ {0} defined by Q(1) = 1
2 ,

Q(b) = b for b ≤ 1
2 . We claim that if ϕ(x1, . . , xn) is any formula then the

function
[b1, . . , bn] 7→ Q(J0(ϕ(b)))

is continuous as a function from Dn to D ∪ {0}. This fact is evidently true
if ϕ(x1, . . , xn) is one of the formulas ⊥ and P (xj) where 1 ≤ j ≤ n. The
rest is an induction on the number of symbols in ϕ. Assume first that ϕ(x)
is ϕ1(x) ∨ ϕ2(x). Then

Q(J0(ϕ(b))) = Q(max{J0(ϕ1(b)),J0(ϕ2(b))})
= max{Q(J0(ϕ1(b))), Q(J0(ϕ2(b)))}.

Since the function [d1, d2] 7→ max{d1, d2} as a function from (D∪{0})2 to D∪{0}
is continuous, and continuous functions are closed on pairing and substitution,
the function [b1, . . , bn] 7→ Q(J0(ϕ(b))) is continuous. The same argument ap-
plies if the outermost symbol of ϕ is &. If ϕ is ϕ1 → ϕ2 then

Q(J0(ϕ(b))) = Q(J0(ϕ1(b))⇒ J0(ϕ2(b)))
= Q(Q(J0(ϕ1(b)))⇒Q(J0(ϕ2(b)))),

for one can easily check that Q(d1⇒d2) = Q(Q(d1)⇒Q(d2)). Since the function
[d1, d2] 7→ Q(d1⇒d2) is continuous (indeed, this is the crucial point in the whole
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proof), the reasoning is again similar. If ϕ is ∃vψ(x, v) then we have

Q(J0(ϕ(b))) = Q(sup
d
J0(ψ(b, d))) = sup

d
Q(J0(ψ(b, d))).

By the induction hypothesis the function [b, d] 7→ Q(J0(ψ(b, d))) is continuous.
So Q(J0(ϕ(b))) = maxd Q(J0(ψ(b, d))). The rest follows from the fact that if
K and L are compact spaces and f : K×L → [0, 1] is continuous, then also the
function g defined by g(x) = maxv f(x, v), from K to [0, 1], is continuous. In
our case K = Dn and L = D. Reasoning in the case where ϕ is ∀vψ is similar.

Since the function d 7→ Q(J0(ϕ(b, d))) where ϕ is any formula and b1, . . , bn any
parameters is continuous as a function from D to D ∪ {0}, its range is a closed
set. The function d 7→ J0(ϕ(b, d)) may be non-continuous and its range may be
not closed. However, its range must have a maximum. From this fact validity
of the schema S2 in our structure J0 follows. Validity of S3 is immediate since
each infimum in the truth value set is a minimum.

Now as in [1], let x ≺ y be the formula (P (y)→P (x))→P (y). Then J (a ≺ b),
i.e. the truth value of the formula (P (y) → P (x)) → P (y) under an evalua-
tion mapping x and y to a and b respectively, equals 1 if J (P (a)) < J (P (b))
and equals J (P (b)) otherwise, and this is true in all fuzzy structures J . Con-
sider the formula ∃z(a ≺ z & z ≺ b). Its truth value is 1 if there exists
a d satisfying J (P (a)) < J (P (d)) < J (P (b)), and its value is J (P (b)) other-
wise. More specifically, “otherwise” includes two cases: J (P (a)) ≥ J (P (b)),
and J (P (a)) < J (P (b)) with no d such that J (P (d)) is between J (P (a))
and J (P (b)). Let LeftLim(y) be the formula ∀x(x ≺ y → ∃z(x ≺ z & z ≺ y)).
The truth value of the formula LeftLim(b) is 1 if J (P (b)) is minimal among
all J (P (d)), or if J (P (b)) is a limit of values lower than J (P (b)). In the
remaining cases the truth value of LeftLim(b) is J (P (b)). Now let λ be the
sentence

∀y(LeftLim(y)→ P (y) ∨ (P (y)→∀vP (v))).

This sentence is valid in any structure based on the set V↓, but our structure J0

is a counter-example for it.

4 Prenexability, inter-expressibility

In this section we use, in some cases, Kripke structures as an alternative seman-
tics for fuzzy logics. We do not need to investigate the relationship between
fuzzy structures and Kripke semantics. The Kripke semantics defined below
is in fact Kripke semantics for intuitionistic predicate logic simplified for the
purpose of Gödel-Dummett fuzzy logics.

A Kripke frame is a pair 〈W,R〉 such that W is a non-empty set (of nodes,
or worlds) and R a relation on W which is reflexive, transitive, and quasi-linear.
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If 〈W,R〉 is a Kripke frame and αRβ then we say that β is accessible from α
or that α sees β; the relation R is the accessibility relation of a frame 〈W,R〉
or of a Kripke structure 〈W,R, s〉. Quasi-linearity means that no node α sees
two incomparable nodes β1 and β2. A Kripke structure for a language L is a
triple 〈W,R, s〉 such that 〈W,R〉 is a Kripke frame and s a valuation function for
the frame 〈W,R〉 and the language L. A valuation function s for a frame 〈W,R〉
and a language L is a function defined on W such that each s(α) for α ∈ W is a
structure (in the classical sense) for the language L and moreover the following
two conditions are satisfied. First, all structures s(α), for α ∈ W , have the same
domain and the same realizations F s(α) of all function symbols F ∈ L. Second,
whenever R ∈ L is a predicate symbol and α, β ∈ W nodes such that αRβ then
the realizations Rs(α) and Rs(β) of the symbol R in the structures s(α) and s(β)
satisfy Rs(α) ⊆ Rs(β).

An example of a Kripke structure for a language {P,Q} with two unary
predicates P and Q is in Fig. 2. It consists of nodes αi and βi for i ∈ ω,
and αω and βω. The accessibility relation is indicated by arrows, where the
automatic arrows implied by reflexivity and transitivity are not shown. So e.g.
αω sees itself and all αi, and nothing else. Ovals indicate the realizations of the
symbol P , while dotted arcs indicate the realizations of the symbol Q.

A forcing relation of a Kripke structure is a relation ‖− between nodes,
formulas and evaluations of variables. We read α ‖− ϕ[e] as “ϕ is satisfied
(forced) by e in α”. Forcing relation is defined by α ‖− ϕ[e] ⇔ α |= ϕ[e], where
|= has the classical meaning, for atomic formulas ϕ. It extends to formulas whose
outermost symbol is a conjunction, disjunction or any quantifier by conditions
like

α ‖− (ϕ & ψ)[e] ⇔ α ‖− ϕ[e] and α ‖− ψ[e],

(preservability conditions), and it extends to formulas whose outermost symbol
is an implication by a little bit more complicated condition

α ‖− (ϕ→ ψ)[e] ⇔ ∀β(αRβ & β ‖− ϕ[e] ⇒ β ‖− ψ[e]).

For example, in the structure from Fig. 2 we have γ ‖− ∃xQ(x) for each γ
except for γ = αω; we also have βω ‖−/ ∃xP (x) and so βω ‖−/ ∃xQ(x)→∃xP (x).
On the other hand αω ‖− ∃xQ(x)→∃xP (x) because αω does not see βω.

A basic fact about Kripke structures is the persistency condition: if α, β ∈ W
are nodes such that αRβ, and α ‖− ϕ[e], then β ‖− ϕ[e].

A formula ϕ is valid in a Kripke structure 〈W,R, s〉 if α ‖− ϕ[e] for each
node α ∈ W and each evaluation of variables e. If ϕ is not valid in 〈W,R, s〉
then 〈W,R, s〉 is a counter-example for ϕ. If all logical truths of a logic G
are valid in a structure 〈W,R, s〉 then we say that 〈W,R, s〉 is a model of G.
One can check that any Kripke structure is a model of the logic BG; in case
of the schema S1 the argument refers to the fact that all values of the valu-
ation function s have the same domain (we deal with Kripke structures with
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Figure 2: Structure K1 for the logic S3G

constant domains), while in case of the prelinearity schema the argument refers
to quasi-linearity of the accessibility relation. Note that for the sole purpose of
constructing counter-examples quasi-linearity could be replaced by mere linear-
ity of Kripke frames. However, for our purposes the frames with incomparable
nodes will be quite useful.

Theorem 3 There are formulas that are not prenexable in the logic S3G. In
particular, ∃xQ(x)→∃xP (x) is such a formula.

Proof If ∃xQ(x)→∃xP (x) is equivalent to any prenex ϕ then it is also equiv-
alent to a prenex ϕ in the language {P, Q}. If so then for any node γ of
any Kripke structure 〈W,R, s〉 which is a model of the logic S3G we have
γ ‖− (∃xQ(x)→∃xP (x))[e] iff γ ‖− ϕ[e]. We will show that it is not the case: the
structure K1 in Fig. 2 is a model of the logic S3G, the formula ∃xQ(x)→∃xP (x)
is forced in αω (hence, by persistency, in all αi) and not forced in βω, while no
prenex formula has this property.

First we verify that all instances of the schema S3 are valid in K1. Let formulas
ϕ(x) and ψ and an evaluation e of variables (which we do not indicate if conve-
nient) be given. We verify that if γ is any node of K1 such that γ ‖− ∀xϕ→ ψ
then γ ‖− ∃x(ϕ → ψ). If γ ‖− ψ then γ ‖− ϕ(a) → ψ for any a, and so
γ ‖− ∃x(ϕ(x) → ψ). So assume γ ‖−/ ψ. Let γ0 be the maximal node acces-
sible from γ such that γ0 ‖−/ ψ. From γ ‖− ∀xϕ → ψ and γ0 ‖−/ ψ we have
γ0 ‖−/ ∀xϕ. So there exists an a such that γ0 ‖−/ ϕ(a). Now we can verify that
γ ‖− ϕ(a)→ ψ: if δ is such that γRδ and δRγ0 then δ ‖−/ ϕ(a) by persistency,
and if γ0Rδ and δ 6= γ0 then δ ‖− ψ because γ0 was maximal such that γ0 ‖−/ ψ.
So indeed γ ‖− ϕ(a)→ ψ, and thus γ ‖− ∃x(ϕ→ ψ).

Now it is evident that if i ∈ ω, e an evaluation of variables and ϕ an open
formula then αi ‖− ϕ[e] iff βi ‖− ϕ[e]. Let us save this fact as Sublemma 1
and verify the following Sublemma 2: if ϕ is open and e an evaluation of vari-
ables then ∀j∈ω(αj ‖− ϕ[e]) iff βω ‖− ϕ[e]. Indeed, αj ‖− P (a) is true for

10



at most finitely many j and simultaneously βω ‖−/ P (a), also αj ‖− Q(a0) and
βω ‖− Q(a0), and finally for b 6= a0 we have αj ‖−/ Q(b) and βω ‖−/ Q(b). So our
Sublemma 2 holds for atomic ϕ. We continue by an induction on complexity
of ϕ. If βω ‖− ϕ then ∀j(βj ‖− ϕ) by persistency, and ∀j(αj ‖− ϕ) by Sub-
lemma 1; so the implication ⇐ does not need the induction hypothesis. Assume
that ϕ is ψ → χ and βω ‖−/ ϕ. Then there is a γ accessible from βω such that
γ ‖− ψ and γ ‖−/ χ. If γ = βi then αi ‖−/ ψ→χ by Sublemma 1. If γ = βω then,
by the induction hypothesis, ψ is forced in all αi while χ is not; so, using Sub-
lemma 1 again, it is not the case that ∀j(αj ‖− ψ→ χ). The reasoning in cases
where ϕ is a conjunction or a disjunction is straightforward. So Sublemma 2 is
proved.

The final step is to verify Sublemma 3: if ϕ is prenex and e an evaluation of
variables and αω ‖− ϕ[e] then βω ‖− ϕ[e]. This is proved by induction on the
number of quantifiers in the quantifier prefix of ϕ. If this number is zero then
the statement follows from Sublemma 2. The rest is left to the reader.

Theorem 4 There are formulas that are not prenexable in the logic G↓. In
particular, ¬∀xP (x) is such a formula.

Proof The reasoning is similar as in the proof of Theorem 3; now we use the
structure K2 in Fig. 3, with nodes αi where i ∈ ω and a separate node β. Real-
izations of the symbol P is indicated by arcs and an oval. We first (superfluously)
verify that all instances of the schema S2 are valid in K2. So let formulas ϕ(x)
and ψ and a node γ such that γ ‖− ψ→∃xϕ be given. If ψ is forced in no node
accessible from γ then γ ‖− ψ→ϕ(a) for arbitrary a and so γ ‖− ∃x(ψ→ϕ(x)).
Otherwise let γ0 be minimal node accessible from γ such that γ0 ‖− ψ. From
γ ‖− ψ → ∃xϕ and γ0 ‖− ψ we have an a such that γ0 ‖− ϕ(a). It is easy to
verify that γ ‖− ψ→ ϕ(a). So indeed γ ‖− ∃x(ψ→ ϕ(x)).

It is evident that, in the structure K2, the formula ¬∀xP (x) is forced in α0

(and thus in all αi) and not forced in β. We show that no prenex formula
in the language {P} has this property. This follows from the following two
sublemmas. Sublemma 1 says that if ϕ is open and e an evaluation of variables
then ∃j(αj ‖− ϕ[e]) iff β ‖− ϕ[e]. Then Sublemma 2 for prenex formulas says
that if ϕ is prenex and e an evaluation of variables such that ∃j(αj ‖− ϕ[e])
then β ‖− ϕ[e]. Verification of these sublemmas is left to the reader.

Consider a fuzzy structure with domain { ai ; i ∈ ω } and a valuation function
defined by J (P (ai)) = 1

i+1 where i ≥ 0. One can verify that if ϕ is any formula,
e an evaluation of variables and i least index such that, in K2, αi ‖− ϕ[e]
then J (ϕ[e]) = 1

i+1 . If ϕ is nowhere forced then J (ϕ[e]) = 0. It follows that
any formula which is not forced in some αi has a fuzzy counter-example based
on the truth value set V↓. For similar reasons, any formula not satisfied in β has
a (different) fuzzy counter-example based on the set {0, 1} ⊆ V↓. Put together

11



...

6
α2 a0 a1 a2 a3 · · ·

6
α1 a0 a1 a2 a3 · · ·

6
α0 β

®
­a0 a1 a2 a3 · · · a0 a1 a2 a3 · · ·

Figure 3: A structure K2 for the logic S2G

and contraposed, any formula having no fuzzy counter-example based on the
set V↓ is valid in K2. So K2 is a model of the logic G↓.

Theorem 5 (a) In the logic S3G the quantifier ∃ in not expressible in terms
of the remaining logical symbols.
(b) In the logic S2G, however, the quantifier ∃ is expressible in terms of the
remaining symbols.
(c) The quantifier ∀ is not expressible in terms of the remaining logical symbols
in the logic G3.

Proof (b) In S2G the formulas ∃xϕ(x) and ∀x(∀y(ϕ(y) → ϕ(x))→ ϕ(x)) are
equivalent; the implication→ is easy, the implication← follows from Theorem 1.

(a) Turn back to the structure K1 from Fig. 2 and look at the left part with
bottom αω. The formula ∃xP (x) is forced in all αi for i ∈ ω, not forced in αω.
One can verify by induction on complexity of ϕ that if ϕ is a formula in the
language {P} and without an occurrence of ∃ then { αι ; αι ‖− ϕ } either is
finite or contains all nodes from the left part of K1 including αω. Since the
structure K1 is a model of S3G, the formula ∃xP (x) is not S3G-equivalent to
any formula not containing the existential quantifier.

(c) Consider a domain D = {a, b}, a language with a single unary predicate P
and a valuation function defined by J (P (a)) = 1, J (P (b)) = 1

2 . Let ϕ be a for-
mula in the language {P} not containing ∀, let e0 be an evaluation of variables
such that J (ϕ[e0]) 6= 0. Then J (ϕ[e]) 6= 0 for all e; moreover J (ϕ[e]) = 1
whenever all values of e are a. This fact can be proved by induction on com-
plexity of ϕ. Since the formula ∀xP (x) violates the condition in the claim it is
not equivalent to any formula not containing ∀.

Remark 1 In connection with the fact that in G3 the quantifier ∀ is not
expressible in terms of the remaining logical symbols it can be of some interest
that also none of the symbols → and & is in (propositional) G3 expressible in
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terms of the remaining symbols. The proof can be obtained by analyzing the
proof given for the logic BG in [9], for an alternative proof see [8]. M. Dummett
discovered that disjunction is expressible in terms of → and &: the formula
A ∨ B is BG-equivalent to ((A→ B)→ B) & ((B → A)→ A). The formula we
used in Theorem 5 to express the quantifier ∃ in terms of ∀ can be viewed as
reproducing the Dummett trick in predicate logic.

Remark 2 It seems an interesting problem to develop some satisfactory se-
mantics for the logics S2G, S3G, and PG, with respect to which the logics would
be complete. Perhaps the construction in Theorem 2 could be viewed as a hint
for the definition of semantics for the logic PG.

Remark 3 We do not know whether there exists a Gödel-Dummett logic
(in our sense or in the more restrictive sense of the Vienna school) in which
each formula is equivalent to a prenex one while some of the classical prenex
operations is not valid. So we do not know what is the weakest Gödel-Dummett
logic which allows prenexability.

References

[1] M. Baaz, N. Preining, and R. Zach. Characterization of the axiomatizable
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thesis, Vienna University of Technology, Austria, 2003.
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