Do We Need Recursion?

Vítězslav Švejdar

Dept. of Logic, College of Arts, Charles University in Prague http://www.cuni.cz/~svejdar/

Logica 19, Hejnice, June 24-28, 2019

Outline

Recursion in various situations. Is its use necessary?

The expressive power of bounded conditions and formulas

Arithmetization of syntactic notions without recursion

Primitive recursion, course-of-values recursion

The equations $z^{0}=1$ and $z^{x+1}=z^{x} \cdot z$ derive the exponential function $[x, z] \mapsto z^{x}$ by primitive recursion from g and h where $g(z)=1$ and $h(v, x, z)=v \cdot z$.

Primitive recursion, course-of-values recursion

The equations $z^{0}=1$ and $z^{x+1}=z^{x} \cdot z$ derive the exponential function $[x, z] \mapsto z^{x}$ by primitive recursion from g and h where $g(z)=1$ and $h(v, x, z)=v \cdot z$.

The equation $f(x)=g(\mu v(g(v) \notin\{f(0), \ldots, f(x-1)\}))$ derives f from g by course-of-values recursion (and minimization). If $\operatorname{Rng}(g)$ is infinite, then f is one-to-one and $\operatorname{Rng}(f)=\operatorname{Rng}(g)$.

Primitive recursion, course-of-values recursion

The equations $z^{0}=1$ and $z^{x+1}=z^{x} \cdot z$ derive the exponential function $[x, z] \mapsto z^{x}$ by primitive recursion from g and h where $g(z)=1$ and $h(v, x, z)=v \cdot z$.

The equation $f(x)=g(\mu v(g(v) \notin\{f(0), \ldots, f(x-1)\}))$ derives f from g by course-of-values recursion (and minimization). If $\operatorname{Rng}(g)$ is infinite, then f is one-to-one and $\operatorname{Rng}(f)=\operatorname{Rng}(g)$.

Consider the definition: t is a term in the arithmetic language if t is the constant 0 , or t is a variable, or t has one of the forms $\mathrm{S}\left(t_{1}\right),+\left(t_{1}, t_{2}\right)$ or $\cdot\left(t_{1}, t_{2}\right)$ where t_{1} and t_{2} are terms.

Primitive recursion, course-of-values recursion

The equations $z^{0}=1$ and $z^{x+1}=z^{x} \cdot z$ derive the exponential function $[x, z] \mapsto z^{x}$ by primitive recursion from g and h where $g(z)=1$ and $h(v, x, z)=v \cdot z$.

The equation $f(x)=g(\mu v(g(v) \notin\{f(0), . ., f(x-1)\}))$ derives f from g by course-of-values recursion (and minimization). If $\operatorname{Rng}(g)$ is infinite, then f is one-to-one and $\operatorname{Rng}(f)=\operatorname{Rng}(g)$.

Consider the definition: t is a term in the arithmetic language if t is the constant 0 , or t is a variable, or t has one of the forms $\mathrm{s}\left(t_{1}\right),+\left(t_{1}, t_{2}\right)$ or $\cdot\left(t_{1}, t_{2}\right)$ where t_{1} and t_{2} are terms.

Once variables are defined (say, as strings like v1011), a programmer can write a procedure that decides what is and what is not a term by making calls to itself.

Primitive recursion, course-of-values recursion

The equations $z^{0}=1$ and $z^{x+1}=z^{x} \cdot z$ derive the exponential function $[x, z] \mapsto z^{x}$ by primitive recursion from g and h where $g(z)=1$ and $h(v, x, z)=v \cdot z$.

The equation $f(x)=g(\mu v(g(v) \notin\{f(0), . ., f(x-1)\}))$ derives f from g by course-of-values recursion (and minimization). If $\operatorname{Rng}(g)$ is infinite, then f is one-to-one and $\operatorname{Rng}(f)=\operatorname{Rng}(g)$.

Consider the definition: t is a term in the arithmetic language if t is the constant 0 , or t is a variable, or t has one of the forms $\mathrm{s}\left(t_{1}\right),+\left(t_{1}, t_{2}\right)$ or $\cdot\left(t_{1}, t_{2}\right)$ where t_{1} and t_{2} are terms.

Coding of syntactic objects: the term $+(\mathrm{v} 1,0)$ is the number $43 \cdot 128^{6}+40 \cdot 128^{5}+118 \cdot 128^{4}+49 \cdot 128^{3}+44 \cdot 128^{2}+48 \cdot 128+41$. The codes $43,40,118, \ldots$ are taken from modified ascii table.

Primitive recursion, course-of-values recursion

The equations $z^{0}=1$ and $z^{x+1}=z^{x} \cdot z$ derive the exponential function $[x, z] \mapsto z^{x}$ by primitive recursion from g and h where $g(z)=1$ and $h(v, x, z)=v \cdot z$.

The equation $f(x)=g(\mu v(g(v) \notin\{f(0), \ldots, f(x-1)\}))$ derives f from g by course-of-values recursion (and minimization). If $\operatorname{Rng}(g)$ is infinite, then f is one-to-one and $\operatorname{Rng}(f)=\operatorname{Rng}(g)$.

Consider the definition: t is a term in the arithmetic language if t is the constant 0 , or t is a variable, or t has one of the forms $\mathrm{s}\left(t_{1}\right),+\left(t_{1}, t_{2}\right)$ or $\cdot\left(t_{1}, t_{2}\right)$ where t_{1} and t_{2} are terms.

If terms are (identified with) natural numbers, then the above definition is an application of course-of-values recursion.

So where do we meet recursion?

1. In some nice proofs, or in programming languages like in the proof that every infinite recursively enumerable set is the range of a one-to-one recursive function.

So where do we meet recursion?

1. In some nice proofs, or in programming languages like in the proof that every infinite recursively enumerable set is the range of a one-to-one recursive function.
2. In the basic definitions in computability theory: A function is primitive recursive if it can be derived from three initial functions using primitive recursion and composition.
A function is partial recursive if it can be derived from the same initial functions using primitive recursion, composition and minimization.

So where do we meet recursion?

1. In some nice proofs, or in programming languages like in the proof that every infinite recursively enumerable set is the range of a one-to-one recursive function.
2. In the basic definitions in computability theory: A function is primitive recursive if it can be derived from three initial functions using primitive recursion and composition.
A function is partial recursive if it can be derived from the same initial functions using primitive recursion, composition and minimization.
3. In the definitions of syntactic notions in logic: terms, formulas, free and bound occurrences of variables, substitutability of terms, the substitution operation itself.

How to get rid of recursion in definitions? Why?
If f is derived from g by minimization, $f(x)=\mu v(g(x, v)=0)$, then $y=f(x) \Leftrightarrow g(x, y)=0 \& \forall v<y(g(x, v) \neq 0)$.

How to get rid of recursion in definitions? Why?
If f is derived from g by minimization, $f(x)=\mu v(g(x, v)=0)$, then $y=f(x) \Leftrightarrow g(x, y)=0 \& \forall v<y(g(x, v) \neq 0)$.
If f is derived from g and h by composition, $f=h \circ g$, then $y=f(x) \Leftrightarrow \exists v(g(x)=v \& h(v)=y)$.

How to get rid of recursion in definitions? Why?

If f is derived from g by minimization, $f(x)=\mu v(g(x, v)=0)$, then $y=f(x) \Leftrightarrow g(x, y)=0 \& \forall v<y(g(x, v) \neq 0)$.
If f is derived from g and h by composition, $f=h \circ g$, then
$y=f(x) \Leftrightarrow \exists v(g(x)=v \& h(v)=y)$.
However there is nothing in the arithmetic language (in logic) that would directly correspond to recursion.

How to get rid of recursion in definitions? Why?

If f is derived from g by minimization, $f(x)=\mu v(g(x, v)=0)$, then $y=f(x) \Leftrightarrow g(x, y)=0 \& \forall v<y(g(x, v) \neq 0)$.
If f is derived from g and h by composition, $f=h \circ g$, then
$y=f(x) \Leftrightarrow \exists v(g(x)=v \& h(v)=y)$.
However there is nothing in the arithmetic language (in logic) that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])
If the set of initial functions (normally consisting of $x \mapsto x+1$, $x \mapsto 0$ and $\left.\left[x_{1}, . ., x_{k}\right] \mapsto x_{j}\right)$

How to get rid of recursion in definitions? Why?

If f is derived from g by minimization, $f(x)=\mu v(g(x, v)=0)$, then $y=f(x) \Leftrightarrow g(x, y)=0 \& \forall v<y(g(x, v) \neq 0)$.
If f is derived from g and h by composition, $f=h \circ g$, then
$y=f(x) \Leftrightarrow \exists v(g(x)=v \& h(v)=y)$.
However there is nothing in the arithmetic language (in logic) that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])

If the set of initial functions (normally consisting of $x \mapsto x+1$, $x \mapsto 0$ and $\left.\left[x_{1}, . ., x_{k}\right] \mapsto x_{j}\right)$ is extended by adding $[x, y] \mapsto x+y,[x, y] \mapsto x \cdot y$ and e where $\mathrm{e}(x, y)=1$ if $x=y$ and $\mathrm{e}(x, y)=0$ otherwise,

How to get rid of recursion in definitions? Why?

If f is derived from g by minimization, $f(x)=\mu v(g(x, v)=0)$, then $y=f(x) \Leftrightarrow g(x, y)=0 \& \forall v<y(g(x, v) \neq 0)$.
If f is derived from g and h by composition, $f=h \circ g$, then
$y=f(x) \Leftrightarrow \exists v(g(x)=v \& h(v)=y)$.
However there is nothing in the arithmetic language (in logic) that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])

If the set of initial functions (normally consisting of $x \mapsto x+1$, $x \mapsto 0$ and $\left.\left[x_{1}, . ., x_{k}\right] \mapsto x_{j}\right)$ is extended by adding $[x, y] \mapsto x+y,[x, y] \mapsto x \cdot y$ and e where $\mathrm{e}(x, y)=1$ if $x=y$ and $\mathrm{e}(x, y)=0$ otherwise, then primitive recursion can be dropped from the definition.

How to get rid of recursion in definitions? Why?

If f is derived from g by minimization, $f(x)=\mu v(g(x, v)=0)$, then $y=f(x) \Leftrightarrow g(x, y)=0 \& \forall v<y(g(x, v) \neq 0)$.
If f is derived from g and h by composition, $f=h \circ g$, then
$y=f(x) \Leftrightarrow \exists v(g(x)=v \& h(v)=y)$.
However there is nothing in the arithmetic language (in logic) that would directly correspond to recursion.

One possible approach (Oddifreddi [Odi89])
If the set of initial functions (normally consisting of $x \mapsto x+1$, $x \mapsto 0$ and $\left[x_{1}, . ., x_{k}\right] \mapsto x_{j}$) is extended by adding $[x, y] \mapsto x+y,[x, y] \mapsto x \cdot y$ and e where $\mathrm{e}(x, y)=1$ if $x=y$ and $\mathrm{e}(x, y)=0$ otherwise, then primitive recursion can be dropped from the definition.

Another option

Using Δ_{0} conditions.

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions) $\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$;

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions) $\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$; $\forall d \leq(a+b)(d|a \& d| b \Rightarrow d=1)$;

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions) $\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$;
$\forall d \leq(a+b)(d \mid$ a \& $d \mid b \Rightarrow d=1)$;
$a>1 \& \forall d<a(d \mid a \Rightarrow d=1)$, can be written as Prime(a);

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions) $\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$; $\forall d \leq(a+b)(d \mid$ a \& $d \mid b \Rightarrow d=1)$; $a>1 \& \forall d<a(d \mid a \Rightarrow d=1)$, can be written as Prime(a); $\exists r<b(a=b \cdot q+r) \vee(b=0 \& q=0)$ expresses that $q=\operatorname{Div}(a, b)$.

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions) $\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$; $\forall d \leq(a+b)(d \mid$ a \& $d \mid b \Rightarrow d=1)$; $a>1 \& \forall d<a(d \mid a \Rightarrow d=1)$, can be written as Prime(a); $\exists r<b(a=b \cdot q+r) \vee(b=0 \& q=0)$ expresses that $q=\operatorname{Div}(a, b)$. Saying that $r=\operatorname{Mod}(a, b)$ is similar.

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions) $\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$; $\forall d \leq(a+b)(d|a \& d| b \Rightarrow d=1)$; $a>1 \& \forall d<a(d \mid a \Rightarrow d=1)$, can be written as Prime(a); $\exists r<b(a=b \cdot q+r) \vee(b=0 \& q=0)$ expresses that $q=\operatorname{Div}(a, b)$. Saying that $r=\operatorname{Mod}(a, b)$ is similar.
Δ_{0} conditions: a link between computability and logic $R E$ sets are exactly the projections of Δ_{0} conditions.

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions)
$\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$;
$\forall d \leq(a+b)(d|a \& d| b \Rightarrow d=1)$;
$a>1 \& \forall d<a(d \mid a \Rightarrow d=1)$, can be written as Prime(a); $\exists r<b(a=b \cdot q+r) \vee(b=0 \& q=0)$ expresses that $q=\operatorname{Div}(a, b)$. Saying that $r=\operatorname{Mod}(a, b)$ is similar.
Δ_{0} conditions: a link between computability and logic $R E$ sets are exactly the projections of Δ_{0} conditions.
If Δ_{0}-formulas are introduced (defined as a subclass of all arithmetic formulas),

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions)
$\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$;
$\forall d \leq(a+b)(d|a \& d| b \Rightarrow d=1)$;
$a>1 \& \forall d<a(d \mid a \Rightarrow d=1)$, can be written as Prime(a); $\exists r<b(a=b \cdot q+r) \vee(b=0 \& q=0)$ expresses that $q=\operatorname{Div}(a, b)$. Saying that $r=\operatorname{Mod}(a, b)$ is similar.
Δ_{0} conditions: a link between computability and logic $R E$ sets are exactly the projections of Δ_{0} conditions.
If Δ_{0}-formulas are introduced (defined as a subclass of all arithmetic formulas), then $\Delta_{0}=\Delta_{0}^{\mathbb{N}}$.

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions)
$\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$;
$\forall d \leq(a+b)(d \mid$ a \& $d \mid b \Rightarrow d=1)$;
$a>1 \& \forall d<a(d \mid a \Rightarrow d=1)$, can be written as Prime(a); $\exists r<b(a=b \cdot q+r) \vee(b=0 \& q=0)$ expresses that $q=\operatorname{Div}(a, b)$. Saying that $r=\operatorname{Mod}(a, b)$ is similar.
Δ_{0} conditions: a link between computability and logic $R E$ sets are exactly the projections of Δ_{0} conditions.
If Δ_{0}-formulas are introduced (defined as a subclass of all arithmetic formulas), then $\Delta_{0}=\Delta_{0}^{\mathbb{N}}$.

The expressive power of Δ_{0}-formulas
Is the condition $y=z^{x}$ bounded?

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions)
$\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$;
$\forall d \leq(a+b)(d|a \& d| b \Rightarrow d=1)$;
$a>1 \& \forall d<a(d \mid a \Rightarrow d=1)$, can be written as Prime(a); $\exists r<b(a=b \cdot q+r) \vee(b=0 \& q=0)$ expresses that $q=\operatorname{Div}(a, b)$. Saying that $r=\operatorname{Mod}(a, b)$ is similar.
Δ_{0} conditions: a link between computability and logic $R E$ sets are exactly the projections of Δ_{0} conditions.
If Δ_{0}-formulas are introduced (defined as a subclass of all arithmetic formulas), then $\Delta_{0}=\Delta_{0}^{\mathbb{N}}$.

The expressive power of Δ_{0}-formulas
Is the condition $y=z^{x}$ bounded?
Is the set $\left\{y ; \exists x\left(y=2^{x}\right)\right\}$ bounded?

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions)
$\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$;
$\forall d \leq(a+b)(d \mid$ a \& $d \mid b \Rightarrow d=1)$;
$a>1 \& \forall d<a(d \mid a \Rightarrow d=1)$, can be written as Prime(a);
$\exists r<b(a=b \cdot q+r) \vee(b=0 \& q=0)$ expresses
that $q=\operatorname{Div}(a, b)$. Saying that $r=\operatorname{Mod}(a, b)$ is similar.
Δ_{0} conditions: a link between computability and logic $R E$ sets are exactly the projections of Δ_{0} conditions.
If Δ_{0}-formulas are introduced (defined as a subclass of all arithmetic formulas), then $\Delta_{0}=\Delta_{0}^{\mathbb{N}}$.

The expressive power of Δ_{0}-formulas
Is the condition $y=z^{x}$ bounded?
Is the set $\left\{y ; \exists x\left(y=2^{x}\right)\right\}$ bounded? Answer: $\exists x\left(y=2^{x}\right)$ is equivalent to

Δ_{0} conditions, Δ_{0}-formulas

Examples of Δ_{0} conditions (bounded conditions)
$\exists d \leq b(d \cdot a=b)$, can be written as $a \mid b$;
$\forall d \leq(a+b)(d \mid$ a \& $d \mid b \Rightarrow d=1)$;
$a>1 \& \forall d<a(d \mid a \Rightarrow d=1)$, can be written as Prime(a);
$\exists r<b(a=b \cdot q+r) \vee(b=0 \& q=0)$ expresses that $q=\operatorname{Div}(a, b)$. Saying that $r=\operatorname{Mod}(a, b)$ is similar.
Δ_{0} conditions: a link between computability and logic $R E$ sets are exactly the projections of Δ_{0} conditions.
If Δ_{0}-formulas are introduced (defined as a subclass of all arithmetic formulas), then $\Delta_{0}=\Delta_{0}^{\mathbb{N}}$.
The expressive power of Δ_{0}-formulas
Is the condition $y=z^{x}$ bounded?
Is the set $\left\{y ; \exists x\left(y=2^{x}\right)\right\}$ bounded? Answer: $\exists x\left(y=2^{x}\right)$ is equivalent to $\forall v \leq y(v \mid y \rightarrow(v=1 \vee 2 \mid v))$.

Exponentiation, i.e. the condition $y=z^{x}$

100000000000000000000100000000010000101 w
$\uparrow \uparrow$
r_{2}
r_{1}

Exponentiation, i.e. the condition $y=z^{x}$

Exponentiation, i.e. the condition $y=z^{x}$

Let $\operatorname{ExpW}(y, x, z, u, v, w)$ be a formula (which obviously is Δ_{0}) that describes this date structure. It says that if an item in u is t and the corresponding item in v is s, then either the next items are $2 t$ and s^{2}, or they are $2 t+1$ and $s^{2} \cdot z$, etc.

Exponentiation, i.e. the condition $y=z^{x}$

Let $\operatorname{ExpW}(y, x, z, u, v, w)$ be a formula (which obviously is Δ_{0}) that describes this date structure. It says that if an item in u is t and the corresponding item in v is s, then either the next items are $2 t$ and s^{2}, or they are $2 t+1$ and $s^{2} \cdot z$, etc. Then the formula

$$
\begin{aligned}
& \exists u \exists v \exists w \operatorname{ExpW}(y, x, z, u, v, w) \vee \\
& \qquad \vee(x=0 \& y=1) \vee(x \neq 0 \& z<2 \& y=z)
\end{aligned}
$$

expresses that $y=z^{x}$.

Exponentiation, i.e. the condition $y=z^{x}$

Let $\operatorname{ExpW}(y, x, z, u, v, w)$ be a formula (which obviously is Δ_{0}) that describes this date structure. It says that if an item in u is t and the corresponding item in v is s, then either the next items are $2 t$ and s^{2}, or they are $2 t+1$ and $s^{2} \cdot z$, etc. Then the formula

$$
\begin{aligned}
& \exists u \exists v \exists w \operatorname{ExpW}(y, x, z, u, v, w) \vee \\
& \qquad \vee(x=0 \& y=1) \vee(x \neq 0 \& z<2 \& y=z)
\end{aligned}
$$

expresses that $y=z^{x}$. The number w does not exceed y^{3}.

More Δ_{0}-formulas, strings

$\mathrm{NPB}(x)=y$, the number of positive bits in the binary expansion of x is y (Appendix).

More Δ_{0}-formulas, strings

$\operatorname{NPB}(x)=y$, the number of positive bits in the binary expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

More Δ_{0}-formulas, strings

$\operatorname{NPB}(x)=y$, the number of positive bits in the binary expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

Length of a string w : the least z such that $w<128^{z}$.

More Δ_{0}-formulas, strings

$\operatorname{NPB}(x)=y$, the number of positive bits in the binary expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.

Length of a string w : the least z such that $w<128^{z}$.
Concatenation of two strings: $w_{1} \cdot 128^{\mathrm{Lh}\left(w_{1}\right)}+w_{2}$.

More Δ_{0}-formulas, strings

$\operatorname{NPB}(x)=y$, the number of positive bits in the binary expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.
Length of a string w : the least z such that $w<128^{z}$.
Concatenation of two strings: $w_{1} \cdot 128^{\mathrm{Lh}\left(w_{1}\right)}+w_{2}$.

Number of occurrences of a character: if w is the number $83 \cdot 128^{6}+40 \cdot 128^{5}+83 \cdot 128^{4}+40 \cdot 128^{3}+48 \cdot 128^{2}+41 \cdot 128+41$, then $\operatorname{NOcc}(48, w)=1$ and $\operatorname{NOcc}(41, w)=2$.

More Δ_{0}-formulas, strings

$\operatorname{NPB}(x)=y$, the number of positive bits in the binary expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.
Length of a string w : the least z such that $w<128^{z}$.
Concatenation of two strings: $w_{1} \cdot 128^{\mathrm{Lh}\left(w_{1}\right)}+w_{2}$.

Number of occurrences of a character: if w is the number $83 \cdot 128^{6}+40 \cdot 128^{5}+83 \cdot 128^{4}+40 \cdot 128^{3}+48 \cdot 128^{2}+41 \cdot 128+41$, then $\operatorname{NOcc}(48, w)=1$ and $\operatorname{NOcc}(41, w)=2$. We can also write $\operatorname{NOcc}(0, S(S(0)))=1$ and $\operatorname{NOcc}(), S(S(0)))=2$.

More Δ_{0}-formulas, strings

$\operatorname{NPB}(x)=y$, the number of positive bits in the binary expansion of x is y (Appendix).

Being a string: no digit in the 128-ary notation is zero.
Length of a string w : the least z such that $w<128^{z}$.
Concatenation of two strings: $w_{1} \cdot 128^{\mathrm{Lh}\left(w_{1}\right)}+w_{2}=w_{1} w_{2}$.

Number of occurrences of a character: if w is the number $83 \cdot 128^{6}+40 \cdot 128^{5}+83 \cdot 128^{4}+40 \cdot 128^{3}+48 \cdot 128^{2}+41 \cdot 128+41$, then $\operatorname{NOcc}(48, w)=1$ and $\operatorname{NOcc}(41, w)=2$. We can also write $\operatorname{NOcc}(0, S(S(0)))=1$ and $\operatorname{NOcc}(), S(S(0)))=2$.

Terms (in the arithmetic language)

A string w is balanced if $\operatorname{Lh}(w) \geq 2, \operatorname{NOcc}((, w)=\operatorname{NOcc}(), w)$, and $\operatorname{NOcc}((, u)>\operatorname{NOcc}(), u)$ for any proper initial segment u of w. Example: (()()). Non-examples: v1011 and ()().

Terms (in the arithmetic language)

A string w is balanced if $\operatorname{Lh}(w) \geq 2, \operatorname{NOcc}((, w)=\operatorname{NOcc}(), w)$, and $\operatorname{NOcc}((, u)>\operatorname{NOcc}(), u)$ for any proper initial segment u of w. Example: (()()). Non-examples: v1011 and ()().

Quasiterm is any variable, the single-letter string 0 , or any string of the form $S(w),+(w)$ or $\cdot(w)$ where (w) is a balanced string. Examples: +((0)) and $\mathrm{S}(()()())$.

Terms (in the arithmetic language)

A string w is balanced if $\operatorname{Lh}(w) \geq 2, \operatorname{NOcc}((, w)=\operatorname{NOcc}(), w)$, and $\operatorname{NOcc}((, u)>\operatorname{NOcc}(), u)$ for any proper initial segment u of w. Example: (()()). Non-examples: v1011 and ()().

Quasiterm is any variable, the single-letter string 0 , or any string of the form $S(w),+(w)$ or $\cdot(w)$ where (w) is a balanced string. Examples: $+((0))$ and $S(()()())$.

A quasiterm t is a term (abbreviated Term (t)) if every balanced substing (w) of t is either immediately preceded by the letter s and w is a quasiterm, or it is immediately preceded by + or . and w has the form u, v where u and v are quasiterms.

Terms (in the arithmetic language)

A string w is balanced if $\operatorname{Lh}(w) \geq 2, \operatorname{NOcc}((, w)=\operatorname{NOcc}(), w)$, and $\operatorname{NOcc}((, u)>\operatorname{NOcc}(), u)$ for any proper initial segment u of w. Example: (()()). Non-examples: v1011 and ()().

Quasiterm is any variable, the single-letter string 0 , or any string of the form $S(w),+(w)$ or $\cdot(w)$ where (w) is a balanced string. Examples: +((0)) and $S(()()())$.

A quasiterm t is a term (abbreviated Term (t)) if every balanced substing (w) of t is either immediately preceded by the letter s and w is a quasiterm, or it is immediately preceded by + or . and w has the form u, v where u and v are quasiterms.

Properties of terms provable in PA: Any variable and the string 0 are terms. If t_{1} and t_{2} are terms, then $s\left(t_{1}\right),+\left(t_{1}, t_{2}\right)$ and $\cdot\left(t_{1}, t_{2}\right)$ are terms. Any term has one the forms $\mathrm{S}\left(t_{1}\right),+\left(t_{1}, t_{2}\right)$ or $\cdot\left(t_{1}, t_{2}\right)$ unless it is a variable or the string 0.

Appendix: the number of positive bits

Work with a summation tree w for a number x :

$$
\begin{array}{rrr}
0000000 \overbrace{1011100101110101111001111} & 0 \\
00000001011000011001011010001010 & 1 \\
000001011001011011010100 & 2 \\
0001010001100110 & 3 \\
0010101100 & 4 \\
10001 & 5
\end{array}
$$

where the bits (of the single number w) are split to several lines for better readability. It can be checked that $y=\operatorname{NPB}(x)$ is a Δ_{0}-formula.
In the above example, the summation tree witnesses the fact that the number of positive bits in the number 24308687 is 17 .

References

围 J. H. Bennet. On Spectra. Dissertation, Princeton University, Princeton, NJ, 1962.

- S. Feferman. Arithmetization of metamathematics in a general setting. Fundamenta Mathematicae, 49:35-92, 1960.P. Hájek and P. Pudlák. Metamathematics of First Order Arithmetic. Springer, 1993.
© P. Odifreddi. Classical Recursion Theory. North-Holland, 1989.
- P. Pudlák. A definition of exponentiation by a bounded arithmetical formula. Comm. Math. Univ. Carolinae, 24(4):667-671, 1983.

