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Abstract

We review some aspects of the history of modern Czech logic, with an emphasis
on the role of Petr Vopěnka and Petr Hájek in the earlier stage of their careers.
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1 Introduction
This paper is devoted to two distinguished Czech logicians, Petr Hájek and Petr
Vopěnka. While Petr Hájek is well-known everywhere and has thousands of citations
to his works in the WoS database, Petr Vopěnka is much less known. He did have
some contacts in Poland and in Russia, but he did not travel much, and almost never
left the Russia-dominated part of the world, and thus (as I was told by Petr Hájek)
some of the people who knew his name even suspected that he might be a virtual
person, much like Nicholas Bourbaki.

Both Hájek and Vopěnka had a major influence on modern Czech (and world)
logic. In this paper we will review some of their results and achievements. We will
also mention their motivations and some social aspects of their work, and try to
say something about their philosophical background. Vopěnka, though he had fewer
Ph.D. students and fewer citations than Hájek, was nonetheless a key figure in the
history of logic. We think that his early work can serve as a subject matter of an
interesting historical research project. This paper could be viewed as an early step
in such research. However, what is written here is based more on personal memories
than on serious study of sources.

∗I would like to thank Bohuslav Balcar, Tomáš Jech, Peter Vojtáš, Derek von Barandy and Eva
Ullrichová for useful comments, and for remarks that improve readability.
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2 Some genealogy
Petr Hájek (1940–2016) was officially a student of Ladislav Svante Rieger, an al-
gebraic logician who collaborated for example with Helena Rasiowa and Roman
Sikorski. Among other things, Rieger invented the Rieger-Nishimura lattice (or
Rieger-Nishimura ladder), a beautiful structure of infinitely many non-equivalent
intuitionistic propositional formulas built up from a single atom: if the atom is p,
then the bottom formulas in the ladder are ⊥, p, ¬p, p ∨ ¬p, ¬¬p, ¬¬p → p,
¬p ∨ ¬¬p, . . . The same structure was later independently invented by Nishimura.
Rieger was also aware of the existence of nonstandard models of Peano arithmetic,
which was by no means commonplace in the 1950s. Vopěnka was not sure about the
details and origin of the proof known to Rieger, but thought that the construction
was in fact Skolem’s. A visitor of the Czech Republic may notice Rieger streets and
Rieger park in Prague and in other cities; these are named after František Ladislav
Rieger, who was active in the Czech national movement in the 19th century and was
the great-grandfather of Rieger the mathematician.

Rieger (1916–1963) worked with both Vopěnka and Hájek, but he died soon after
Hájek became his student. Hájek then collaborated with Vopěnka and never failed
to mention that it was in fact Vopěnka who was his teacher.

Petr Vopěnka (1936–2015) would not call himself a logician: his original research
interests, lasting in a sense through his entire life, were geometry and topology. He
was a student (the last student) of Czech topologist Eduard Čech, who strongly
influenced him and “showed him how to do mathematics”. Čech is known by Čech
cohomology, and some Czech mathematicians believe that it was he who invented
Stone (or Čech-Stone) compactification. Vopěnka, when asked about it, once ex-
plained that as to Čech and Stone one cannot really tell which results should be
attributed to whom: they worked together and were in friendly and frequent con-
tact.

3 Vopěnka’s set theory seminar
During the 1960s Vopěnka ran a seminar devoted to set theory. It was known as
Vopěnka’s seminar because Vopěnka was much more than an organizer. The seminar
took place at the School of Mathematics and Physics of Charles University every
Monday afternoon. Its participants usually waited to hear what Vopěnka was able
to invent during the weekend and (I am told) during the late Sunday night, and he
managed to stimulate research and suggest problems that they found meaningful.

The participants of the seminar were people who later became known as experts
in set theory and in other fields, for example Bohuslav Balcar, Petr Hájek, Karel
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Hrbáček, Tomáš Jech, Karel Příkrý, Antonín Sochor and Petr Štepánek. Jiří Polívka
and Oswald Demuth were not really set theorists, but it is important to mention
them, too. Demuth studied in Russia and worked (very successfully) in constructivist
mathematics done in the Russian style. He probably did not attend Vopěnka’s
seminar (indeed, set theory was not consistent with his philosophical views) but
was in contact with Vopěnka and can be counted among his group. Polívka was a
philosopher. In those times Vopěnka was not only a respected leader of a research
group—at the School of Mathematics he was also one of the decision makers. He
established a new department and became its head, founded a field of study in
which the students of mathematics could specialize (its official title was “theoretical
cybernetics”, but to large extent it was logic), and he had a say in hiring. He wanted
to have a philosopher (i.e., Polívka) in his group, and had the power to make it
happen. Two members of the group, Hájek and Sochor, were officially affiliated
with the Czechoslovak Academy of Sciences, which in those times was a research
institution without study programs, but with the right to award Ph.D. degrees. The
communist regime became more and more liberal in the 1960s. Nevertheless, Hájek
and Sochor could not work at the university because they were known to be active
Christians (an Evangelical and a Catholic respectively). Hájek even served as an
organist in his church. The different official employers had no impact on the research
interests of Hájek and Sochor, who normally participated in the work of the seminar.

Hájek was familiar with the logical literature and probably played the role of a
set theorist who knew a lot about logic. In general, he put emphasis on contacts with
logicians from Europe and the U.S., could fluently communicate in several languages
and was sure that results should be presented at conferences or sent to journals
published in English. All this was less true about Vopěnka, who in general preferred
thinking to reading or to attending conferences. This is not meant to say that
Vopěnka was worse in communication: for me personally, he was the best speaker
among the professors I met at the Mathematical School in the 1970s. However, he
was an excellent speaker and teacher only when speaking Czech.

A big stimulus for Czech set theorists was the continuum problem, which was
unsolved in the early sixties. Gödel’s proof of the consistency of the continuum
hypothesis CH, employing the constructible universe, was known to them, but they
were also aware that quite different model constructions would be needed to show the
unprovability of CH. Some other tools were at hand: Vopěnka for example published
an ultraproduct construction of a model of the Gödel-Bernays set theory GB. Thus
when Paul Cohen solved the continuum problem in 1963, Prague set theorists were
not unprepared. Vopěnka seldom attended conferences, but in 1963 he accidentally
was present (in Nice, France, or maybe in the U.S., but some of his colleagues think
that it was in Vienna) at a meeting where Cohen presented his result. While Cohen
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probably considered his discovery a single-purpose proof and did not continue work-
ing on consistency results, people around Vopěnka started to think about turning
Cohen’s proof into a method that would yield further results. Such a method was
established as soon as the following year, i.e. in 1964. It was called the ∇-model
and it was a variant of the method of Boolean valued models. The same method was
independently but somewhat later invented by Scott and Solovay.

Out of the axiomatic set theories, the Zermelo-Fraenkel set theory ZF is now more
popular. However, Prague set theorists preferred to work with the Gödel-Bernays
set theory GB, which is nowadays sometimes denoted NBG, where the letter ‘N’
refers to von Neumann. As the reader probably knows, the primary notion of ZF is
set, and all other notions (number, function, . . . ) are reduced to it. Both theories
are formulated in the same language {∈} containing one unary predicate symbol for
membership. Besides ∈, the equality symbol = can also appear in formulas (both
theories are theories in predicate logic with equality). In GB, the primary notion is
class, and sets are defined as those classes that are elements of other classes. It is
common to use the uppercase letters X, X1, Y , . . . to denote classes, and the low-
ercase letters x, y, etc. to denote sets. The axiom system of GB is usually presented
as several axioms (e.g. the axiom of extensionality) and one schema, the comprehen-
sion schema. A formula of GB is normal if the class variables are not quantified in
it. Here are examples of normal formulas: x ̸= x, ¬∃v(v ∈ x), x ∈ Y1 & x ∈ Y2,
x /∈ x, and x = x. The comprehension schema stipulates that every normal for-
mula φ(x, z1, . . , zk, Y1, . . , Yr), with a dedicated variable x and any number of set
parameters z1, . . , zk and class parameters Y1, . . , Yr, determines a class (of all sets x
such that φ(x, z, Y )); this class is unique by the axiom of extensionality. The classes
determined by the five example formulas above are the empty class ∅, the class of
all empty sets (which is single-element or empty according to whether ∅ is a set),
the intersection Y1 ∩ Y2 of the classes Y1 and Y2, the class D of all sets that are not
elements of themselves, and the universal class (of all sets, traditionally denoted V).

There is nothing paradoxical about the class D of all sets that are not elements
of themselves; in GB, Russell’s argument becomes a proof that D is not a set, i.e.
that it is a proper class. The fact that a subclass of a set is again a set is provable
in GB. Therefore, the universal class V is a proper class as well. Sets exist, and thus
the empty class ∅, being a subclass of every class, is a set.

It is known that GB is conservative over ZF w.r.t. set sentences: any sentence
not containing class variables is provable in GB if and only if it is provable in ZF.
Therefore, ZF and GB can be seen as variants of the same theory that differ only
inessentially. One can think that proper classes just simplify language in some cases.
However, the relation between ZF and GB is quite involved, and actually the Prague
group contributed to its clarification. One of their results will be outlined here.
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A truth relation on a number n is a relation R between set formulas smaller
than n and valuations of variables such that R satisfies Tarski’s conditions (when-
ever applicable) with respect to the entire universe of sets. In more details, we can
assume that variables that can appear in formulas are taken from a countably in-
finite set Var = {v0, v1, v2, . . . } and that we have coding of formulas using natural
numbers. That is, formulas can be identified with their numerical codes. Among
numbers smaller than n some are (codes of) formulas, i.e. some are Gödel numbers
(of formulas). A valuation of variables is any function defined on the set Var. If R
is a truth relation on n, then a pair [vi ∈ vj , e], where vi ∈ vj is a formula smaller
than n and e is a valuation, is in R if and only if e(vi) is an element of e(vj). A pair
[φ & ψ, e], where again φ & ψ < n and e is a valuation, is in R if and only if both
pairs [φ, e] and [ψ, e] are in R, and similarly for the atomic formula vi = vj and for
other logical connectives and quantifiers. One can think of a truth relation on n as
a table with finitely many lines (in the sense of GB, i.e. according to the definition
of finite set formulated in GB) corresponding to those numbers smaller than n that
are formulas, and with class-many columns corresponding to all valuations. The
following facts can be proved in GB about truth relations: if a truth relation on n
exists, then it is unique, a truth relation on 0 does exist, and if there exists a truth
relation on n, then there also exists a truth relation on n+1. A number is occupable,
denoted Ocp(n), if there exists a truth relation on n. Occupable number is a well
defined notion in GB. However, the formula Ocp(n) is not normal (because it starts
with the class quantifier ∃R), and thus in GB it is not guaranteed that it determines
a class. It is however clear that if it determined a class, then the class would in
fact be a set because it would be a subclass of the set of all natural numbers. The
assumption that all natural numbers are occupable implies (provably in GB) the
consistency of ZF. Since GB is conservative over ZF (provably in GB), it also implies
the consistency of GB. To sum up, from Gödel’s second incompleteness theorem we
have GB ̸⊢ ∀nOcp(n).

A formula I(n) such that GB ⊢ I(0) and GB ⊢ ∀n(I(0) → I(n + 1)) is called a
definable cut. In GB we can have nontrivial definable cuts, i.e. definable cuts I such
that GB ̸⊢ ∀nI(n). A nontrivial definable cut violates induction. Therefore, full
induction (for all formulas of GB, normal or not) is not provable in GB.

I believe that Vopěnka and Hájek were the first logicians who were aware of
the existence of nontrivial definable cuts in GB, and that they discovered them well
before 1973, when they published the above construction in [13].

Speaking roughly, one can think of a model (in the sense of the usual logical
semantics, i.e. a set model) of GB as a model of ZF where some subsets are interpreted
as classes. However, there could be subsets that cannot be accepted as classes
without violating the axioms of GB. A model of ZF can contain a “subcollection”
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that is a subset from the metamathematical point of view, but it is neither a set
nor a class in the sense of the model in question. And such a subcollection can even
be included in some set of the model. This and similar observations led Vopěnka
and Hájek to the notion of semiset and to a new version of axiomatic set theory, the
Theory of Semisets TS, see [12]. A semiset is defined as a subclass of a set; a semiset
is proper if it is not a set. TS is weaker than GB (in which no proper semisets exist),
but it is still an extension of ZF. Therefore, it is a conservative extension of ZF w.r.t.
set sentences. Proper semisets are just a possibility: their existence cannot be proved
in TS, and GB can be obtained from TS by adding the axiom every semiset is a set.
With semisets, some model constructions including those showing the independence
of the continuum hypothesis could be more natural.

Vopěnka and Hájek believed that we (should) have the freedom to work with
abstract axiomatic theories. Not only are these theories interesting because one can
encounter exciting proofs when thinking inside them, but also they are useful because
they provide a safe environment for all classical mathematics. However, Vopěnka
and Hájek were finitists in the sense that they (in those times) also believed that
on the metamathematical level, i.e. when reasoning about the axiomatic system, one
has to be careful and use only those tools that are indisputable. In the beginning,
the finitistic ideas could have been the reason to prefer working with GB: it is finitely
axiomatizable. There is, however, a deeper reason for working with GB or TS, also
of a finitist nature. When using the method of forcing, as it has developed and
as it is now always presented, one works with a model of ZF and with a poset P
in it, and with a generic filter on P . The filter is supposed (can by other means
be shown) to exist, but cannot exist as an element of the given model. Reasoning
about TS could be more economical as to the indisputable tools that are accepted on
the metamathematical level: there is no distinction between a model and its outside,
because the generic filter can be understood as a semiset existing in the model.

There are two results that may be worth mentioning when talking about set
theories, Vopěnka, and Czech logic. In connection with category theory, Vopěnka
invented (probably soon after 1964) a large cardinal axiom, now called Vopěnka’s
principle. It has several equivalent formulations, one of which being every proper
class of first order structures contains two different members such that one of them
can be elementarily embedded to the other. The principle is quite strong, stronger
than other popular principles like, say, the existence of measurable cardinals (look
at the cover of Kanamori’s book [7]). Vopěnka did not really work in the field of
large cardinals, and considered them a dead-end in mathematical research. For me
personally the fact that he is the author of a widely known result in this area is
evidence that he valued a good proof more than a methodological (philosophical,
ideological) idea.
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While ZF and GB prove the same set sentences, they are not equally efficient.
Pavel Pudlák, who does not really belong to this section because he started to work
with Petr Hájek later in the 1970s, used proof-theoretic methods to prove a speed-
up theorem: eliminating classes from a GB-proof of a set sentence, i.e. constructing
a ZF-proof from a given GB-proof of a set sentence, can cause a superexponential
increase in the length of the proof.

4 Dissolution of (the classical) seminar

The Russian occupation of Czechoslovakia in August 1968 changed many things.
In April 1969 the communist power started what they called ‘normalization’, i.e.
restoration of the totalitarian regime, and these changes had an impact on Vopěnka’s
group. Vopěnka was identified as a non-cooperating person and lost his say in
the administration of the School of Mathematics. He could still do research and
had exciting ideas to follow, but his contacts with students were restricted and the
department of which he was the head was disbanded. Some people (Jech, Příkrý and
Hrbáček) emigrated to the U.S., but some other (younger) people showed interest in
working with Vopěnka. The communists did not go so far as to fire Vopěnka from
the School of Mathematics, but the threat was there (a few years later they fired
Polívka, the philosopher mentioned above).

In this situation Vopěnka told his colleagues that they had learnt everything
they could from him, and thus they should not rely on him and find their own topics
to work on; he himself would start a new field of research with a new group of
collaborators. Vopěnka evidently aimed to stimulate the intellectual development
of his colleagues. However, there was also patriotic reasoning behind his decisions:
in the times when contacts with the world were violently broken, doing something
specifically Czech was his way of maintaining the nation’s culture.

For Balcar and Štěpánek the “new” topic consisted in continuing their work in
classical set theory. They also published a very influential (Czech) textbook in set
theory. Balcar also worked with the topologists Petr Simon and Zdeněk Frolík,
while Štěpánek was active in the study programs of the newly created Department
of Theoretical Computer Science. Petr Hájek started to work on two different things
mentioned below in more detail, the GUHA method on one side, and metamathe-
matics of arithmetic on the other side. Sochor was the only member of the classical
seminar whom Vopěnka accepted to his new group (or, as some insiders describe it,
who was not sufficiently obedient to follow Vopěnka’s advice to find another topic).

Vopěnka’s new (the specifically Czech) research field was the Alternative Set
Theory, and his new group (new seminar) included for example Karel Čuda, Josef
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Mlček, Alena Vencovská, Kateřina Trlifajová (and Sochor). Some axioms and defi-
nitions of the Alternative Set Theory AST are taken from GB: classes, sets, exten-
sionality, ordinals. In some aspects AST is similar to the theory of finite sets: no
limit ordinals exist, and the class N of all natural numbers is a proper class (indeed,
it equals the class of all ordinals). The class N contains a proper initial segment FN
of all finite natural numbers. The class FN is a proper semiset, numbers in N − FN
are infinite (nonstandard) natural numbers. There is some freedom in choosing ax-
ioms concerning bijections and cardinals. In the most popular and the most natural
version, however, for every class X there is a bijection that maps X either on some
finite natural number, or on the class FN, or on the entire universe V (of all sets).
In the latter case X has cardinality continuum. In this sense there are only two
infinite cardinals in AST, the countable infinity and the continuum. Large parts of
mathematics can be recovered in AST. However, some parts, like category theory or
functional analysis, are problematic or impossible in AST. What can be recovered
is topology, and what looks very elegant and simple in AST are notions like real
numbers or continuous functions, and the differential and integral calculus. This is
because it holds that if α is an infinite natural number (a number from N − FN),
then 1

α and − 1
α are infinitely small number, i.e. infinitesimals. Then, for example, a

real function f is continuous if |f(x+ δ) − f(x)| is infinitesimal for every infinitesi-
mal δ. Thus AST can be seen as a suitable theory for nonstandard analysis. Vopěnka
liked to emphasize that quite a substantial amount of mathematics existed before
set theory, and that “mathematical analysis” was obtained by shortening the term
“mathematical analysis of infinitesimals”, used in the times of Leibniz.

The GUHA method, one of the activities of Petr Hájek after the dissolution of
the classical seminar, combined statistical and logical tools to automatically discover
dependencies in data, with an emphasis on anomalous dependencies shared by only a
small fraction of the data. The data were typically medical data (concerning health
of patients), but GUHA was of course a general method applicable to data of various
kinds. It would now be described as a data-mining method. Hájek worked on it
with a group of researchers of different affiliations; they met regularly at a seminar
on applied logic. The group included Tomáš Havránek, and the book [3] is far from
being the only publication about this method.

Another big field of Hájek’s research interests lied in metamathematics of arith-
metic, for which an important initial source of information was Feferman’s paper [1].
Besides other things, Hájek studied the interpretability of axiomatic theories. He
noticed that the two closely related set theoretic systems ZF and GB differ in in-
terpretability. To look at this in more detail, let S � T be a shorthand for “T is
interpretable in S”, and let Intp(T ) be the set { φ ; T � (T + φ) } of all sentences
of T whose consistency with T can be shown using an interpretation. It is easy to
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see that Intp(GB) is a recursively enumerable (r.e.) set. Hájková and Hájek proved
in [5] that if A is an r.e. set of set sentences such that no member of A is refutable
in ZF (note that this condition is satisfied by the set Intp(GB), and note also that
a sentence is not refutable in GB if and only if it is not refutable in ZF), then the
set Intp(ZF) −A is nonempty. It immediately follows that Intp(ZF) ̸= Intp(GB) and
that Intp(ZF) is not r.e. Yet another result of Hájek, somewhat less involved but
important because it later (in [9]) translated to one of the axioms of interpretability
logic, should not be forgotten: if (S+φ) � T and (S+ψ) � T , then (S+φ∨ψ) � T .

Hájek assembled a small group working on this field, which for a while (in 1977)
included his wife Marie, Kamila Bendová and myself. The group was soon moved to
the Institute of Mathematics (of the Czechoslovak Academy of Sciences), turned into
the seminar on metamathematics of arithmetic, or simply Logic Seminar, and was
joined by Pavel Pudlák, whose contribution was enormous. Hájek inspired research
in fragments of arithmetic, interpretability of theories and in interpretability logic.
This research definitely had an international dimension, which is not quite true
about about GUHA or about Vopěnka’s AST. For example, the unpublished but
often cited Solovay’s paper [8] (which used the idea of occupable numbers) answered
positively a question asked in [5], i.e. whether Intp(GB)− Intp(ZF) is nonempty. For
Petr Hájek, this period ended in the early 1990s when the book [4] appeared. He
then moved to another research field: he started an extensive research in fuzzy logics
and established an active group of researchers working on this topic. The Logic
Seminar, with Pudlák and with other distinguished logicians, but without Hájek,
and with topics like proof complexity, continues to be very active.

5 Some more motivations and background
In a certain sense, and at least in the earlier period, Vopěnka and Hájek were
formalists: they supposed that we work in axiomatic theories and that truth in
these theories is determined by their axioms. The first of the following two quotes
from the Introduction to [12] (written, just as most of the book, by Hájek) contains
“game with symbols”, a term that is sometimes taken as evidence of formalism.

“To prove a statement about sets, classes, etc. we appeal to the axioms of
the theory in question. On the other hand, statements about statements
or proofs are metamathematical statements. [. . . ] In the metamathe-
matical investigation, a theory is to be treated as a purely formal game
with symbols.”
“We shall exclude certain methods of proof, such as proof by contra-
diction, from metamathematical arguments. If we assert that a certain
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proof exists, then we shall always give instructions for constructing it.
[. . . ] Our methods can be said to be finitistic.”

However, the expression “game with symbols” cannot be understood literally. We
need axioms to have something reliable, but the choice of axiomatic theories is not
arbitrary because these theories are expected to reflect the classical mathematics and
serve as an environment for it. When choosing the axioms, we know or at least have
a feeling what proofs and concepts should be formalizable in the resulting systems,
and the systems should not be unnecessarily strong. The word “finitistic” in the
second quotation may be understood as “constructivist”, and the whole quotation
calls for using intuitionistic logic on the metamathematical level. However, when
I asked Hájek around 1977 whether he really thought that intuitionistic logic was
the adequate logic for reasoning about axiomatic theories, his answer was no. His
position was then roughly as follows. Whenever we have a mathematical proof, we
can ask the question what is the formal system in which the proof can be formalized.
The system can be weak or not, but “weak” is not the same as “intuitionistic”; we
in fact have no good reason to prefer intuitionistic logic to classical logic.

Vopěnka considered finite natural numbers the “visible” part of the universe. The
idea that whatever can be observed when looking at the visible world must have at
least some continuation behind the horizon is inspired by phenomenology. One of
Vopěnka’s sources of philosophical (phenomenological) thinking was Jiří Polívka.
He was a student of Czech philosopher Jan Patočka, who during his studies worked
with Heidegger, Husserl and Eugene Fink. A somewhat unrelated remark about
Polívka: When he was fired from the School of Mathematics, he accepted a job
working at a warehouse, which was not very time consuming, and he could do what
he thought was his task—edit the nachlass of Jan Patočka. For Vopěnka, another
source of inspiration was theology. It sounded like a joke when he lectured about
the Greek gods who are not so powerful as the Christian God, but he was serious:
he believed that the idea of the variety of infinite cardinal numbers, present in the
classical set theory, emerges from theological thinking.

While Petr Hájek was active in the Evangelical Church of Czech Brethren, he
separated this activity from his mathematical work. In research, he did not seem to
be inspired by religion or by philosophy, and was rather pragmatic when choosing
the problems to think about: a good research field for him was one in which it is
possible to prove strong and interesting theorems.
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