On Strong Fragments of Peano Arithmetic

Vítězslav Švejdar

Dept. of Logic, School of Arts, Charles University in Prague
http://www.cuni.cz/~svejdar/

Logica 14, Hejnice, June 2014
Outline

Introduction: Peano arithmetic and the induction schemas

The hierarchy of strong fragments of Peano arithmetic

The collection schema

Weak pigeon hole principle
Axiom schemas

Peano arithmetic \( PA \) is an axiomatic theory formulated in the arithmetical language, containing the symbols \( +, \cdot \), 0, \( S \) (plus possibly \( \leq \) and \( < \), but \( no \) such thing like \textit{exponentiation}).
Axiom schemas

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols $+$, and $\cdot$, 0, $\mathcal{S}$ (plus possibly $\leq$ and $<$, but no such thing like exponentiation). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema:
Axiom schemas

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols $+$, and $\cdot$, 0, $S$ (plus possibly $\leq$ and $<$, but no such thing like exponentiation). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema:

\[
\text{Ind: } \varphi(0) \& \forall x (\varphi(x) \rightarrow \varphi(S(x))) \rightarrow \forall z \varphi(z),
\]
Axiom schemas

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols $+$, and $\cdot$, 0, $S$ (plus possibly $\leq$ and $<$, but no such thing like exponentiation). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema:

**Ind:** $\varphi(0) \& \forall x (\varphi(x) \rightarrow \varphi(S(x))) \rightarrow \forall z \varphi(z)$,

**CoV:** $\forall x (\forall v < x \varphi(v) \rightarrow \varphi(x)) \rightarrow \forall z \varphi(z)$. 

Vitek Svejdar, Charles U. in Prague
On Strong Fragments of Peano Arithmetic
Axiom schemas

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols +, and ·, 0, $S$ (plus possibly $\leq$ and $<$, but no such thing like exponentiation). It has seven (nine) simple axioms like $\forall x\forall y(x + S(y) = S(x + y))$, plus an axiom schema:

- **Ind:** $\varphi(0) \& \forall x(\varphi(x) \rightarrow \varphi(S(x))) \rightarrow \forall z \varphi(z)$,
- **CoV:** $\forall x(\forall v < x \varphi(v) \rightarrow \varphi(x)) \rightarrow \forall z \varphi(z)$,
- **LNP:** $\exists z \varphi(z) \rightarrow \exists x(\varphi(x) \& \forall v < x \neg \varphi(v))$, 
Axiom schemas

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical language, containing the symbols $+$, and $\cdot$, 0, $S$ (plus possibly $\leq$ and $<$, but no such thing like exponentiation). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema:

**Ind:** $\varphi(0) \& \forall x (\varphi(x) \rightarrow \varphi(S(x))) \rightarrow \forall z \varphi(z),$

**CoV:** $\forall x (\forall v < x \varphi(v) \rightarrow \varphi(x)) \rightarrow \forall z \varphi(z),$

**LNP:** $\exists z \varphi(z) \rightarrow \exists x (\varphi(x) \& \forall v < x \neg \varphi(v)),$

Note that LNP is the contraposition of CoV and vice versa, Ind follows from CoV, while Ind applied on $\forall v < x \varphi(v)$ yields CoV.
Axiom schemas

Peano arithmetic $\text{PA}$ is an axiomatic theory formulated in the arithmetical language, containing the symbols $+$, and $\cdot$, 0, $S$ (plus possibly $\leq$ and $<$, but no such thing like exponentiation). It has seven (nine) simple axioms like $\forall x \forall y (x + S(y) = S(x + y))$, plus an axiom schema (possibly with parameters):

- **Ind:** $\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(S(x))) \rightarrow \forall z \varphi(z)$,
- **CoV:** $\forall x (\forall v < x \varphi(v) \rightarrow \varphi(x)) \rightarrow \forall z \varphi(z)$,
- **LNP:** $\exists z \varphi(z) \rightarrow \exists x (\varphi(x) \land \forall v < x \neg \varphi(v))$,

Note that LNP is the contraposition of CoV and vice versa, Ind follows from CoV, while Ind applied on $\forall v < x \varphi(v)$ yields CoV.

**Example**

To show $\forall x \forall y (\exists v \leq y (v + x = y) \lor \exists v \leq x (v + y = x))$, one can either apply induction on $\forall y (\ldots \lor \ldots)$, or think of $y$ as parameter and apply induction on $\exists v \leq y (v + x = y) \lor \exists v \leq x (v + y = x)$, where $y$ is fixed.
What happens if all quantifiers are bounded

**Definition**

*Bounded quantifiers* are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. 
What happens if all quantifiers are bounded

**Definition**

*Bounded quantifiers* are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is *bounded*, or $\Delta_0$, if all quantifiers in it are bounded.
What happens if all quantifiers are bounded

**Definition**

Bounded quantifiers are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is bounded, or $\Delta_0$, if all quantifiers in it are bounded. $I\Delta_0$ is a theory like PA, but with the induction schema restricted to $\Delta_0$ formulas.
What happens if all quantifiers are bounded

Definition

Bounded quantifiers are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is bounded, or $\Delta_0$, if all quantifiers in it are bounded. $I\Delta_0$ is a theory like PA, but with the induction schema restricted to $\Delta_0$ formulas.

$I\Delta_0$ can prove

properties of operations; properties of the divisibility relation including the fact that a number is prime iff it is irreducible; properties of the exponential function $x \mapsto 2^x$, but not its totality.
What happens if all quantifiers are bounded

Definition

*Bounded quantifiers* are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is *bounded*, or $\Delta_0$, if all quantifiers in it are bounded. $I\Delta_0$ is a theory like PA, but with the induction schema restricted to $\Delta_0$ formulas.

$I\Delta_0$ can prove

properties of operations; properties of the divisibility relation including the fact that a number is prime iff it is irreducible; properties of the exponential function $x \mapsto 2^x$, but *not its totality*.

$I\Delta_0$ cannot prove

$I\Delta_0 \not\vdash \forall x \exists w \neq 0 \forall v \leq x (v \neq 0 \rightarrow v \mid x)$,
$I\Delta_0 \not\vdash \text{there exist infinitely many primes}$,
$I\Delta_0 \not\vdash \forall x \exists y (y = 2^x)$.
What happens if all quantifiers are bounded

Definition

Bounded quantifiers are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is bounded, or $\Delta_0$, if all quantifiers in it are bounded. $I\Delta_0$ is a theory like PA, but with the induction schema restricted to $\Delta_0$ formulas.

$I\Delta_0$ can prove

properties of operations; properties of the divisibility relation including the fact that a number is prime iff it is irreducible; properties of the exponential function $x \mapsto 2^x$, but not its totality.

$I\Delta_0$ cannot prove

$I\Delta_0 \not \vdash \forall x \exists w \neq 0 \forall v \leq x (v \neq 0 \rightarrow v \mid x)$,

$I\Delta_0 \not \vdash$ there exist infinitely many primes (?),

$I\Delta_0 \not \vdash \forall x \exists y (y = 2^x)$. 
What happens if all quantifiers are bounded

Definition

*Bounded quantifiers* are quantifiers of the form $\forall v \leq x$, $\forall v < x$, $\exists v \leq x$, $\exists v < x$. A formula is *bounded*, or $\Delta_0$, if all quantifiers in it are bounded. $I\Delta_0$ is a theory like $\text{PA}$, but with the induction schema restricted to $\Delta_0$ formulas.

$I\Delta_0$ can prove

properties of operations; properties of the divisibility relation including the fact that a number is prime iff it is irreducible; properties of the exponential function $x \mapsto 2^x$, but *not its totality*.

$I\Delta_0$ cannot prove

$I\Delta_0 \not\vdash \forall x \exists w \neq 0 \forall v \leq x (v \neq 0 \rightarrow v \mid x)$,
$I\Delta_0 \not\vdash$ there exist infinitely many primes (?),
$I\Delta_0 \not\vdash \forall x \exists y (y = 2^x)$.

**Base theory:** $I\Delta_0 + \text{Exp}$ is $I\Delta_0$ plus the axiom $\forall x \exists y (y = 2^x)$. 
Strong fragments of PA

Definition
A $\Sigma_n$ formula ($\Pi_n$ formula) is a formula having a prefix of $n$ alternating quantifiers, the first of which is $\exists$ (or $\forall$, respectively), followed by a $\Delta_0$ formula.
Strong fragments of PA

Definition
A $\Sigma_n$ formula ($\Pi_n$ formula) is a formula having a prefix of $n$ alternating quantifiers, the first of which is $\exists$ (or $\forall$, respectively), followed by a $\Delta_0$ formula. $I\Sigma_n$ is $I\Delta_0+\text{Exp}$ plus $\text{Ind}(\Sigma_n)$, the induction schema restricted to $\Sigma_n$ formulas.
Strong fragments of PA

Definition
A \( \Sigma_n \) formula (\( \Pi_n \) formula) is a formula having a prefix of \( n \) alternating quantifiers, the first of which is \( \exists \) (or \( \forall \), respectively), followed by a \( \Delta_0 \) formula. \( \Sigma_n \) is \( \text{I} \Delta_0 + \text{Exp} \) plus \( \text{Ind}(\Sigma_n) \), the induction schema restricted to \( \Sigma_n \) formulas.

Basic facts
\( \Sigma_n \) is a stable theory: the schemas \( \text{Ind}(\Sigma_n) \), \( \text{CoV}(\Sigma_n) \), \( \text{LNP}(\Sigma_n) \), \( \text{Ind}(\Pi_n) \), \( \text{CoV}(\Pi_n) \), \( \text{LNP}(\Pi_n) \) are equivalent over \( \text{I} \Delta_0 + \text{Exp} \).
Strong fragments of PA

Definition
A $\Sigma_n$ formula ($\Pi_n$ formula) is a formula having a prefix of $n$ alternating quantifiers, the first of which is $\exists$ (or $\forall$, respectively), followed by a $\Delta_0$ formula. $I\Sigma_n$ is $I\Delta_0+\text{Exp}$ plus $\text{Ind}(\Sigma_n)$, the induction schema restricted to $\Sigma_n$ formulas.

Basic facts
$I\Sigma_n$ is a stable theory: the schemas $\text{Ind}(\Sigma_n)$, $\text{CoV}(\Sigma_n)$, $\text{LNP}(\Sigma_n)$, $\text{Ind}(\Pi_n)$, $\text{CoV}(\Pi_n)$, $\text{LNP}(\Pi_n)$ are equivalent over $I\Delta_0+\text{Exp}$. The hierarchy of theories $I\Sigma_1 \subseteq I\Sigma_2 \subseteq \ldots$ does not collapse. Each $I\Sigma_n$ for $n \geq 1$ is finitely axiomatizable.
Strong fragments of PA

Definition
A $\Sigma_n$ formula ($\Pi_n$ formula) is a formula having a prefix of $n$ alternating quantifiers, the first of which is $\exists$ (or $\forall$, respectively), followed by a $\Delta_0$ formula. $I\Sigma_n$ is $I\Delta_0 + \text{Exp}$ plus $\text{Ind}(\Sigma_n)$, the induction schema restricted to $\Sigma_n$ formulas.

Basic facts
$I\Sigma_n$ is a stable theory: the schemas $\text{Ind}(\Sigma_n)$, $\text{CoV}(\Sigma_n)$, $\text{LNP}(\Sigma_n)$, $\text{Ind}(\Pi_n)$, $\text{CoV}(\Pi_n)$, $\text{LNP}(\Pi_n)$ are equivalent over $I\Delta_0 + \text{Exp}$. The hierarchy of theories $I\Sigma_1 \subseteq I\Sigma_2 \subseteq \ldots$ does not collapse. Each $I\Sigma_n$ for $n \geq 1$ is finitely axiomatizable.

The collection schema (bounding schema)
Strong fragments of PA

Definition
A $\Sigma_n$ formula ($\Pi_n$ formula) is a formula having a prefix of $n$ alternating quantifiers, the first of which is $\exists$ (or $\forall$, respectively), followed by a $\Delta_0$ formula. $I\Sigma_n$ is $I\Delta_0+\text{Exp}$ plus $\text{Ind}(\Sigma_n)$, the induction schema restricted to $\Sigma_n$ formulas.

Basic facts
$I\Sigma_n$ is a stable theory: the schemas $\text{Ind}(\Sigma_n)$, $\text{CoV}(\Sigma_n)$, $\text{LNP}(\Sigma_n)$, $\text{Ind}(\Pi_n)$, $\text{CoV}(\Pi_n)$, $\text{LNP}(\Pi_n)$ are equivalent over $I\Delta_0+\text{Exp}$. The hierarchy of theories $I\Sigma_1 \subseteq I\Sigma_2 \subseteq \ldots$ does not collapse. Each $I\Sigma_n$ for $n \geq 1$ is finitely axiomatizable.

The collection schema (bounding schema)
Coll: $\forall u < z \exists v \varphi(u, v, z) \rightarrow \exists w \forall u < z \exists v < w \varphi(u, v, z)$. 
An unbounded relation

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ... ... ... z
An unbounded relation

\[
\begin{array}{cccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

0 \ldots \ldots \ldots \ldots z
An unbounded relation

\[
\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
An unbounded relation

\[
\begin{array}{ccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

0 \ldots \quad \ldots \quad \ldots \quad \ldots \quad z
An unbounded relation

\[
\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
An unbounded relation

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
An unbounded relation

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

0 ... ... ... z
### An unbounded relation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

0 \ldots \ldots z
An unbounded relation

\[
\begin{array}{ccccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

0 \ldots \ldots \ldots z
An unbounded relation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

\[0 \quad \ldots \quad \ldots \quad \ldots \quad z\]
An unbounded relation

```
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
```
An unbounded relation

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

\[ 0 \quad \ldots \quad \ldots \quad \ldots \quad z \]
An unbounded relation

<table>
<thead>
<tr>
<th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>
<th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

0 ... ... ... 0
An unbounded relation

<table>
<thead>
<tr>
<th>0 0 0 0 0 0 0 0 0 0 0 0 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

0 ... ... ... Z
An unbounded relation

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

\(0 \ldots \ldots \ldots \ldots z\)
The collection schema

The schema $\text{Coll}(\Gamma)$ prevents the existence of an unbounded $\Gamma$ relation $R$ with $\text{Dom}(R) = \{0, 1, \ldots, z - 1\}$.

Definition

$\mathsf{B}\Sigma_n$ and $\mathsf{B}\Pi_n$ are the theories obtained by adding the schema $\text{Coll}(\Sigma_n)$, or $\text{Coll}(\Pi_n)$ respectively, to $\text{I} \Delta_0 + \text{Exp}$. 
The collection schema

The schema $\text{Coll}(\Gamma)$ prevents the existence of an unbounded $\Gamma$ relation $R$ with $\text{Dom}(R) = \{0, 1, \ldots, z - 1\}$.

Definition

$\mathcal{B}\Sigma_n$ and $\mathcal{B}\Pi_n$ are the theories obtained by adding the schema $\text{Coll}(\Sigma_n)$, or $\text{Coll}(\Pi_n)$ respectively, to $\text{I}\Delta_0 + \text{Exp}$.

Basic facts
The collection schema

The schema $\text{Coll}(\Gamma)$ prevents the existence of an unbounded $\Gamma$ relation $R$ with $\text{Dom}(R) = \{0, 1, \ldots, z - 1\}$.

Definition

$B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema $\text{Coll}(\Sigma_n)$, or $\text{Coll}(\Pi_n)$ respectively, to $I\Delta_0 + \text{Exp}$.

Basic facts

The schemas $\text{Coll}(\Sigma_{n+1})$ and $\text{Coll}(\Pi_n)$ are equivalent over $I\Delta_0 + \text{Exp}$.
The collection schema

The schema Coll(Γ) prevents the existence of an unbounded Γ relation \( R \) with \( \text{Dom}(R) = \{0, 1, \ldots, z - 1\} \).

Definition

\( B\Sigma_n \) and \( B\Pi_n \) are the theories obtained by adding the schema Coll(\( \Sigma_n \)), or Coll(\( \Pi_n \)) respectively, to \( I\Delta_0 + \text{Exp} \).

Basic facts

The schemas Coll(\( \Sigma_{n+1} \)) and Coll(\( \Pi_n \)) are equivalent over \( I\Delta_0 + \text{Exp} \). Thus \( I\Delta_0 + \text{Exp} \subseteq B\Pi_0 \iff B\Sigma_1 \subseteq I\Sigma_1 \subseteq B\Pi_1 \subseteq \ldots \).
The collection schema

The schema $\text{Coll}(\Gamma)$ prevents the existence of an unbounded $\Gamma$ relation $R$ with $\text{Dom}(R) = \{0, 1, \ldots, z - 1\}$.

Definition

$B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema $\text{Coll}(\Sigma_n)$, or $\text{Coll}(\Pi_n)$ respectively, to $I\Delta_0 + \text{Exp}$.

Basic facts

The schemas $\text{Coll}(\Sigma_{n+1})$ and $\text{Coll}(\Pi_n)$ are equivalent over $I\Delta_0 + \text{Exp}$. Thus $I\Delta_0 + \text{Exp} \subseteq B\Pi_0 \iff B\Sigma_1 \subseteq I\Sigma_1 \subseteq B\Pi_1 \subseteq \ldots$. If there exists an unbounded $\Pi_n$ relation on $\{0, 1, \ldots, z - 1\}$, then there exists an unbounded $\Pi_n$ function on $\{0, 1, \ldots, z - 1\}$. 
The collection schema

The schema $\text{Coll}(\Gamma)$ prevents the existence of an unbounded $\Gamma$ relation $R$ with $\text{Dom}(R) = \{0, 1, \ldots, z - 1\}$.

Definition

$B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema $\text{Coll}(\Sigma_n)$, or $\text{Coll}(\Pi_n)$ respectively, to $I\Delta_0 + \text{Exp}$.

Basic facts

The schemas $\text{Coll}(\Sigma_{n+1})$ and $\text{Coll}(\Pi_n)$ are equivalent over $I\Delta_0 + \text{Exp}$. Thus $I\Delta_0 + \text{Exp} \subseteq B\Pi_0 \iff B\Sigma_1 \subseteq I\Sigma_1 \subseteq B\Pi_1 \subseteq \ldots$. If there exists an unbounded $\Pi_n$ relation on $\{0, 1, \ldots, z - 1\}$, then there exists an unbounded $\Pi_n$ function on $\{0, 1, \ldots, z - 1\}$. $B\Pi_n$ is also equivalent to $\text{PHP}(\Sigma_{n+1})$, saying that no $\Sigma_{n+1}$ function can be a one-one mapping from $\{0, 1, \ldots, z\}$ to $\{0, 1, \ldots, z - 1\}$.
The collection schema

The schema Coll(Γ) prevents the existence of an unbounded Γ relation $R$ with $\text{Dom}(R) = \{0, 1, \ldots, z - 1\}$.

Definition

$B\Sigma_n$ and $B\Pi_n$ are the theories obtained by adding the schema Coll($\Sigma_n$), or Coll($\Pi_n$) respectively, to $I\Delta_0 + \text{Exp}$.

Basic facts

The schemas Coll($\Sigma_{n+1}$) and Coll($\Pi_n$) are equivalent over $I\Delta_0 + \text{Exp}$. Thus $I\Delta_0 + \text{Exp} \subseteq B\Pi_0 \iff B\Sigma_1 \subseteq I\Sigma_1 \subseteq B\Pi_1 \subseteq \ldots$. If there exists an unbounded $\Pi_n$ relation on $\{0, 1, \ldots, z - 1\}$, then there exists an unbounded $\Pi_n$ function on $\{0, 1, \ldots, z - 1\}$. $B\Pi_n$ is also equivalent to PHP($\Sigma_{n+1}$), saying that no $\Sigma_{n+1}$ function can be a one-one mapping from $\{0, 1, \ldots, z\}$ to $\{0, 1, \ldots, z - 1\}$.

Question

What about WPHP($\Sigma_{n+1}$), saying that there can be no $\Sigma_{n+1}$ one-one mapping from the entire universe to $\{0, 1, \ldots, z - 1\}$?
Weak pigeon hole principle

\[ \text{WPHP}(\Sigma_{n+1}): \text{a one-one } \Sigma_{n+1} \text{ function must be unbounded.} \]

Obviously \( \mathcal{B}\Sigma_{n+1} \vdash \text{WPHP}(\Sigma_{n+1}). \)
Weak pigeon hole principle

\( \text{WPHP}(\Sigma_{n+1}) \): a one-one \( \Sigma_{n+1} \) function must be unbounded. Obviously \( \text{B}_{\Sigma_{n+1}} \vdash \text{WPHP}(\Sigma_{n+1}) \).

**Theorem**
\[ \text{I}_{\Sigma_n} \nvdash \text{WPHP}(\Sigma_{n+1}). \]
Weak pigeon hole principle

$\text{WPHP}(\Sigma_{n+1})$: a one-one $\Sigma_{n+1}$ function must be unbounded. Obviously $\text{B}\Sigma_{n+1} \vdash \text{WPHP}(\Sigma_{n+1})$.

**Theorem**
$I\Sigma_n \not\vdash \text{WPHP}(\Sigma_{n+1})$.

**Proof**
Can be extracted from a proof of $I\Sigma_n \not\vdash \text{Coll}(\Sigma_{n+1})$ in Paris-Kirby.
Weak pigeon hole principle

\(\text{WPHP}(\Sigma_{n+1}):\) a one-one \(\Sigma_{n+1}\) function must be unbounded. Obviously \(B\Sigma_{n+1} \vdash \text{WPHP}(\Sigma_{n+1})\).

**Theorem**
\(I\Sigma_n \not\vdash \text{WPHP}(\Sigma_{n+1}).\)

**Proof**
Can be extracted from a proof of \(I\Sigma_n \not\vdash \text{Coll}(\Sigma_{n+1})\) in Paris-Kirby.

**Theorem (unfinished)**
\(I\Sigma_n + \text{WPHP}(\Sigma_{n+1}) \not\vdash \text{Coll}(\Sigma_{n+1}).\)
**Weak pigeon hole principle**

\[ \text{WPHP}(\Sigma_{n+1}): \text{a one-one } \Sigma_{n+1} \text{ function must be unbounded.} \]

Obviously \( B\Sigma_{n+1} \vdash \text{WPHP}(\Sigma_{n+1}). \)

**Theorem**

\( I\Sigma_n \not\vdash \text{WPHP}(\Sigma_{n+1}). \)

**Proof**

Can be extracted from a proof of \( I\Sigma_n \not\vdash \text{Coll}(\Sigma_{n+1}) \) in Paris-Kirby.

**Theorem (unfinished)**

\( I\Sigma_n + \text{WPHP}(\Sigma_{n+1}) \not\vdash \text{Coll}(\Sigma_{n+1}). \)

**Theorem (Paris)**

If there exists a one-one \( \Sigma_{n+1} \) function bounded by \( z \) then there exists a one-one \( \Sigma_{n+1} \) function \( f \) with \( \text{Rng}(f) = \{0, \ldots, z - 1\} \).
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is sparse in the following sense:

$\forall x \exists y R(x, y)$, but $\forall x(|R \cap (\{0, \ldots, x - 1\} \times \{0, \ldots, x - 1\})| < z)$.
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is sparse in the following sense:

$\forall x \exists y R(x, y)$, but $\forall x (|R \cap (\{0, \ldots, x-1\} \times \{0, \ldots, x-1\})| < z)$. 
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is sparse in the following sense: $\forall x \exists y R(x, y)$, but $\forall x (|R \cap (\{0, \ldots, x - 1\} \times \{0, \ldots, x - 1\})| < z)$. 
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is **sparse** in the following sense: 
$\forall x \exists y R(x, y)$, but $\forall x (|R \cap \{0, \ldots, x - 1\} \times \{0, \ldots, x - 1\}| < z)$. 
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is sparse in the following sense:

$$\forall x \exists y R(x, y), \text{ but } \forall x(|R \cap (\{0, \ldots, x-1\} \times \{0, \ldots, x-1\})| < z).$$
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is \textit{sparse} in the following sense: $\forall x \exists y R(x, y)$, but $\forall x (|R \cap (\{0, \ldots, x-1\} \times \{0, \ldots, x-1\})| < z)$. 

\[ \begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array} \]
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is sparse in the following sense: $\forall x \exists y R(x, y)$, but $\forall x (|R \cap (\{0, \ldots, x - 1\} \times \{0, \ldots, x - 1\})| < z)$.
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is sparse in the following sense:

\[
\forall x \exists y R(x, y), \text{ but } \forall x (|R \cap (\{0, \ldots, x - 1\} \times \{0, \ldots, x - 1\})| < z).
\]

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 5 & 6 & & & & & \\
\end{array}
\]
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is sparse in the following sense: $\forall x \exists y R(x, y)$, but $\forall x(|R \cap (\{0, \ldots, x-1\} \times \{0, \ldots, x-1\})| < z)$. 

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
# Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is **sparse** in the following sense:

\[ \forall x \exists y R(x, y), \text{ but } \forall x (|R \cap \{0, \ldots, x-1\} \times \{0, \ldots, x-1\}| < z). \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

9 4 5 6
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is **sparse** in the following sense: 
$\forall x \exists y R(x, y)$, but $\forall x (|R \cap (\{0, \ldots, x - 1\} \times \{0, \ldots, x - 1\})| < z)$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

9 4 5 6
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is **sparse** in the following sense:

$$\forall x \exists y R(x,y), \text{ but } \forall x(|R \cap (\{0, \ldots, x-1\} \times \{0, \ldots, x-1\})| < z).$$
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is \textit{sparse} in the following sense:

\[ \forall x \exists y R(x, y), \text{ but } \forall x (|R \cap (\{0, \ldots, x-1\} \times \{0, \ldots, x-1\})| < z). \]
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is sparse in the following sense: $\forall x \exists y R(x, y)$, but $\forall x (|R \cap (\{0, \ldots, x - 1\} \times \{0, \ldots, x - 1\})| < z)$.

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Vitek Svejdar, Charles U. in Prague

On Strong Fragments of Peano Arithmetic

9/10
Proof via sparse relations

If there exists a one-one $\Sigma_{n+1}$ function bounded by $z$ then there exists a $\Pi_n$ relation $R$ which is sparse in the following sense:

$$\forall x \exists y R(x, y), \text{ but } \forall x (|R \cap (\{0, \ldots, x - 1\} \times \{0, \ldots, x - 1\})| < z).$$

The numbers 2, 4, 5, 1 appear in stages 4, 5, 6, and 9 respectively.
Proof (continuation)

The function $f$ which is one-one and with $\text{Rng}(f) = \{0, \ldots, z - 1\}$ is obtained as a union of $f_0 \subseteq f_1 \subseteq \ldots$.
Proof (continuation)

The function $f$ which is one-one and with $\text{Rng}(f) = \{0, \ldots, z - 1\}$ is obtained as a union of $f_0 \subseteq f_1 \subseteq \ldots$ The functions $f_i$ are constructed by recursion, $f_0 = \emptyset$. Each $f_i$ is one-one and finite, and $\text{Rng}(f_i)$ is a proper subset of $\{0, \ldots, z - 1\}$.
Proof (continuation)

The function $f$ which is one-one and with $\text{Rng}(f) = \{0, \ldots, z - 1\}$ is obtained as a union of $f_0 \subseteq f_1 \subseteq \ldots$. The functions $f_i$ are constructed by recursion, $f_0 = \emptyset$. Each $f_i$ is one-one and finite, and $\text{Rng}(f_i)$ is a proper subset of $\{0, \ldots, z - 1\}$.

- If no number appears in stage $i + 1$ then $f_{i+1} = f_i$. 
Proof (continuation)

The function $f$ which is one-one and with $\text{Rng}(f) = \{0, \ldots, z - 1\}$ is obtained as a union of $f_0 \subseteq f_1 \subseteq \ldots$. The functions $f_i$ are constructed by recursion, $f_0 = \emptyset$. Each $f_i$ is one-one and finite, and $\text{Rng}(f_i)$ is a proper subset of $\{0, \ldots, z - 1\}$.

- If no number appears in stage $i + 1$ then $f_{i+1} = f_i$.
- If $x \geq z$ appears in stage $i + 1$ then $f_{i+1} = f_i \cup [x, y]$ where $y = \min(\{0, \ldots, z - 1\} - \text{Rng}(f_i))$. 
Proof (continuation)

The function $f$ which is one-one and with $\text{Rng}(f) = \{0, \ldots, z - 1\}$ is obtained as a union of $f_0 \subseteq f_1 \subseteq \ldots$. The functions $f_i$ are constructed by recursion, $f_0 = \emptyset$. Each $f_i$ is one-one and finite, and $\text{Rng}(f_i)$ is a proper subset of $\{0, \ldots, z - 1\}$.

- If no number appears in stage $i + 1$ then $f_{i+1} = f_i$.
- If $x \geq z$ appears in stage $i + 1$ then $f_{i+1} = f_i \cup [x, y]$ where $y = \min(\{0, \ldots, z - 1\} - \text{Rng}(f_i))$.
- If $x < z$ appears in stage $i + 1$ and $x \in \text{Rng}(f_i)$ then $f_{i+1} = f_i \cup [x, y]$ where $y = \min(\{0, \ldots, z - 1\} - \text{Rng}(f_i))$. 
The function \( f \) which is one-one and with \( \text{Rng}(f) = \{0, \ldots, z - 1\} \) is obtained as a union of \( f_0 \subseteq f_1 \subseteq \ldots \). The functions \( f_i \) are constructed by recursion, \( f_0 = \emptyset \). Each \( f_i \) is one-one and finite, and \( \text{Rng}(f_i) \) is a proper subset of \( \{0, \ldots, z - 1\} \).

- If no number appears in stage \( i + 1 \) then \( f_{i+1} = f_i \).
- If \( x \geq z \) appears in stage \( i + 1 \) then \( f_{i+1} = f_i \cup [x, y] \) where \( y = \min(\{0, \ldots, z - 1\} - \text{Rng}(f_i)) \).
- If \( x < z \) appears in stage \( i + 1 \) and \( x \in \text{Rng}(f_i) \) then \( f_{i+1} = f_i \cup [x, y] \) where \( y = \min(\{0, \ldots, z - 1\} - \text{Rng}(f_i)) \).
- If \( x < z \) appears in stage \( i + 1 \) and \( x \notin \text{Rng}(f_i) \) then \( f_{i+1} = f_i \cup [x, x] \).