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Abstract

The decision problem for provability logic remains PSPACE -complete even
if the number of propositional atoms is restricted to one.

In some cases the set of all tautologies of a modal logic is in coNP. An exam-
ple of a logic like that is the well-known S5. However, most of the traditional
modal systems, including S4 and T, have PSPACE -complete decision problem.
So one can say that adding modalities to the language of classical proposi-
tional logic does increase algorithmic complexity — not a surprising paradigm.
The methods for constructing a polynomial space decision procedure and for
proving PSPACE -completeness of a modal logic can be learnt from R. Ladner’s
paper [Lad77]. Provability logic GL is not mentioned in [Lad77], but it is not
difficult to verify that GL has PSPACE -complete decision problem as well. In
this paper we go farther and use Ladner’s methods to show that the decision
problem of GL is PSPACE -complete even if the number of propositional atoms
used to build modal formulas is restricted to one. This fact can be interpreted
as saying that, in case of provability logic, allowing more than one atom does
not increase the expressive power of the language.

The structure of the present paper is similar to that of our [Šve03] where an
alternative simple proof of R. Statman’s result concerning PSPACE -complete-
ness of intuitionistic propositional logic is presented.

Modal formulas are built up from propositional atoms and the symbol ⊥ for
falsity using logical connectives and a unary symbol 2 for necessity. We use 3A
as a shorthand for ¬2¬A. The formulas 2A and 3A are read “A is necessary”
and “A is possible” respectively. Let Fm denote the set of all modal formulas.
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A Kripke model for modal logic is a triple 〈W,R, ‖−〉 where W is a non-empty
set (of nodes or possible worlds), R is a relation on W and ‖− is a subset
of W × Fm respecting all logical connectives (i.e. satisfying x ‖− A & B iff
x ‖− A and x ‖− B, etc.) and satisfying the well-known modal rule

x ‖− 2A ⇔ ∀y(x R y ⇒ y ‖− A)

for all x in W and A (and B) in Fm. The pair 〈W,R〉 is called Kripke frame,
R is called accessibility relation, whereas ‖− is the forcing relation (or truth
relation) of a model 〈W,R, ‖−〉. If x ∈ W and x ‖− A then we say that A is
satisfied in x. If A is satisfied in all x ∈ W then A is valid in 〈W,R, ‖−〉. If A
is not valid in 〈W,R, ‖−〉 then 〈W,R, ‖−〉 is called a counter-example to A; if
A is satisfied in some node of 〈W,R, ‖−〉 then 〈W,R, ‖−〉 is a model of A. For
the symbol ⊥ the stipulation that ‖− respects all logical connectives means that
the formula ⊥ is nowhere satisfied. This in turn means that the formula 2⊥
is satisfied in x if and only if no y is accessible from x; so 2⊥ is valid in every
model 〈W,R, ‖−〉 where R is empty, while its negation ¬2⊥ is valid e.g. in every
model 〈W,R, ‖−〉 where R is reflexive.

A model 〈W,R, ‖−〉 is a Kripke model for provability logic GL if W is finite
and R is transitive and irreflexive. A modal formula A is a tautology of prov-
ability logic, or a GL-tautology, if it is valid in every Kripke model for provability
logic. Let GLTaut denote the set of all GL-tautologies. Some sources use G, L,
or PRL instead of our GL; the letters G and L stand for Gödel and Löb.

From the point of view of graph theory, a Kripke model for provability logic
is a directed acyclic (transitive) graph (not necessarily a tree). Let’s call a
node x ∈ W a root of a model K = 〈W,R, ‖−〉 if x is least in 〈W,R〉, i.e. if
every y ∈ W , y 6= x is accessible from x. A node x ∈ W is a leaf in K if
no y ∈ W is accessible from x (i.e. if x ‖− 2⊥). It is evident that each model
for provability logic has at most one root and at least one leaf. Also, some
leaf is accessible from every x which is not a leaf itself. A consequence of this
fact is that ¬2⊥ → ¬2¬2⊥ is an example of a formula in GLTaut. Other
examples are all instances of the scheme 2A → 22A. Formulas that are not
GL-tautologies are e.g. 22p→2p and 2p→ p.

If K = 〈W,R, ‖−〉 is a Kripke model for provability logic and a ∈ W then
a submodel generated by a is the model K0 = 〈W0, R0, ‖−0〉 where W0 is the
set { x ∈ W ; x = a ∨ a R x } and R0 and ‖−0 are the obvious restrictions
of R and ‖− to W0. It is almost evident that if K and K0 are as above, x an
element of W0 and A a modal formula then x ‖− A ⇔ x ‖−0 A. So if K is a
Kripke counter-example to A we can assume that K has a root a and that it is
the root a where a ‖−/ A.

If necessity is interpreted as provability then the formula ¬2⊥→ ¬2¬2⊥
says if contradiction is not provable then the fact that contradiction is not provable is
unprovable; so it is a modal version of Gödel’s Second Incompleteness Theorem.
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The connections of provability logic to metamathematics, however extremely
important, are immaterial for the present paper. We refer the interested reader
to various sources, e.g. [Sol76], [Smo85], or [Boo93].

We prove the PSPACE -completeness of our single-atom provability logic by
constructing a reduction from QBF (quantified Boolean formulae, see [Pap94]).
So let a quantified Boolean formula A be given. We may assume that A has the
form Qmpm . . Q1p1B(p1, . . , pm) where B contains no propositional quantifiers
and no atoms except p1, . . , pm. We will write B(p) or only B for B(p1, . . , pm).

First we generalize the fact that the formula 2⊥ is satisfied exactly in leaves,
i.e. exactly in nodes of depth zero. Let

∇i = 3(i)> & 2(i+1)⊥
where the superscript indicates iteration, > is ¬⊥, and 3, as already noted, is a
shorthand for ¬2¬. So for example ∇1 is equivalent to ¬2⊥&22⊥. In general
the formula ∇i is satisfied in a node a of a Kripke model 〈W,R, ‖−〉 if and only
if there are no paths in 〈W,R〉 starting in a and having length i + 1, but there
are paths starting in a and having length i (further paths shorter than i not
being excluded). Thus the informal reading of ∇i could be the depth is exactly i.
We will work with formulas ∇i for i ≤ m. Let

¢i = 2(∇i → q), ¯i = 2(∇i →¬q),

where q is the (only) atom allowed in our paper for constructing modal formulas.
The formulas ¢i and ¯i say that the atom q is positive (or negative, respectively)
everywhere in depth i but they do not ensure the existence of nodes of depth i.
The basic idea of our construction is to stand in a node (root of a model) of
depth 2m and speak about what is observable in depth m− j if the observation
standpoint is moved to a place of depth m + j − 1, where 1 ≤ j ≤ m. Before
we state and prove theorem 1 we may think of the formula A, the number m
of its quantifiers, and its quantifier-free matrix B as fixed. However, we con-
sider various truth evaluations of atoms p1, . . , pm. If e is a truth evaluation
of pj+1, . . , pm then we put

V (e, j) =
∧

j<i≤m,
e(i)=1

¢m−i &
∧

j<i≤m,
e(i)=0

¯m−i,

where 0 ≤ j ≤ m. Now we are ready to construct a formula C] for any subfor-
mula C of the formula B:

p]
i = ¢m−i,

(D & E)] = D] & E], (¬D)] = ¬D], etc.

Note that no propositional quantifiers are involved so far. Let GLSat denote
the set of all GL-satisfiable formulas, i.e. formulas satisfied in the root of some
Kripke model for provability logic.
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Lemma 1 Let e be a truth evaluation of the atoms p1, . . , pm and let C be a
subformula of B. Then the following conditions are equivalent:

(i) e |= C,

(ii) ∇m & V (e, 0)→ C] ∈ GLTaut,

(iii) ∇m & V (e, 0) & C] ∈ GLSat.

Proof The implication (ii) ⇒ (iii) is evident since the formula ∇m &V (e, 0) is
GL-satisfiable for each e. So it is sufficient to prove (i) ⇒ (ii) and ¬(i) ⇒ ¬(iii).
This is done by simultaneous induction on complexity of the formula C. If C
is an atom pi and e |= C then C] (i.e. p]

i , i.e. ¢m−i) appears as a conjunct
in V (e, 0). Hence V (e, 0) → C] is in GLTaut. If, on the other hand, e /|= C
then ¯m−i appears among the conjuncts. Then (iii) fails because the formulas
¢m−i and ¯m−i cannot be simultaneously satisfied in a node of depth m. The
induction step is straightforward. Note that ¬(ii) for a formula C is the same
as (iii) for ¬C, while ¬(iii) for C is (ii) for ¬C.

Now we use recursion to construct formulas A∗0, . . , A
∗
m. The formula A∗0

is ∇m & B]. If j > 0 and Qj = ∀ then A∗j is

3(∇m+j−1 & ¢m−j) & 3(∇m+j−1 & ¯m−j) & 2(∇m+j−1 →A∗j−1),

whereas if j > 0 and Qj = ∃ then A∗j is

3((¢m−j ∨¯m−j) & A∗j−1).

Note that an important point here is that A∗j−1 appears only once as a subfor-
mula of A∗j .

Lemma 2 Let 0 ≤ j ≤ m and let e be a truth evaluation of pj+1, . . , pm. Then
e |= Qjpj . . Q1p1B(p) if and only if the formula V (e, j) & A∗j is GL-satisfiable.

Proof We proceed by induction on j, verifying simultaneously that if A∗j has a
model then it also has a model of depth exactly m+j. For j = 0 the statements
follow from lemma 1 for C = B.

Assume j > 0 and Qj = ∀. Let K = 〈W,R, ‖−〉 be a model with root a such that
a ‖− V (e, j)&A∗j . By the definition of A∗j we have (i) a ‖− 3(∇m+j−1 &¢m−j),
(ii) a ‖− 3(∇m+j−1 &¯m−j), and (iii) a ‖− 2(∇m+j−1→A∗j−1). By (i) there is
a node a1 accessible from a and satisfying the formula ∇m+j−1 & ¢m−j , by (ii)
there is a node a0 accessible from a and satisfying the formula ∇m+j−1 &¯m−j .
One may think that the model K looks like that in Fig. 1. The numbers in
the left indicate depth. The two parts circumscribed by thinner curves must be
disjoint because all nodes in the left one can only see nodes satisfying ¬q when
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Figure 1: Observing nodes having depth m− j

observing depth m− j, while all nodes in the right one can only see nodes satis-
fying q when observing depth m− j. Let K0 and K1 be the (not necessarily dis-
joint) submodels of K generated by a0 and a1 respectively. From a0 ‖− ∇m+j−1

and (iii) we have a0 ‖− A∗j−1. The formula V (e, j) is persistent in the sense that
if it is satisfied in some node x then it is also satisfied in any node y accessible
from x. So a0 ‖− V (e, j). Note that V (0_e, j−1), where 0_e is the extension of e
sending j to 0, is the conjunction ¯m−j &V (e, j). So the condition a0 ‖− ¯m−j

yields a0 ‖− V (0_e, j − 1). Thus K0 is a model of V (0_e, j − 1) & A∗j−1. So,
by the induction hypothesis, 0_e |= Qj−1pj−1 . . Q1p1B(p). Analogical reason-
ing about K1 and a1 shows 1_e |= Qj−1pj−1 . . Q1p1B(p). By the definition of
propositional quantifiers we have e |= ∀pjQj−1pj−1 . . Q1p1B(p).

If, on the other hand, both truth evaluations 0_e and 1_e satisfy the for-
mula Qj−1pj−1 . . Q1p1B(p) then the induction hypothesis yields two models
K0 and K1 the roots a0 and a1 of which satisfy the formula V (e, j) & A∗j−1 and
such that a0 ‖− ¯m−j and a1 ‖− ¢m−j . We may assume that both K0 and K1

have depth exactly m+j−1. Then the model K is constructed from K0 and K1

by amalgamation, i.e. by appending a new root a and stipulating that a0 and a1

are the only immediate successors of a. The formula V (e, j) is not necessarily
backward persistent, but the facts that it is satisfied in all immediate succes-
sors of a and that all immediate successors of a have depth at least m ensure
that a ‖− V (e, j).

If Qj = ∃ and a is such that a ‖− 3((¢m−j ∨¯m−j) & A∗j−1) and a ‖− V (e, j)
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then some of the nodes accessible from a generates a submodel the root of which
satisfies A∗j−1 and one of the formulas V (0_e, j−1) and V (1_e, j−1). The rest
of the proof is left to the reader.

For j = m the lemma says that the formula Qmpm . . Q1p1B(p1, . . , pm), i.e.
the formula A, is true in the sense of quantified Boolean formulas if and only
if the modal formula A∗m is GL-satisfiable. The formula A∗m can be constructed
from A in logarithmic space. Thus the function A 7→ ¬A∗m is a reduction
from QBF, the complement of QBF, to GLTaut. The problem QBF, as well
as QBF, is PSPACE -complete. The formula ¬A∗m contains no atoms except q.
So the following theorem is proved.

Theorem 1 The set of all GL-tautologies built up from only one given propo-
sitional atom is PSPACE -complete.

Remark (added in January 20021) This result was obtained in 1998 and
was presented on several occasions, e.g. at the conference Logica 99 in Liblice,
organized by the Philosophical institute of the Czech Academy of Sciences. The
same and other related results are also in [CR02].

References

[Boo93] G. Boolos. The Logic of Provability. Cambridge University Press,
1993.

[CR02] A. V. Chagrov and M. N. Rybakov. How many variables does one
need to prove PSPACE-hardness of modal logics. In Philippe Balbiani,
Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, editors,
Advances in Modal Logic 4 (AiML’02), pages 71–82, Toulouse, France,
October 2002. King’s College Publications, 2003.

[Hem01] E. Hemaspaandra. The complexity of poor man’s logic. Journal of
Logic and Computation, 11(4):609–622, 2001.

[Lad77] R. Ladner. The computational complexity of provability in systems of
modal logic. SIAM Journal on Computing, 6(3):467–480, 1977.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.
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