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Abstract This is an introductory paper about provability logic, a modal
propositional logic in which necessity is interpreted as formal provability.
We discuss the ideas that led to establishing this logic, we survey its history
and the most important results, and we emphasize its applications in meta-
mathematics. Stress is put on the use of Gentzen calculus for provability
logic. We sketch our version of a decision procedure for provability logic
and mention some connections to computational complexity.

1 Introduction

Some logical concepts have unique and non-problematic meaning. For instance,
there are no logical schools forcing their own definition of algorithm. Various
definitions of algorithm appeared to be equivalent and the notion of algorithm
seems to be absolute. More or less the same can be said about the notion of
proof. Of course, there are non-classical logics and a proof acceptable from the
classical point of view may be non-acceptable e.g. from intuitionistic point of
view. But, in the classical framework or after the logical framework has been
fixed, there are no doubts about what a correct proof is. The notion of proof
can also be claimed to be absolute.

On the other hand, there is no generally accepted definition e.g. of an ef-
ficient algorithm. Efficient algorithms can be identified with those working in
polynomial time, but other (non-equivalent) definitions may also be useful. The
notion of modality is even “less absolute”. Tens of non-equivalent modal logics
can be found e.g. in the book [HC96], and none of them seems to play the role
of the most important or the authors’ favorite.

The non-existence of “the modal logic” can be explained by the fact that
nested modalities are rare in natural language. We seldom say that it is necessary
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that something is possible and thus there is no agreement whether for instance
the modal propositional formula ♦p → ¤♦p should be accepted as a modal
tautology.

This paper is devoted to the provability logic which is a modal propositional
logic based on the idea that something is necessary if it can be proved. By prov-
ability we mean provability in some fixed sufficiently strong formal axiomatic
theory like Peano arithmetic PA. If T is sufficiently strong, then logical syntax
including the notion of provability can be formalized within T . This fact means
that we can ask which facts about provability in T (or in some other theory S)
are provable in T itself.

Thus provability logic is a logic in which necessity is understood as formal
provability and which is closely connected to and can have application in meta-
mathematics of the most important mathematical theories. It should be clear
from the words “provability” and “provable” in the last sentence of the previous
paragraph that considering nested modalities is very natural in provability logic.
Provability logic is not intended to help in investigating modalities in natural
language. But surprisingly, usual modal methods can be used in its study and
it shares some properties (and axioms and rules) with the traditional modal
systems like S4.

This paper is meant as an introductory paper; its purpose is to encourage
the reader to take an interest in the field. We survey and comment the (from
our point of view) most interesting facts and ideas about provability logic and
mention their applications in metamathematics. We put stress on the use of
Gentzen calculus for provability logic invented in [SV82]. We present no new
results and we omit all difficult proofs; but we do show some proofs. Most of
the material can be found e.g. in [Smo85], [Smo84] and [Boo93]. In the final
part of the paper we discuss our version of a decision procedure for provability
logic and mention some connections to computational complexity.

I thank Roy Dyckhoff for bringing my attention to the paper [SV82]. Fur-
ther I thank the unknown referees for useful remarks and comments on the
preliminary version of this paper.

2 Arithmetization of logical syntax

Peano arithmetic PA is an axiomatic theory formulated in arithmetical lan-
guage, for which one can take the set {+, ·, 0, S, <} containing two binary func-
tion symbols, one constant, one unary function symbol and one binary predi-
cate. The underlying logic is the classical predicate logic with equality. The set
of axioms of PA is usually specified as that containing several simple axioms
(e.g. ∀x(x · 0 = 0)) and the induction scheme: each sentence of the form

Ind: ∀y1 . . ∀yn(ϕ(0, y) & ∀x(ϕ(x, y)→ ϕ(S(x), y))→∀xϕ(x, y)),

where y is an abbreviation for y1, . . , yn, is an axiom.
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The structure N = 〈N, +N, ·N, 0N, SN, <N〉, where N is the set {0, 1, 2, . . .} of
all natural numbers, +N and ·N addition and multiplication of natural numbers,
<N the strict ordering on natural numbers, 0N the number zero and SN the
successor function x 7→ x + 1, is called the standard model (of arithmetic).

The axioms of PA allow one to prove general facts about natural numbers,
like ∀x∀y(x · y = y · x), and also facts about particular numbers. For instance
the sentence

∀x∀y(x · y = S(S(S(0))) → x = S(0) ∨ y = S(0)) (A)

(which is provable in PA) can be read the number three is a prime. The term
S(S(S(0))) is denoted 3. More generally, the n-th numeral is defined as the term
S(S . . (0) . .) with n occurrence of the symbol S.

As an exercise we suggest the reader to formulate the fact that there are
infinitely many powers of two in the arithmetical language. The solution is not
completely trivial but requires no theoretical knowledge. With some further
effort, the resulting sentence can be proved in PA.

We see that some notion (like divisibility or a power of two) can be ex-
pressible in the arithmetical language even if no symbol of the language directly
corresponds to it. If it is the case a natural question is what Peano arithmetic
can prove about that notion.

Terms, formulas, proofs and other syntactical objects are finite sequences of
symbols. Since the nature of symbols is irrelevant, these objects can be identified
with finite sequences of natural numbers. Any finite sequence of natural numbers
can be coded by a single natural number. Thus formulas and other syntactical
objects can be identified with natural numbers: they are natural numbers, and
numerals like 0 = S(0) or three is a prime are possible. Here we continue the
practice of hiding arithmetical formulas under their informal reading typeset in
sans serif font. Thus the sentence (A) above equals to some natural number n
(i.e. has numerical code n), and three is a prime is a numeral containing exactly n
occurrences of “S”. Coding of finite sequences of natural numbers (can be chosen
so that it) is definable inside Peano arithmetic. Thus inside Peano arithmetic we
can work with syntactical objects and attempt to prove their properties. This
is often expressed by saying that logical syntax is arithmetizable.

The result of arithmetization of logical syntax is that not only the notion
of a prime or a power of two, but also the notion of PA-proof is expressible
in arithmetical language. Proof predicate is an arithmetical formula Prf(y, x)
expressing that the number x is a sentence and the number y is its proof in PA (of
course, we do not claim that y is uniquely determined by x; a sentence can have
many different proofs). Having the proof predicate, the formula Pr(x) is defined
as ∃yPrf(y, x) and the sentence Con is defined as ¬Pr(0 = S(0)). The formula
Pr(x) expresses that the number x is a sentence provable in PA. Since ¬(0 = S(0))
is easily proved in PA, the sentence 0 = S(0) represents a contradiction, and the
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sentence Con is the consistency statement, saying that Peano arithmetic is not
contradictory. Important properties of the formula Pr(x) are expressed by the
(Löb) derivability conditions:

D1: If PA ` ϕ, then PA ` Pr(ϕ)

D2: PA ` Pr(ϕ→ ψ)→ (Pr(ϕ)→ Pr(ψ))

D3: PA ` Pr(ϕ)→ Pr(Pr(ϕ)),

where ` denotes provability and ϕ and ψ are arbitrary arithmetical sentences.
An example on the use of D1 is this: the sentence Pr(three is a prime) is provable
in PA. The condition D2 says that PA knows that provable sentences are closed
on the rule modus ponens. Hence D2 is a formalized version of modus ponens.
Similarly, D3 is a formalized version of D1. Both D1 and D3 express (on different
levels) that if something is provable then it is provable that it is provable.
Besides D1–D3 we shall need another property of the provability predicate,
namely

Def: PA ` ϕ if and only if N |= Pr(ϕ),

expressing that the formula Pr(x) defines the set of all PA-provable sentences in
the standard model. Note that the implication ⇒ in the condition Def follows
from D1 and from the fact that N is a model of PA. Also note that, by a similar
argument and for any sentence ϕ, the implication PA ` Pr(ϕ) ⇒ PA ` ϕ
follows from the condition Def.

A useful tool for proving metamathematical properties of Peano arithmetic
is the self-reference theorem: for each arithmetical formula ψ(x, y) (containing
no free variables except possibly x and y) there is an arithmetical sentence ϕ
such that the equivalence ϕ ≡ ψ(ϕ,¬ϕ) is provable in PA. In other words, the
self-reference theorem says that any equation of the form PA ` ϕ≡ψ(ϕ,¬ϕ), for
an unknown sentence ϕ, has a solution. It is not necessary that both variables
x and y appear free in ψ. So all equations of the form PA ` ϕ ≡ ψ(ϕ) or
PA ` ϕ ≡ ψ(¬ϕ) also have a solution. If PA ` ϕ ≡ ψ(ϕ) then, inside PA, we
know that ϕ is equivalent to the statement the sentence ϕ has the property ψ. So
the solution of the equation PA ` ϕ≡ ψ(ϕ) can be viewed as a sentence saying
I have the property ψ.

Let us list some of the most prominent examples on the use of the self-ref-
erence theorem. Gödel sentence is a sentence ν satisfying PA ` ν ≡ ¬Pr(ν),
Rosser sentence is a sentence ρ satisfying

PA ` ρ≡ ∀y(Prf(y, ρ)→∃v≤yPrf(v,¬ρ)), (B)

and Henkin sentence is a sentence κ satisfying PA ` κ ≡ Pr(κ). The sentences
κ and ν say I am provable in PA and I am not provable in PA respectively. The
sentence ρ says below any proof of myself there is another proof of my negation.
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Proposition 1 If PA ` ν≡¬Pr(ν), then both ν and ¬ν are unprovable in PA.

Proof Assume that PA ` ν. Then, by the condition D1, PA ` Pr(ν). From
PA ` ν≡¬Pr(ν) we have PA ` ¬ν. A contradiction with the consistency of PA.

So PA 6` ν. Hence, by the condition Def, N /|= Pr(ν). Assume that PA ` ¬ν.
Then, again by the equivalence PA ` ν ≡ ¬Pr(ν), we have PA ` Pr(ν). Since N
is a model of PA, we have N |= Pr(ν). This is a contradiction with N /|= Pr(ν)
proved above. So PA 6` ¬ν.

Proposition 1 is basically Gödel first incompleteness theorem, while Propo-
sition 2 below is Gödel second incompleteness theorem.

Proposition 2 (a) If PA ` ν ≡ ¬Pr(ν), then PA ` Con≡ ν. So PA 6` Con.
(b) PA ` Con→¬Pr(Con).

We are not going to prove Proposition 2. We only make some comments to
make the statements plausible. Note that the argument in the first paragraph
of proof of Proposition 1, showing that if PA ` ν then PA is contradictory, is
purely syntactical in the sense that it does not mention the structure N and
the condition Def. So it should not be surprising that this argument can be
formalized inside PA, and it can be checked that D1–D3 are sufficient to do
this. The result is a proof of a sentence if PA is consistent then PA 6` ν, i.e.
a proof of the sentence Con → ¬Pr(ν). Together with PA ` ν ≡ ¬Pr(ν) this
yields PA ` Con → ν. The converse implication PA ` ν → Con can also be
proved using D1–D3 and its proof is even simpler. Having PA ` Con→ ν, the
conclusion PA 6` Con is straightforward using Proposition 1. From PA ` Con→ν
we have PA ` Pr(Con→ ν) by D1, and PA ` Pr(Con) → Pr(ν) by D2. So
PA ` ¬Pr(ν) → ¬Pr(Con). This together with PA ` Con → ¬Pr(ν) yields the
statement of (b). Note that in Proposition 2(b) the formalization went one step
deeper: the sentence in (b) can be viewed as a formalization of the statement
in (a).

So PA is incomplete, cannot prove its own consistency, but it knows (i.e. can
prove) about itself that it can prove its consistency only if it is contradictory.

The provability predicate and the Gödel sentence asserting its own unprov-
ability can be constructed for any recursively axiomatizable consistent theory T
extending Peano arithmetic, and the Gödel sentence can be proved to be un-
provable in T and equivalent in T to the consistency statement of T . So no
such T can prove its own consistency. The Gödel sentence for T (and the con-
sistency statement for T ) can be proved independent over T under the additional
assumption that T is sound, i.e. that all arithmetical sentences provable in T
hold in N.

The Rosser sentence ρ can also be proved independent over PA, and its
advantage is that both proofs (of PA 6` ρ and PA 6` ¬ρ) are purely syntactical.
Hence both are formalizable in Peano arithmetic: PA ` Con → ¬Pr(ρ) and
PA ` Con → ¬Pr(¬ρ). The Rosser sentence of a theory T (constructed from
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the proof predicate of T ) can be used to show that any consistent recursively
axiomatizable extension T of PA, even if not sound, is incomplete.

The self-reference theorem asserts that any self-referential equation has a
solution, but does not say that the solution is unique. This is why no definite
article appears in formulation of Proposition 1: the Proposition says and its
proof shows that any solution of the Gödel equation is independent over PA. But
later, in Proposition 2, it became clear that any Gödel sentence ν is PA-equiv-
alent to the sentence Con. So the Gödel equation in fact has a unique solution
(up to PA-provable equivalence). Is this always the case, i.e. do all self-reference
equations have a unique solution? Can PA prove the sentence Con→¬Pr(¬ν),
i.e. does PA know that ν is independent over it? What are the properties ot
the Henkin sentence? We shall see that modal logic can throw some light on
questions like these.

The first incompleteness theorem was proved in [Göd31]. C. Smoryński
writes in [Smo85] about the intended paper with roman “II” that it never ma-
terialized, perhaps because the logical community accepted the second incom-
pleteness theorem before Gödel succeeded in typing the paper. The self-reference
theorem first appeared explicitly in [Car34]. As introductory texts about arith-
metization of logical syntax we recommend [Fef60], [Smo85] or [Boo93]. The
derivability conditions were formulated in [Löb55], where M. H. Löb solved the
following problem of L. Henkin: is any sentence κ asserting its own provability
provable in PA?

3 Arithmetical semantics of modal logic

Formulas of provability logic are the usual modal propositional formulas. They
are built up from propositional atoms p, q, . . . , p0, p1, . . . using the unary modal
operator ¤ and logical connectives →, ¬, &, ∨, ⊥. The symbol ¤ stands for
necessity, ¤A is read “A is necessary” or simply “box A”. The symbol ⊥ is
a logical constant (i.e. an operator of arity zero) for falsity. Thus ¤⊥ ∨ ¤¬⊥
or p → ¤(¤q & p) are examples of modal formulas. The choice of the set of
logical connectives is not absolutely essential; the set {→,¬} (just as in classical
propositional logic) would also do. But we shall see that it is very convenient
to have the symbol ⊥. Other operators are also allowed: ♦A is a shortening
for ¬¤¬A, > is ¬⊥, and A≡B stands for (A→B) & (B →A).

An (arithmetical) evaluation is a function e from propositional atoms to
arithmetical sentences satisfying the following conditions:

• e(⊥) = (0 = S(0))

• e(¬A) = ¬e(A), e(A ./ B) = e(A) ./ e(B) for any (binary) logical connec-
tive ./

• e(¤A) = Pr(e(A)).
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We mention two examples of how the arithmetical evaluations work. Under any
evaluation e, the value of a formula ¤A ∨ ¤¬A has the form Pr(ψ) ∨ Pr(¬ψ),
where the sentence ψ is determined by values of propositional atoms occurring
in A. The value of the formula ¬¤⊥ is the same under any e because ¬¤⊥
contains no propositional atoms, and we have e(¬¤⊥) = ¬Pr(0 = S(0)) = Con.

A modal formula A is a PA-tautology if PA ` e(A) for each arithmetical
evaluation e. For example, the formula ¤A→ ¤¤A is a PA-tautology for any
choice of A because any its value has the form Pr(ϕ)→Pr(Pr(ϕ)) which, by D3,
is always provable in PA. The formula p→ (¤q→ p) is a PA-tautology because,
under any e, its value is an arithmetical sentence which is a (classical) proposi-
tional tautology, and all tautologies are provable in all axiomatic theories. This
example generalizes to the following statement: any modal formula which (in
an obvious sense) is a propositional tautology is also a PA-tautology.

Let us mention some less obvious examples of PA-tautologies and non-tau-
tologies. By Propositions 1 and 2, neither ¬¤⊥ nor ¤⊥ are PA-tautologies. By
Proposition 2(b), ¬¤⊥→¬¤¬¤⊥ is a PA-tautology. Consider once again the
Gödel sentence ν. The fact that ¬Pr(ν) → ν is provable has the consequence
that Pr(ν) → ν is not provable because otherwise ν would also be provable.
This argument shows that ¤p → p is not a PA-tautology: there is an evalu-
ation e, namely that sending p to ν, such that PA 6` e(¤p → p). The fact
that ¤p→ p is not a PA-tautology may look surprising, but it is natural: PA
cannot claim that all provable statements are true because it knows that a con-
tradictory theory proves any sentence and it cannot claim about itself that it is
consistent.

We observe that PA-tautologies are modal formulas that express general
facts about provability and about self-referential sentences. For instance the
modal formula ¬¤⊥→(¤(p≡¬¤p)→¬¤p), saying that “under the assumption
of consistency, any statement asserting its own unprovability is unprovable”,
is a modal version of Gödel first incompleteness theorem. It is more or less
evident from Proposition 1 and will become completely clear in the next Section
that this formula is a PA-tautology. Similarly, the formula ¬¤⊥ → ¬¤¬¤⊥,
which we know for sure to be a PA-tautology, is a modal version of the second
incompleteness theorem.

At first sight it is not evident whether the set of all PA-tautologies is recur-
sive. But usual methods used in (modal) logic can be used to solve this and other
problems. More specifically, an axiomatization of the set of all PA-tautologies
can be established and further studied.

4 Calculi, Kripke semantics and conclusions

To obtain an axiomatization of the set of all PA-tautologies, a good idea is to
start with the modal versions of D1–D3, i.e. to accept all propositional tautolo-
gies and all formulas of the form ¤(A → B) → (¤A → ¤B) and ¤A → ¤¤A
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as axioms and to accept A /¤A and modus ponens A,A → B / B as rules of
inference. The resulting modal logic is known as K4.

The logic K4 is evidently sound with respect to arithmetical semantics (i.e.
proves only PA-tautologies) but it is not complete, i.e. does not prove all PA-tau-
tologies. An example of a PA-tautology unprovable in K4 is ¬¤⊥→ ¬¤¬¤⊥.
This is understandable because K4 (i.e. the conditions D1–D3 plus modus po-
nens plus the fact that all propositional tautologies are PA-tautologies) does not
capture an important fact, namely the self-reference theorem.

In [Löb55] M. H. Löb proved that any Henkin sentence, i.e. any sentence κ
satisfying PA ` κ ≡ Pr(κ), is provable in PA. Actually Löb proved a stronger
statement: if PA ` Pr(κ)→κ, then PA ` κ. Formalized version of this statement
(not mentioned in [Löb55]), saying that PA ` Pr(Pr(κ)→ κ)→Pr(κ), is also true.
Löb theorem was originally considered a curiosity not related to anything else.
But during the sixties it became clear that its modal version, i.e. the Löb rule
and the Löb axiom

¤A→A/ A and ¤(¤A→A)→¤A

could be important. The reader can convince her- or himself by deriving second
incompleteness theorem from Löb axiom: a simple substitution of ⊥ for A is
sufficient. Both Löb rule and Löb axiom are sound w.r.t. arithmetical semantics
and they are interderivable over K4. So we can officially define the Hilbert
calculus for provability logic GL: it results by adding Löb axiom scheme to the
logic K4 defined above. Provability logic is sometimes denoted only G or only L.
The letters stand for Gödel and Löb.

More on the history of GL can be found in [BS91]. We only quote from
[BS91] that an explicit formulation of Löb axiom first appeared in 1963 in a
paper by T. Smiley on a modal treatment of ethics (!). By 1971 several peo-
ple (Segerberg, Kripke, de Jongh) independently proved Kripke completeness
theorem formulated in Propositions 8 and 9 below. And then, in the seventies,
de Jongh in Amsterdam and Boolos and Kripke in the USA considered seriously
the conjecture that Löb axiom is the only missing axiom, i.e. that GL is com-
plete w.r.t. the arithmetical semantics. This was finally proved to be true by
Solovay ([Sol76]) in 1975:

Proposition 3 A modal formula is provable in GL if and only if it is a PA-tau-
tology.

Solovay’s proof of Proposition 3 uses a delightful but rather complicated
plural self-reference and it also uses the main facts about Kripke semantics
formulated in Propositions 8 and 9 below. So we omit even a sketch of the proof,
but below, after Proposition 8, we will show an application of Proposition 3.

In the rest of this Section we deal with sequent calculus for GL and with
Kripke semantics of GL. We will try to explain some of the most important
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〈¤p, p, ¤¤p ⇒ ¤p 〉
〈¤p ⇒ ¤¤p 〉

〈¤p, p→¬¤p, p ⇒ 〉
〈¤¤p,¤(p→¬¤p), ¤p ⇒ ¤⊥〉

〈¤(p→¬¤p), ¤p ⇒ ¤⊥〉
〈¤(p→¬¤p), ¤p,¬¤⊥ ⇒ 〉
〈¤(p→¬¤p),¬¤⊥ ⇒ ¬¤p 〉

Figure 1: An example proof in the calculus LKGL

results and to provide the reader with an insight to some techniques. But we
still omit all longer proofs.

For the Gentzen (sequent) calculus LK for classical propositional logic we
take the calculus from [Tak75] with the only change that a sequent is a pair
of finite sets of formulas rather than a pair of finite sequences of formulas. A
sequent consisting of sets Γ and ∆ is written 〈Γ ⇒ ∆ 〉; its intuitive meaning
is “if all formulas in Γ hold, then some formula in ∆ also holds”. The sets
Γ and ∆ are antecedent and succedent of the sequent 〈Γ ⇒ ∆ 〉. The calculus
has two logical rules for each logical connective. As a sample we give the rule
for introducing implication to antecedent:

→l: 〈Γ ⇒ ∆, A 〉, 〈Γ, B ⇒ ∆ 〉 / 〈Γ, A→B ⇒ ∆ 〉,

where ∆, A is a shorthand for ∆ ∪ {A} etc. Besides logical rules the calculus
has initial sequents (i.e. rules without premises) of the form 〈Γ, A ⇒ ∆, A 〉
and 〈Γ,⊥ ⇒ ∆ 〉, and two structural rules: the cut-rule and the weakening rule
allowing to add any formula to (any side of) any sequent. There is no (⊥r)-rule.

A sequent calculus LKGL is obtained by adding to LK a single modal rule

¤r: 〈¤Γ, Γ, ¤A ⇒ A 〉 / 〈¤Γ ⇒ ¤A 〉,

where ¤Γ = {¤A ; A ∈ Γ }. Note that (i) both the premise and the conclusion
of (¤r) contain exactly one formula in succedent, (ii) all formulas in the con-
clusion start with ¤, and (iii) the rule (¤r) satisfies the subformula property.
There is no (¤l)-rule: if a formula ¤A is in an antecedent of a provable sequent,
it must either have appeared by weakening or come from some initial sequent.

In Fig. 1 we give an example of a proof in LKGL. It is a proof of a modal
version of Gödel first incompleteness theorem. It contains two applications of
the (¤r)-rule, a cut on the formula ¤¤p, and ends with two applications of the
negation rules. The left leaf is an initial sequent, the right one is not but is easily
proved using the (→l)-rule. Some weakenings have been omitted. As an exercise
the reader may try to find a (simpler) cut-free proof. From Proposition 9 below
it is clear that the cut-elimination theorem holds for LKGL. The aspects of a
direct (syntactical) proof of the cut-elimination theorem are discussed in [SV82].
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Let p be a propositional atom. Then Ap(q) or only A(q) denotes the result
of substituting q for p in A. We suppose that the atom q does not occur in A
and we sometimes write A(p) instead of A. We say that p is boxed in A if all
occurrences of p in A(p) are in a scope of some ¤.
Proposition 4 (a) Let A(p) be a modal formula and q a propositional atom
not occurring in A(p). Then 〈¤(p≡q) ⇒ ¤(A(p)≡A(q)) 〉 is a sequent provable
in LKGL.
(b) If, moreover, p is boxed in A, then 〈¤(p≡ q) ⇒ A(p)≡A(q) 〉 is a sequent
provable in LKGL.
Proof By an induction on the complexity of A, see [SV82] or [Smo85].
Proposition 5 Let 〈Γ, Π ⇒ ∆, Λ 〉 be a sequent provable in LKGL. Then there
is a modal formula D containing only atoms common to sequents 〈Γ ⇒ ∆ 〉
and 〈Π ⇒ Λ 〉 and such that 〈Γ ⇒ ∆, D 〉 and 〈Π, D ⇒ Λ 〉 are sequents
provable in LKGL.
Proof By an induction on the number of steps in a cut-free proof of the sequent
〈Γ, Π ⇒ ∆, Λ 〉 in LKGL, see [SV82].

Proposition 4 is the substitution theorem and Proposition 5 is the interpo-
lation theorem for GL.
Proposition 6 Let A(p) be a modal formula not containing q, let p be boxed
in A(p). Then the sequent 〈¤(p≡A(p)),¤(q≡A(q)) ⇒ ¤(p≡ q) 〉 is provable
in LKGL.
Proof Having Proposition 4, we can write an almost complete formal proof
in LKGL:

1: 〈¤(p≡ q) ⇒ A(p)≡A(q) 〉 ; Proposition 4(b)
2: 〈 p≡A(p), q ≡A(q), A(p)≡A(q) ⇒ p≡ q 〉
3: 〈 p≡A(p), q ≡A(q), ¤(p≡ q) ⇒ p≡ q 〉 ; Cut on 1 and 2
4: 〈¤(p≡A(p)), ¤(q ≡A(q)) ⇒ ¤(p≡ q) 〉 ; (¤r)

The sequent (2) is tautological. Besides (¤r), some weakenings were used to
obtain the sequent (4) from (3).

We show that on the arithmetical side, the Proposition 6 implies a unique
solvability of some self-referential equations. Assume, for example, that λ is
an arithmetical sentence and that ϕ1 and ϕ2 are two solutions of an equation
given by the formula Pr(x) → λ. So both sentences ϕ1 ≡ (Pr(ϕ1) → λ) and
ϕ2 ≡ (Pr(ϕ2)→ λ) are provable in PA. Also, by D1,

PA ` Pr(ϕ1 ≡ (Pr(ϕ1)→ λ)) and PA ` Pr(ϕ2 ≡ (Pr(ϕ2)→ λ)). (C)

Take the formula ¤p→r for A(p). Soundness of GL w.r.t. arithmetical semantics
and Proposition 6 yield

PA ` Pr(ϕ1 ≡ (Pr(ϕ1)→ λ)) & Pr(ϕ2 ≡ (Pr(ϕ2)→ λ))→ Pr(ϕ1 ≡ ϕ2). (D)
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From (C) and (D) we get PA ` Pr(ϕ1 ≡ ϕ2), and, since N is a model of PA,
also N |= Pr(ϕ1 ≡ ϕ2). Now the condition Def yields PA ` ϕ1 ≡ ϕ2. So we have
shown that, up to equivalence provable in PA, the equation PA ` ϕ≡Pr(ϕ)→λ
has a unique solution ϕ. Completely identical argument applies to any other
equation PA ` ϕ ≡ ψ(ϕ,¬ϕ) under the assumption that ψ is an arithmetical
version of some modal formula, i.e. that ψ(x, y) is built up using only logical
connectives and the formula Pr and that all occurrences of x and y in ψ appear
inside some formula Pr. Let us call such equation a Gödelian equation and its
solution a Gödelian sentence. Any Gödelian sentence is uniquely determined by
the equation it satisfies. An example of a self-referential equation which is not
Gödelian is the Rosser equation (B) above. And indeed, it can be shown that
the sentence ρ is not uniquely determined by the equation (B), see [GS79].

Proposition 7 Let A(p) be a modal formula such that p is boxed in A. Then
there is a modal formula D containing only atoms occurring in A other than p
such that D ≡A(D) is provable in LKGL.

Proof This was proved in [SV82] and is discussed also in [Smo85]. We repro-
duce the proof from [SV82].

Take a new (i.e. not occurring in A) atom q. Then A and atoms p and q are as
in Proposition 6, and all sequents (1)–(4) from its proof are provable in LKGL.
We can continue the formal proof using the cut rule on (1) and (4):

5: 〈¤(p≡A(p)),¤(q ≡A(q)) ⇒ A(p)≡A(q) 〉
6: 〈¤(p≡A(p)),¤(q ≡A(q)), A(p) ⇒ A(q) 〉 ; 5

Now apply Proposition 5 to the sequent (6): there is a formula D not containing
p and q such that both sequents

7: 〈¤(p≡A(p)), A(p) ⇒ D 〉
8: 〈¤(q ≡A(q)), D ⇒ A(q) 〉

are provable in LKGL. It is evident that a sequent obtained by substituting any
formula for a propositional atom in a provable sequent is provable as well. So
the following sequents are provable in LKGL:

9: 〈¤(D ≡A(D)), A(D) ⇒ D 〉 ; 7, substitution

10: 〈¤(D ≡A(D)), D ⇒ A(D) 〉 ; 8, substitution

11: 〈¤(D ≡A(D)) ⇒ D ≡A(D) 〉 ; 9, 10

12: 〈 ⇒ ¤(D ≡A(D)) 〉 ; (¤r) on 11

13: 〈 ⇒ D ≡A(D) 〉 ; Cut on 11 and 12

11



Recall that the Gödel sentence ν appeared equivalent to the consistency
statement Con. Proposition 7 explains that it was not a coincidence: any
Gödelian equation has an explicitly definable solution, i.e. a solution expressible
in terms of Pr, ⊥ and other logical connectives. As an example, take the equa-
tion PA ` ϕ≡Pr(ϕ)→λ. A guess based on the knowledge of a proof in [Löb55],
or a look at [Smo85], p. 123, shows that ϕ := Pr(λ)→ λ is its only solution.

A Kripke frame is a pair 〈W,R〉 where W is a nonempty set of nodes (or
possible worlds) and R is a binary relation on W . The relation R is called
accessibility relation of the frame 〈W,R〉. A relation ‖− between modal formulas
and nodes of a frame 〈W,R〉 is a forcing relation on 〈W,R〉 if it preserves all
logical connectives (i.e. satisfies a ‖− A & B iff a ‖− A and a ‖− B, etc.) and
satisfies the condition

a ‖− ¤A ⇔ ∀b(a R b ⇒ b ‖− A) (E)

for each node a and a modal formula A. A Kripke model is a triple 〈W,R, ‖−〉
where ‖− is a forcing relation on a frame 〈W,R〉. A formula is valid in a
model 〈W,R, ‖−〉 if it is forced in any node a ∈ W . A model 〈W,R, ‖−〉 is a
countermodel for a formula A if A is not valid in it, i.e. if there exists a node
a ∈ W such that a ‖−/ A. The notions of forcing, validity and countermodel
naturally extend from formulas to sequents: a sequent 〈Γ ⇒ ∆ 〉 is forced in a
node a ∈ W of a model 〈W,R, ‖−〉 if a ‖− ∧

Γ→∨
∆, the same sequent is valid

in 〈W,R, ‖−〉 if it is forced in each node a ∈ W , and 〈W,R, ‖−〉 is a countermodel
for 〈Γ ⇒ ∆ 〉 if some a ∈ W forces all formulas in Γ and no formulas in ∆.
More on Kripke semantics of modal logic can be found in [HC96] or in any other
source on modal logic.

An example of a Kripke model is in Fig. 2. It has five nodes and its ac-
cessibility relation has four pairs indicated by arrows. For each node we have
indicated which atoms are forced it it. If an atom is not mentioned it it under-
stood that it is not forced. We have a ‖−/ ¤(p→ q) and thus a ‖− ¬¤(p→ q)
because there are nodes—namely c is such a node—that are accessible from a,
force p, but do not force q. For the propositional constant ⊥, the condition
that all connectives are preserved by ‖− says that ⊥ is nowhere forced. Since
no nodes are accessible from b (as well as from c, d, and e), we have b ‖− ¤⊥.
The formula ¬¤⊥→ p is valid in our model since the only node that forces the
formula ¬¤⊥ is a, and indeed, a forces p. The model in Fig. 2 is a countermodel
e.g. for the formula ¬¤⊥→¬p.

A relation R is reversely well-founded on W if each nonempty subset of W
has a maximal element. A model 〈W,R, ‖−〉 is a Kripke model for provability
logic if R is transitive and reversely well-founded. Note that any reversely
well-founded relation is irreflexive and that a transitive relation on a finite set
is reversely well-founded if and only if it is irreflexive. So the model in Fig. 2 is
a model for provability logic.
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Figure 2: Example Kripke model

Proposition 8 Each sequent provable in LKGL is valid in any transitive re-
versely well-founded Kripke model. So LKGL is sound w.r.t. Kripke semantics
of provability logic.

Proof We verify soundness of the modal rule (¤r). Soundness of all other
rules is straightforward. So let 〈W,R, ‖−〉 be a Kripke model with reversely
well-founded R and let 〈¤Γ, Γ, ¤A ⇒ A 〉 be a sequent valid in 〈W,R, ‖−〉. We
show that 〈¤Γ ⇒ ¤A 〉 is also valid in 〈W,R, ‖−〉. Assume not. Then there
is a node a ∈ W such that a ‖−/ ¤A and a ‖− ¤B whenever B ∈ Γ. Take
Y = { b ; a R b and b ‖−/ A }. Since a ‖−/ ¤A, the set Y is nonempty. Let
b0 be a maximal element of Y . Since a R b0 and a ‖− ¤B, we have b0 ‖− B
for each B ∈ Γ. By transitivity of R, all nodes accessible from b0 are also
accessible from a. So b0 ‖− ¤B for each B ∈ Γ. If we had c ‖−/ A for some c
accessible from b0, then, again by transitivity of R, b0 would not be maximal
in Y . So b0 ‖− ¤A. We have reached at a contradiction: the assumption that
〈¤Γ, Γ,¤A ⇒ A 〉 is valid in 〈W,R, ‖−〉 is violated in b0.

We show an example on the use of Proposition 8. The formula

¤(p ∨ q) ∨¤(p ∨ ¬q) ∨¤(¬p ∨ q) ∨¤(¬p ∨ ¬q) (F)

has a Kripke countermodel. Indeed, the model in Fig. 2 works. So, by Proposi-
tion 3, the formula (F) is not arithmetically valid. So we have an evaluation e
such that

PA 6` Pr(e(p) ∨ e(q)) ∨ . . ∨ Pr(¬e(p) ∨ ¬e(q)).

This together with the condition D1 says that none of the four disjunctions
e(p)∨ e(q), . . ,¬e(p)∨¬e(q) is provable in PA. So we have shown the existence
of arithmetical sentences ϕ and ψ, namely ϕ := e(p) and ψ := e(q), that are
mutually independent in the sense that the theories PA∪{ϕ,ψ}, PA∪{ϕ,¬ψ},
PA ∪ {¬ϕ, ψ} and PA ∪ {¬ϕ,¬ψ} are all consistent.

The following Proposition is the Kripke completeness theorem for the cal-
culus LKGL. By length of a sequent 〈Σ ⇒ Ω 〉 we mean the total number of
all occurrences of logical connectives and propositional atoms in the sequent
〈Σ ⇒ Ω 〉.
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Proposition 9 If a sequent 〈Σ ⇒ Ω 〉 of length n is provable in LKGL then it
has a cut-free proof in LKGL of depth at most O(n2). Otherwise it has a Kripke
countermodel of depth at most n, in which each node has at most n immediate
successors.

Proof We describe a procedure that attempts to construct a proof of a given
sequent 〈Σ ⇒ Ω 〉. If the attempt fails, the unsuccessful proof is converted to
a Kripke countermodel for 〈Σ ⇒ Ω 〉.
The first part of our procedure creates a finite tree T labeled by sequents.
Initialization consists of declaring the input sequent 〈Σ ⇒ Ω 〉 to be the root
of T . Then the first part of the procedure proceeds in steps; in each step it
chooses and processes a top sequent in T that is (so far) not declared to be
a leaf. If there are no non-leaf top sequents, the first part of the procedure is
finished.

Let 〈Γ ⇒ ∆ 〉 be a top sequent which is not declared to be a leaf. If Γ ∪ ∆
contains a formula the outermost symbol of which is a connective, the procedure
chooses some such formula A and performs a propositional step. This step means
to append one or two new sequents above 〈Γ ⇒ ∆ 〉 using once or twice the
corresponding propositional rule in reverse, thus obtaining one or two new top
sequents. The cases where A is an implication in succedent or a conjunction in
succedent are treated as follows:

〈Γ, B ⇒ Λ, C 〉
〈Γ ⇒ Λ, B → C 〉

〈Γ ⇒ Λ, B 〉 〈Γ ⇒ Λ, C 〉
〈Γ ⇒ Λ, B & C 〉

If A is a conjunction in antecedent or a disjunction in succedent we have two
new sequents but only one new top sequent:

〈Π, B, C ⇒ ∆ 〉
〈Π, B & C, C ⇒ ∆ 〉
〈Π, B & C ⇒ ∆ 〉

〈Γ ⇒ Λ, B, C 〉
〈Γ ⇒ Λ, B ∨ C, C 〉
〈Γ ⇒ Λ, B ∨ C 〉

Each of the remaining four cases is similar to some of these. The propositional
steps of the procedure are the same as in classical propositional logic.

We show on an example how the procedure works. Assume that the input
sequent 〈Σ ⇒ Ω 〉 is

〈¤(¤p→ q) ∨¤¬(p ∨ q),¬¤q ⇒ ¤(¤⊥→¬p), p 〉.

Then our procedure uses the (¬l)- and (∨l)-rule to obtain a four-element tree

〈¤(¤p→ q) ⇒ ¤q, ¤(¤⊥→¬p), p 〉b 〈C ⇒ ¤q, ¤(¤⊥→¬p), p 〉c
〈¤(¤p→ q) ∨¤¬(p ∨ q) ⇒ ¤q, ¤(¤⊥→¬p), p 〉a
〈¤(¤p→ q) ∨¤¬(p ∨ q),¬¤q ⇒ ¤(¤⊥→¬p), p 〉
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with two top sequents b, c containing only propositional atoms and boxed formu-
las (i.e. formulas starting with the symbol ¤). C denotes the formula ¤¬(p∨q).

Let’s say that a sequent is critical if it contains only propositional atoms and
boxed formulas. The formula ⊥ is also treated as an atom. We are now going
to specify what the procedure does with critical sequents, i.e. we are going to
describe critical steps. A critical sequent has the form 〈¤Γ, Π ⇒ ¤∆, Λ 〉,
where Π∪Λ contains only propositional atoms. If Π∩Λ 6= ∅ or ⊥ ∈ Π or ∆ = ∅
then the sequent becomes a leaf. Otherwise the procedure appends all sequents
of the form 〈¤Γ, Γ, ¤A ⇒ A 〉, where A ∈ ∆, as immediate successors of the
sequent 〈¤Γ, Π ⇒ ¤∆, Λ 〉. Note that if some of its immediate successors is
provable, then 〈¤Γ, Π ⇒ ¤∆,Λ 〉 is also provable in LKGL. Also note that
propositional atoms are discarded during this step.

As said above, the propositional and critical steps are repeated while there is
any top sequent which is not a leaf. On the right hand side of our example,
above the sequent c, the procedure gets

〈C, ¤q ⇒ p, q 〉d
〈C, ¤q ⇒ q, p ∨ q 〉

〈C,¬(p ∨ q), ¤q ⇒ q 〉

〈C, ¤(¤⊥→¬p), ¤⊥, p ⇒ p, q 〉
〈C, ¤(¤⊥→¬p), ¤⊥, p ⇒ p, p ∨ q 〉
〈C, ¤(¤⊥→¬p), ¤⊥, p ⇒ p ∨ q 〉
〈C, ¤(¤⊥→¬p), ¤⊥ ⇒ ¬p, p ∨ q 〉
〈C, ¤(¤⊥→¬p) ⇒ ¤⊥→¬p, p ∨ q 〉

〈C,¬(p ∨ q), ¤(¤⊥→¬p) ⇒ ¤⊥→¬p 〉
〈¤¬(p ∨ q) ⇒ ¤q, ¤(¤⊥→¬p), p 〉c

where C still denotes the formula ¤¬(p ∨ q). We suggest the reader to write
down what happens on the left hand side, above the sequent b.

Each critical step adds a boxed formula to the antecedent. Since there are
at most n boxed formulas, each branch of the resulting tree contains at most n
critical sequents. The distance of two consecutive critical sequents on any branch
is bounded by 2n because each propositional step removes one logical connective
except that two steps are necessary to remove a disjunction from succedent or a
conjunction from antecedent, which is visible on the right top of our example. So
the resulting tree is finite and the first part of the procedure always terminates.

Our procedure then continues by marking each sequent in the tree as “positive”
or “negative”. A leaf is positive if it is an initial sequent, i.e. if its antecedent and
succedent have some atom in common or if its antecedent contains ⊥. Otherwise
it is negative. In the latter case it contains no boxed formulas in succedent and
can easily be verified to have a one-element Kripke countermodel. Any other
critical sequent is positive if some of its immediate successors is positive, and
negative otherwise. A non-critical sequent has one or two immediate successors
(since each propositional rule has at most two premises), and is marked positive
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if and only if all its immediate successors are positive. In our example, all
sequents on the left branch growing from the sequent c are negative, but all
sequents on the right branch are positive, which is sufficient for c to be also
positive. The (non-critical) sequent a is negative because if the reader wrote
down what happens above b, then he found that b is negative. Doing this, he
also must have discovered three more negative critical sequents e, f , and g.

If the root sequent 〈Σ ⇒ Ω 〉 is positive (which is not the case in our example),
the procedure discards all negative sequents, then it discards further sequents
so that each critical non-leaf sequent has exactly one immediate successor, and
finally it adds some weakenings. The result is the desired proof of the original
sequent 〈Σ ⇒ Ω 〉. If, on the other hand, the root sequent 〈Σ ⇒ Ω 〉 is
negative, the Kripke countermodel 〈W,R, ‖−〉 for 〈Σ ⇒ Ω 〉 is constructed as
follows. W is the set of all negative critical sequents. R is inherited from the
tree T . The forcing relation ‖− is determined by the condition that each atom p
is forced in a critical sequent 〈Γ ⇒ ∆ 〉 if and only if it is an element of Γ. In
our example the model is

〈 〉e

〈 〉f

〈 〉b

〈 〉g 〈 〉d

q

p, q

@@I ¡¡µ

6

The fact that 〈W,R, ‖−〉 is a countermodel for 〈Σ ⇒ Ω 〉 follows from the
following Sublemma.

Sublemma Let s′ ∈ T and let s ∈ W be such that s is the first critical sequent
on the path (in T viewed as a directed graph) going from s′ to s. If a modal
formula A is in the antecedent of s′ then s ‖− A. If it is in the succecedent
of s′ then s ‖− ¬A.

The first sequent on the path going from s′ to s can be s itself, what happens
if s′ is critical.

The Sublemma is proved by an induction on the complexity of A. We show three
typical cases, leaving the rest to the reader. If A is an atom in the succedent
of s′ then A is not in the antecedent of s, otherwise s would be a positive leaf.
So s ‖−/ A. Now assume that A = ¤B and A is in the succedent of s′. We want
to show s ‖−/ ¤B. Since s is negative and has a boxed formula ¤B in succedent,
it has an immediate successor t′ having B in succedent. By the construction, t′

is negative. Choose a path from t′ to some critical t such that all nodes on this
path are negative and t is the first critical sequent on this path. We have t ∈ W
and s R t. The induction hypothesis applied to t′, t, and B yields t ‖−/ B. So
s ‖−/ ¤B. Assume finally that A = ¤B and A is in the antecedent of s′. We
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want to show s ‖− ¤B. Let t ∈ W be arbitrary such that s R t. Let s1 be
the last critical sequent on the path from s to t which is different from t. Let
t′ be the immediate successor of s1 on this path. Since boxed formulas never
disappear from antecedent, ¤B is in the antecedent of s1. Then B is in the
antecedent of t′ and the induction hypothesis is applicable to t′, t, and B.

In our example the (negative) node b is the first critical sequent on a path
going from the root sequent s′ = 〈Σ ⇒ Ω 〉. Hence, by the Sublemma, s′ is not
forced in b and the whole model is a countermodel for s′. Of course, the node
d is immaterial for this purpose. Note that the Sublemma is not applicable to
s′ and d because d is not the first critical sequent on the path going from s′ to d.

Let us remark that a similar decision procedure can be specified also for the
intuitionistic propositional logic.

5 What else?

We see that provability logic can be helpful in studying and understanding
the properties of self-referential equations and sentences. An immediate conse-
quence of Proposition 9 is that GL has the finite model property and is decidable,
which are properties shared by many modal logics. A less common property
of GL is that its Kripke semantics is not compact, see [Smo85] or [BS91]. In
fact GL is the only natural logic known to the author that has a reasonable but
non-compact semantics.

In the proof of Proposition 9 we have tried to point out a phenomenon
called alternation by theoretical computer scientists: in some cases a node is
positive iff all successors of it are positive, while in other cases it is positive iff
some successor of it is positive. Alternation does not occur e.g. in the decision
algorithm of classical propositional logic and is typical for problems in PSPACE,
which is a class of decision problems solvable by an algorithm the memory
requirements of which grow only polynomially with the size of the input. More
is true: the decision problem of GL is PSPACE-complete, i.e. belongs to the
subclass of the most difficult problems in PSPACE. In a forthcoming paper
[Šve03] we show that the decision problem of GL remains PSPACE-complete
even if the number of propositional atoms is restricted to one.

A key step in proving PSPACE-completeness of the decision problem of GL
is the construction of a sequence A0, A1, A2, . . . of modal formulas such that the
length of An grows polynomially with n, each An has a Kripke countermodel,
but the size of a minimal countermodel for An (i.e. the number of nodes in that
countermodel) grows exponentially with n. The following analogical question,
concerning provable formulas, is probably open: is it possible to construct a
sequence A0, A1, A2, . . . of modal formulas provable in GL such that the length
of An grows polynomially with n, but the size of a minimal proof of An grows
exponentially with n?
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In Section 3 we have shown that the so called reflection scheme ¤A → A
is not PA-tautological because there exists an arithmetical evaluation e such
that PA 6` e(¤p → p). This is not the last word about the reflection scheme.
We can easily check that for each evaluation e we have N |= e(¤A → A): if
N |= e(¤A), i.e. N |= Pr(e(A)), then, by the condition Def, PA ` e(A). Since
N is a model of PA, we have N |= e(A). This argument leads us to the notion
of N-tautology and to another modal logic GLω. A modal formula A is an
N-tautology if N |= e(A) for each evaluation e. It is evident that any PA-tau-
tology is an N-tautology and that any instance of the reflection scheme is also
an N-tautology. So the logic GLω has an axiom set consisting of all formulas
provable in GL and of all formulas of the form ¤A → A, and its only rule of
inference is modus ponens. The necessitation rule A/ ¤A is not accepted as an
inference rule of GLω because the set of all N-tautologies is not closed under this
rule. Any formula is provable in GLω if and only if it is an N-tautology, which
means that GLω is complete w.r.t. its arithmetical semantics. The moral from
this result, proved by Solovay in [Sol76] and called Solovay second completeness
theorem in [Smo85], can be formulated as follows: the reflection scheme captures
the only general knowledge about provability in PA that cannot be formalized
in PA itself. GLω is decidable and its computational complexity is the same as
that of GL.

In Section 2 we have mentioned that the provability predicate can be con-
structed for any recursively axiomatizable extension T of PA. Further gener-
alization is possible: the provability predicate PrT satisfying a straightforward
modification of the Löb conditions D1–D3 can be constructed for any recur-
sively axiomatizable extension T of I∆0+Ω1. Here I∆0 is Peano arithmetic
with the induction scheme restricted to ∆0-formulas (i.e. to formulas not con-
taining unbounded quantifiers) and Ω1 is a single axiom asserting the totality
of the function x 7→ x|x|, where |x| denotes the length of the binary expan-
sion of x. Such provability predicate can be used to translate the symbol ¤.
This means that we can ask which general principles about provability in T
can be proved in T itself, i.e. we can ask what is the provability logic of the
theory T . A perhaps surprising answer to this question is that the provabil-
ity logic of many reasonable theories is the same. More precisely, GL ax-
iomatizes the provability logic of any sound recursively axiomatizable theory
extending I∆0+Exp, where Exp is an axiom asserting that the exponential
function x 7→ 2x is total. The axiom Exp is stronger than Ω1. Both the-
ories I∆0+Ω1 and I∆0+Exp are extensively studied and have connections to
computational complexity. GL can easily be verified to be sound w.r.t. the
provability logic of I∆0+Ω1, but the Solovay’s proof of Proposition 3 needs the
axiom Exp, and it is not known whether GL is complete w.r.t. the provabil-
ity logic of I∆0+Ω1. Despite of considerable effort and promising partial re-
sults, see [BV93], the problem what the provability logic of I∆0+Ω1 is remains
open.
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Formal provability is not the only metamathematical concept that can be
studied and explicated using modal logic. There are extensions of GL that are
applicable to various kinds of Rosser sentences, see [GS79] or [Smo85]. Further
interesting extensions of GL fall under the head of interpretability logic. The
language of interpretability logic has a binary “modality” B in addition to the
symbol ¤. Arithmetical semantics of interpretability logic is obtained by adding
the clause e(ABB) = IntpT (e(A), e(B)) to the definition of arithmetical evalua-
tion. IntpT (x, y) is an arithmetical formula saying that there is an interpretation
of the theory T ∪ {y} in the theory T ∪ {x}, where (syntactical) interpretation
has its usual meaning defined e.g. in [TMR53]. If T is as usually then the the-
ory T ∪ {¬Con(T )} is interpretable in T . If, in addition, T is consistent then
T ∪ {Con(T )} is not interpretable in T (for both facts see e.g. [Fef60]). So the
modal formulas ¬⊥B ¤⊥ and ¬¤⊥→¬(¬⊥B ¬¤⊥) are examples of tautolo-
gies of interpretability logic. As an introduction to this large and rich area we
recommend Albert Visser’s survey paper [Vis98].
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