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Abstract

We present an alternative, purely semantical and relatively simple, proof
of the Statman’s result that both intuitionistic propositional logic and its
implicational fragment are PSPACE -complete.

1 Introduction

R. Ladner in his 1977 paper [Lad77] presented a polynomial-space decision pro-
cedures for the most common modal logics like S4 and T, and proved that the
decision problems in question are PSPACE -complete. The proofs in [Lad77] are
purely semantical in the sense that modal logics are defined via their Kripke se-
mantics; no properties of logical calculi are exploited or even mentioned. Later
Statman [Sta79] showed that the intuitionistic propositional logic, along with its
implicational fragment where all logical connectives except implication → are
forbidden, also has a PSPACE -complete decision problem. The proofs in [Sta79]
use proof-theoretic methods.

The purpose of this paper is to present proofs of Statman’s results which
are in the spirit of Ladner’s [Lad77] and which may be found a little bit simpler
than those in [Sta79]. We will not use any particular property of intuitionistic
logic, like finite model property, soundness, completeness, or cut-eliminability.
However, we will concentrate on only the construction of the reduction from
a known PSPACE -complete problem, namely the QBF problem. The positive
part of the story, i.e. the fact that intuitionistic propositional logic is decidable
in PSPACE , we take as granted. It can be proved using methods from [Lad77].
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2 Preliminaries

Propositional formulas are built up from propositional atoms and the nulary
symbol ⊥ for falsity using the usual binary connectives →, &, and ∨. Formulas
¬A and A≡B are shorthands for A→⊥ and (A→B) & (B→A) respectively.
In syntax analysis, implication → has lower priority than conjunction & and
disjunction ∨, but higher than equivalence ≡.

A Kripke frame for intuitionistic logic is a pair 〈W,≤〉 where W 6= ∅ and
≤ is a reflexive and transitive relation on W . The elements of W are nodes; if
a ≤ b then the node b is said to be accessible from a. A relation ‖− between
nodes of a Kripke frame 〈W,≤〉 and propositional formulas is a truth relation
on 〈W,≤〉 if, for any two nodes a, b ∈ W , any propositional atom p and any two
propositional formulas A and B, it satisfies the following conditions:

• if a ≤ b and a ‖− p then b ‖− p,

• a ‖−/ ⊥, a ‖− A&B iff a ‖− A and a ‖− B, a ‖− A∨B iff a ‖− A or a ‖− B,

• a ‖− A→B iff ∀b ≥ a(b ‖− A ⇒ b ‖− B).

A triple 〈W,≤, ‖−〉 where ‖− is a truth relation on a Kripke frame 〈W,≤〉 is
called Kripke model for intuitionistic propositional logic. The first condition in
the definition of truth relation is called persistency condition. A straightforward
induction shows that the persistency condition holds for all formulas, not just
for atoms. We read a ‖− A as “A is satisfied in a”.

An example of a Kripke model is shown in Fig. 1. Its frame has three nodes
a, b, and c, where b and c are accessible from a. We have b ‖− p and c ‖− q. It
is understood that p is not satisfied in a and c, that q is not satisfied in a and b,
and that each of the nodes a, b, and c is accessible from itself. One can easily
verify that a ‖−/ p→ q, a ‖−/ q→ p, and thus a ‖−/ (p→ q) ∨ (q→ p).

A formula A is valid in a model K = 〈W,≤, ‖−〉 if it is satisfied in all
nodes a ∈ W . A model K is a (Kripke) counter-example to a formula A if
A is not valid in K. A formula A is an intuitionistic tautology if A is valid
in all Kripke models, i.e. if A has no counter-example. The set of all intu-
itionistic tautologies is denoted IntTaut. Since classical tautologies are ex-
actly those formulas which are valid in all one-element Kripke models, we have
IntTaut ⊆ Taut, where Taut is the set of all classical tautologies. Examples
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Figure 1: Example Kripke model for intuitionistic logic
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of formulas in Taut−IntTaut are (p→q)∨(q→p), ¬¬p→p, or p∨¬p. Exam-
ples of formulas in IntTaut are all instances of schemes A→¬¬A, ¬¬¬A→¬A,
or A ∨B →D ≡ (A→D) & (B →D).

We shall call the least element of a model K (if it exists) a root of K.
If K = 〈W,≤, ‖−〉 and a0 ∈ W then submodel generated by a0 is the model
K0 = 〈W0,≤0, ‖−0〉 where W0 = { x ∈ W ; a0 ≤ x } and ≤0 and ‖−0 are the
restrictions of ≤ and ‖− to W0. It can be easily shown that if A is a propositional
formula and a ∈ W0 then a ‖− A ⇔ a ‖−0 A. So in the sequel we can assume
that if K is a counter-example to A then K has a root a and that it is the root a
where a ‖−/ A.

More about Kripke models can be found in various sources, e.g. in [vD86],
[dJV88], or in [Tak75]. For the notions from theoretical computer science,
like QBF, I recommend e.g. [Pap94].

3 The reduction

A key step in PSPACE -completeness proofs in [Lad77] is the construction of a
sequence of propositional formulas such that the size of the formulas grows only
polynomially, all have Kripke counter-example, but the size of the minimal coun-
ter-example grows exponentially. One can easily check that if the formulas Dn

are defined by D0 = ⊥, Dn+1 = (pn+1 → Dn) ∨ (¬pn+1 → Dn) then each for-
mula Dn has a Kripke counter-example and that each counter-example to Dn+1

contains two disjoint counter-examples to Dn: one in which pn+1 is everywhere
positive and another in which it is everywhere negative. So indeed the size of the
minimal counter-example to Dn grows exponentially with n. This construction,
however, does not work because, due to two occurrences of Dn in Dn+1, the
size of Dn also grows exponentially. What works is this construction of En by
recursion:

E0 = ⊥, En+1 = (En → qn+1)→ (pn+1 → qn+1) ∨ (¬pn+1 → qn+1)

where the intended meaning of the atom qn+1 is to be a shorthand for En. This
is an explanation of the role of atoms qj in our construction below. We will
employ further auxiliary atoms sj whose role is to avoid the use of disjunction
in our formulas.

Let a quantified Boolean formula A be given. We may assume that A has
the form Qmpm . . Q1p1B(p1, . . , pm) where B contains no propositional quanti-
fiers and no atoms except p1, . . , pm. We construct the formulas A∗0, . . , A

∗
m by

recursion. Let A∗0 be B(p) where p stands for the m-tuple p1, . . , pm. If j > 0
and Qj = ∃ then A∗j is

(A∗j−1 → qj) & ((pj → qj)→ sj) & ((¬pj → qj)→ sj)→ sj ,
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Figure 2: Amalgamating two models into one

whereas if Qj = ∀ then A∗j is

(A∗j−1 → qj) & ((pj → qj) & (¬pj → qj)→ qj)→ qj .

Note that A∗j is built up from p1, . . , pm, q1, . . , qj , and s1, . . , sj . More precisely,
si for i ≤ j occurs in A∗j if and only if Qi is existential. Finally let A∗ be A∗m.

Lemma 1 Let 0 ≤ j ≤ m and let e be an evaluation of atoms pj+1, . . , pm.
Then e /|= Qjpj . . Q1p1B(p) if and only if A∗j has a Kripke counter-example in
which each atom pi, for i > j, is evaluated according to e (equally in all nodes).

Proof by induction on j. If e is an evaluation of p1, . . , pm and e /|= B(p) then
the one-element model in which all p1, . . , pm are evaluated according to e is
the required counter-example to A∗0. Let, on the other hand, K be a coun-
ter-example to A∗0, i.e. to B(p), in which all p1, . . , pm are evaluated according
to e. A straightforward induction shows that each subformula of B(p) has the
same value everywhere in K, namely the value assigned to it by e. So e /|= B(p).

Let j > 0 and Qj = ∃ and assume e /|= ∃pjQj−1pj−1 . . Q1p1B(p). By the
definition of propositional quantifiers, none of the two extensions 0_e and 1_e
of e to atom pj satisfies the formula Qj−1pj−1 . . Q1p1B(p). So the induction
hypothesis yields two Kripke counter-examples to A∗j−1: K0 with a root a0

in which pj+1, . . , pm are evaluated everywhere according to e and in which pj

is everywhere negative, and K1 with a root a1 in which pj+1, . . , pm are also
evaluated according to e and in which pj is everywhere positive. Note that
a0 ‖− ¬pj and a1 ‖− pj . Let K be the model depicted in Fig. 2, with a new
root a. To complete the definition of K, we must specify the values of the new
atoms qj and sj everywhere in K and also the values of all atoms p1, . . , pm,
q1, . . , qj , and s1, . . , sj in the new node a. This is done as follows:

◦ in a, atoms pj+1, . . , pm have the truth values assigned by e,

◦ p1, . . , pj , q1, . . , qj−1, and s1, . . , sj−1 are negative in a,

◦ qj has everywhere the same truth value as the formula A∗j−1,

◦ sj has everywhere the same truth value as (pj → qj) ∨ (¬pj → qj).
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Note that the only thing we had to ensure was the persistency condition, which
we did. We have a ‖− A∗j−1 → qj . Since the formula

((pj → qj)→ sj) & ((¬pj → qj)→ sj)

is intuitionistically equivalent to (pj → qj) ∨ (¬pj → qj)→ sj , it is everywhere
satisfied. We also have a0 ‖−/ ¬pj → qj and a1 ‖−/ pj → qj . Persistency yields
a ‖−/ (pj → qj) ∨ (¬pj → qj). So a ‖−/ sj and K is a counter-example to A∗j .

Assume, on the other hand, that j > 0, Qj = ∃ and K is a counter-example
to A∗j . We may assume that K has a root a and that a ‖−/ A∗j . So a ‖−/ sj . Since
a ‖− (¬pj → qj)→ sj , we have a ‖−/ ¬pj → qj . So there exists a node a0 ≥ a
such that a0 ‖− ¬pj and a0 ‖−/ qj . From a ‖− A∗j−1 → qj we have a0 ‖−/ A∗j−1.
So the submodel generated by a0 is a counter-example to A∗j−1 in which pj is
everywhere negative. For analogical reasons, there exists a node a1 such that
the submodel generated by a1 is a counter-example to A∗j−1 in which pj is ev-
erywhere positive. The induction hypothesis says 0_e /|= Qj−1pj−1 . . Q1p1B(p)
and 1_e /|= Qj−1pj−1 . . Q1p1B(p). So e /|= ∃pjQj−1pj−1 . . Q1p1B(p).

The reasoning in the case where j > 0 and Qj = ∀ is similar. If K is a model
with root a and a ‖− A∗j then K has an node a0 such that a0 ‖− pj ∨ ¬pj and
the submodel K0 generated by a0 is a counter-example to A∗j−1. Since pj does
not change value in K0, the induction hypothesis is applicable to K0. Details
and the proof of the reverse implication are left to the reader.

One can check that if the possibility of avoiding the connectives &, ∨, ⊥
were not an issue, a simpler definition of A∗ would do: A∗j is (A∗j−1 → qj) →
((pj → qj) ∨ (¬pj → qj)) or pj ∨ ¬pj →A∗j−1 according to whether Qj is ∃ or ∀
respectively.

Lemma 2 Let A be a formula and r an atom having no occurrences in A. Let
further A[ be the result of substitution of r for all occurrence of ⊥ in A, and let
Σ(A) be the conjunction of all formulas r→ p where p is an atom in A. Then
A has a counter-example if and only if Σ(A)→A[ has a counter-example.

Proof If K is a counter-example to A then we can obtain a counter-example H
to Σ(A)→A[ simply by evaluating the new atom r negatively everywhere in K.

Assume that H = 〈W,≤, ‖−〉 is a model with root a and a ‖−/ Σ(A) → A[.
An easy induction on complexity of B shows that each implication r → B[,
where B is a subformula of A, is valid in H. Let K be 〈W1,≤1, ‖−1〉, where
W1 = {x ∈ W ; x ‖−/ r} and ≤1 and ‖−1 are the obvious restrictions of ≤ and ‖−.
From a ‖− r→A[ and a ‖−/ A[ we have a ∈ W1. We claim that for each x ∈ W1

and each subformula B of A we have x ‖− B[ ⇔ x ‖−1 B[. For if, for instance,
x ‖−1 C[ →D[ and x ‖−/ C[ →D[ then for some y ≥ x where y ∈ W −W1 we
have y ‖− C[ and y ‖−/ D[. But y ‖−/ D[ and y ‖− r is a contradiction with the

5



statement typeset in italics above. Thus K is a counter-example to A[ in which
r is everywhere negative. So indeed A has a counter-example.

Theorem 1 IntTaut is a PSPACE -complete set. Its purely implicational frag-
ment, i.e. the set of all intuitionistic tautologies built up from propositional
atoms using implication as the only connective, also is PSPACE -complete.

Proof For j = m Lemma 1 says that Qmpm . . Q1p1B(p) (i.e. A) is false in
the sense of quantified Boolean formulae if and only if A∗m (i.e. A∗) has a
Kripke counter-example. So the function A 7→ A∗ is a reduction from QBF
to IntTaut. This function is computable in polynomial time or even in loga-
rithmic space. We agreed that the membership of IntTaut in PSPACE we take
as granted. To obtain a reduction to the implicational fragment, first replace
the subformula B(p) of A∗ by a (classically) equivalent formula built up using
only → and ⊥. Then use Lemma 2 to get rid of the symbol ⊥. The resulting
formula contains none of the symbols ∨ and ⊥ and the statement of Lemma 2
and an inspection of our construction of formulas A∗j make it clear that it con-
tains conjunctions only in subformulas of the form C1 & . . &Ck→D. This last
formula is intuitionistically equivalent to C1 → (C2 → ( . .→ (Ck →D) . .).

Remark 1 The reader of Statman’s proof in [Sta79] may be not quite sure
whether the symbol ⊥ is also avoidable when constructing the PSPACE -reduc-
tion. So our theorem and Lemma 2 perhaps clarify this point.
Remark 2 Note that if a formula is satisfied in some node of some Kripke model
then it is valid in some (one-element) Kripke model. This fact says that the set
of all intuitionistically satisfiable formulas equals the set Sat of all classically
satisfiable formulas. Or better, this fact shows that the satisfiability problem
has not a good sense for intuitionistic propositional logic.
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