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Abstract

We consider non-standard models of Peano arithmetic and non-

-standard numbers in set theory, showing that not only they ap-

pear rather naturally, but also have interesting methodological

consequences and even practical applications. We also show that

the Czech logical school, namely Petr Vopěnka, considerably con-

tributed to this area.

1 Peano arithmetic and its models

Peano arithmetic PA was invented as an axiomatic theory of natu-
ral numbers (non-negative integers 0, 1, 2, . . . ) with addition and
multiplication as designated operations. Its language (arithmetical
language) consists of the symbols + and · for these two operations,
the symbol 0 for the number zero and the symbol S for the successor
function (addition of one). The language {+, ·, 0,S} could be replaced
with the language {+, ·, 0, 1} having a constant for the number one:
with the constant 1 at hand one can define S(x) as x + 1, and with
the symbol S one can define 1 as S(0). However, we stick with the
language {+, ·, 0,S}, since it is used in traditional sources like (Tarski,
Mostowski, & Robinson, 1953). The closed terms S(0), S(S(0)), . . .
represent the numbers 1, 2, . . . in the arithmetical language. We
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write n for the numeral S(S(. . S(0) . .) with n occurrences of the sym-
bol S. So 0 and 0 are the same terms. The standard model of Peano
arithmetic is the usual structure of natural numbers, i.e. the struc-
ture N = 〈N,+N, ·N, 0N, s〉, where s is the function a 7→ a+ 1 and the
remaining symbols have the obvious meaning. Since it is not difficult
to distinguish symbols from their realizations, we will often omit the
superscripts when dealing with +N, ·N, and 0N.

The axioms of Peano arithmetic are (e.g. in Tarski et al., 1953) for-
mulated as the induction scheme ϕ(0)&∀x(ϕ(x)→ϕ(S(x)))→∀xϕ(x)
together with seven simple axioms Q1–Q7 that PA shares with Robin-
son arithmetic Q (where ∀x(x + 0 = x), the axiom Q4, is a sample).
The induction scheme stipulates that if the number zero has a prop-
erty expressible in the arithmetical language and if it is the case that
whenever a has that property then also a+ 1 has that property, then
all numbers have that property. In some sources the language of PA
contains also the symbols ≤ and < for non-strict and strict order.
However, we can speak about an order of numbers anyway. One can
define that x ≤ y iff ∃v(v + x = y) i.e. iff y is a result of an addition
of x and some other number, and then one can define that x < y iff
x ≤ y and x 6= y (or equivalently, iff ∃v(S(v)+x = y)). With the order
at hand, one can formulate the least number principle saying that if
there exist numbers having a property expressible in the arithmetical
language, then there exists a least number having that property. It
is not difficult to verify that the least number principle is basically
equivalent to the induction scheme. More precisely, the two schemes
are equivalent over Robinson arithmetic equipped with an additional
axiom ∀x(x < S(x)).

Validity of the least number principle in a model means that every
set described by an arithmetical formula (every definable set), if it
is non-empty, has a least element. Thus the least number principle
is automatically valid in the standard model N since the standard
model is well-ordered, which means that every non-empty set has a
least element. However, an extremely interesting observation is that
if the model is not well-ordered, it is still possible that all definable
non-empty sets have a least element; hence models of PA different
from N may exist.

Thus one can define that a model M of PA is non-standard if
(a) contains an element which is not accessible from zero by a finite
number of steps of the successor function, or (b) if its order defined
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by x < y iff ∃v(S(v) + x = y) is not a well-order. One can easily
check that the conditions (a) and (b) are equivalent. Indeed, an order
in which every element except the very least one has a predecessor
and for each element a there exists only a finite number of elements
smaller than a must be a well-order (i.e. a linear well-founded order).
On the other hand, if there are elements not accessible from zero by
a finite number of steps, these constitute a non-empty set not having
a least element.

In the standard model, every element is a value of some of the
numerals 0, 1, 2, . . . In a non-standard model (if such exist), there
are elements greater than the values of all numerals—and of all closed
terms. These elements are called non-standard, while the other el-
ements are standard. Standard elements precede the non-standard
ones.

Non-standard models are not just a logical possibility, but a real-
ity. Nowadays a simple way to prove their existence is extending the
language of PA by a constant c and considering an auxiliary theory T
in this language, whose axioms are the axioms of PA together with
infinitely many additional axioms 0 < c, 1 < c, 2 < c, . . . Any finite
set F of axioms such that F ⊆ PA ∪ { n < c ; n ∈ N } has a model:
it can be obtained by taking the standard model N and realizing the
constant c by its sufficiently big element. Then the compactness theo-
rem says that T has a model M. In M, the constant c is realized by a
non-standard element. The reduct of M to the arithmetical language,
obtained by omitting the constant c but not changing the domain and
realizations of arithmetical operations, is a non-standard model of PA.

At first sight, the non-standard models look like an unwanted phe-
nomenon that either shows that some important axioms are missing
in the axiomatic system of PA, or demonstrates some deficiency of
the classical first order logic. However, no additional axioms can help
to prevent this phenomenon, since it is the case that all consistent
extensions of PA have non-standard models. And instead of correct-
ing the first order logic, I would opt for thinking about an expressive
power of formalized languages and about using non-standard models
in mathematical practice. As to the expressive power, consider for
example the following properties and conditions for natural number:
(a) x is less than y, (b) y is a power of 2, (c) y is the x-th power
of 2, i.e. y = 2x, and (d) x is accessible from 0 by finite number of
steps of the successor function. With some effort and probably first
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Figure 1: A non-standard model of PA

having developed some coding of sequences, one can show that (c)
is expressible by an arithmetical formula. With much less effort (in-
deed, this is a nice homework) one can show that (b) is expressible,
and we have already seen that (a) is expressible as well. Non-standard
models of PA show that the property in (d) is not expressible in the
arithmetical language, because otherwise one could show, using the
inductions axiom, that all numbers have that property. And similarly
as with extending the axiom set, extending the language is of no help:
theories with a language containing that of PA also have non-standard
models.

2 The order structure of a non-standard model

Let M be a non-standard model of PA and let a be its non-stan-
dard element. From the fact that all theorems of PA are valid in M
we can conclude that a is by far not the only non-standard element
of M. For example, every number x 6= 0 has a predecessor, i.e. a
number y such that S(y) = x and y < x and there are no other
numbers between y and x. So our element a of M has a predecessor
that can reasonably be denoted a − 1 even if there is no symbol for
subtraction in the arithmetical language. This a−1 must be non-stan-
dard. We can continue and consider numbers a− 2, a− 3, . . . ; all of
these must be non-standard. Going upwards, we can consider numbers
a+1 < a+2 < a+3 < . . . So we see that our non-standard number a
is surrounded by a cluster [a] of infinitely many other non-standard
numbers whose distance from a is finite (standard). The order type of
the set [a] is that of integers and can schematically be denoted ω⋆ +ω
where ω is the order type of natural numbers, ω⋆ is the reversed
order of natural numbers, and + denotes the disjoint sum of the two
structures where the elements of ω⋆ precede all elements of ω. Besides
this cluster [a] there is the initial cluster [0] of all standard numbers;
the order type of this cluster is ω.
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Still, [0] and [a] cannot be the only clusters in M. The cluster [2·a]
is different from [a] since the distance between a and 2 · a is a, a
non-standard number. Similarly, the cluster [a · a] is different from
the pairwise different (and disjoint) clusters [a], [2·a], [3·a], . . . There
is no greatest cluster. And we can still continue and show that the
clusters are densely ordered. Schematically, the order structure of M
is ω + (ω⋆ + ω) · ξ, where ξ is a linear dense order without endpoints
and the multiplication symbol · denotes the operation of replacing
each element of ξ by the structure ω⋆ +ω, see Fig. 1. If the model M
is countable then its order structure is ω+ (ω⋆ + ω) · η where η is the
uniquely determined countable linear order without endpoints (i.e. the
order of rationals).

It must be emphasized that what we are doing now is not a con-
struction of a non-standard model, but a reasoning about its order
once its existence has been proved. We have presented the existence
of a non-standard model of PA as a consequence of the compactness
theorem, and then determined its structure by using the knowledge
that some sentences, as theorems of PA, must be valid in it.

A second thing that has to be emphasized is that a one-one function
from one structure on another that preserves order and successor does
not necessarily preserve addition and multiplication. So two models
that are order isomorphic are not necessarily isomorphic as structures
for the arithmetical language. Indeed, non-isomorphic countable mod-
els of PA—necessarily having the same order structure—do exist.

3 Some history

It was Thoralf Skolem who proved the existence of non-standard
model of PA in (Skolem, 1934). The earlier 1920 and 1922 papers
of Skolem contain a proof of Löwenheim-Skolem theorem, saying that
if a theory with at most countable language has an infinite model then
it also has a countable model. A then surprising consequence of this
theorem was the existence of countable models of set theory; this fact
is known as Skolem paradox. It is not clear (to me) whether Skolem
was then aware of the stronger variant of that theorem, saying that
if a theory with at most countable language has an infinite model
then it has models of all infinite cardinalities. This stronger variant
of Löwenheim-Skolem theorem entails that PA has uncountable—and
hence necessarily non-standard—models.
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From Gödel 1st incompleteness theorem, published in 1931, we
know that PA is incomplete. From that (and from the complete-
ness theorem published also by Gödel in 1930 but perhaps known to
Skolem even before 1930) it is clear that PA has models that differ
in validity of some sentences. If two models differ in validity of some
sentences then at least one of them is non-standard. This proof of ex-
istence of non-standard models is much more involved than the proof
via the compactness theorem (because it in fact contains some con-
siderations about recursive functions), but was available some time
before Skolem’s 1934 paper. So one could ask why, in the light of
Gödel’s paper and Skolem’s earlier papers, the Skolem’s 1934 paper is
so important. The answer is that Skolem’s primary interest then were
not models that differ in validity of some sentences, but models that
are non-isomorphic while not being distinguishable by validity of some
sentences. Skolem thus invented the notion of elementary equivalence
of models; by doing that he became a pioneer of model theory. It is
important to remark that the 1934 paper contains not just a proof of
existence, but a direct construction of a non-standard model.

Among Czech logicians, it was Ladislav Svante Rieger (1916–1963)
who knew about the existence and was familiar with a construction of
non-standard models. Rieger’s interest was algebraic logic, probably
in the style of Rasiowa and Sikorski, and was the inventor of Rie-
ger-Nishimura lattice, a beautiful structure of infinitely many intu-
itionistically non-equivalent formulas built up from one propositional
atom only, see (Rieger, 1949). Rieger was initially an official the-
sis advisor of a brilliant Czech logician Petr Hájek. However, Rieger
died soon, well before Hájek wrote his thesis, and Hájek never fails to
mention another brilliant Czech logician Petr Vopěnka (born 1935) as
his teacher. Vopěnka was a student of Eduard Čech, the inventor of
Čech-Stone compactification in topology.

It is unclear and probably unknown whether Rieger’s construction
of a non-standard model of PA was that of Skolem, or his own. It how-
ever is known that it was rather complicated. A feasible construction
of a non-standard model of PA was given by Vopěnka around 1960.
Vopěnka uses ultraproduct and he invented that construction inde-
pendently of A. Robinson (who uses ultraproduct as well).

The notion of a non-standard model can easily be extended to Zer-
melo-Fraenkel set theory ZF or to Gödel-Bernays set theory GB. A
model M of (some) set theory is non-standard if it contains an ordi-
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nal α such that M |= “α is finite”, i.e. M |= “α is less than the first
limit ordinal”, but looking from outside, the set of all ordinals β < α
is infinite. The proof of the existence of non-standard models of set
theory is basically the same as for PA. It seems that Rieger and
Vopěnka preferred thinking about set theory to thinking about PA.

4 Definable cuts

In the following definition, we use a somewhat vague notion of a theory
with natural numbers. In PA or Q, this notion is trivial since all their
individuals are natural numbers. In set theory, the natural numbers
are all ordinals less than the first limit ordinal ω. Note that here the
meaning of the symbol ω is not the same as when we discussed order
types.

Definition 1 Let T be a theory with natural numbers, let x be a
variable for natural numbers. A formula J(x) is a (definable) cut
in T if T ⊢ J(0) and T ⊢ ∀x(J(x) → J(S(x))).

Let, for example, T be Robinson arithmetic Q and let J1(x) be the
formula x + 0 = x. Then the formula J1 is a trivial cut because the
axiom Q4, saying that ∀x(x+0 = x), in fact says ∀xJ1(x). If J2(x) is
chosen as the formula 0+x = x then the situation is more interesting
since ∀xJ2(x) is known as being unprovable in Q. However, Q ⊢ J2(0)
follows from the axiom Q4 and Q ⊢ ∀x(J2(x)→J2(S(x))) follows from
another axiom Q5, stipulating that ∀x∀y(x+ S(y) = S(x+ y)). Thus
J2 is a cut in Q.

If a cut J in T is non-trivial, i.e. if T 6⊢ ∀xJ(x), then there exist
models M of T with elements a such that M /|= J(a). Such an a must
necessarily be non-standard in M. There are no non-trivial cuts in PA
because they would directly violate induction. If J(x) is a cut in ZF
then it follows from the separation axiom that there exists a set A of
all natural numbers x such that ¬J(x), viz A = {x ∈ ω; ¬J(x)}. From
the definition of cut we know that A has no least element. However,
the fact that every non-empty subset of ω has a least element is a
theorem of ZF; thus A = ∅. This argument shows that there are
no non-trivial cuts in ZF; we have full induction (induction for all
existing formulas of its language) in ZF.

We will show an interesting construction, invented in (Vopěnka &
Hájek, 1973), of a non-trivial cut in Gödel-Bernays set theory GB.
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The construction shows that GB is not a theory with full induction.
Later we will discuss some other consequences. Recall that, in GB,
the primitive notion is class, while a set is defined as a class which
is an element of some (other) class. Recall also that GB, as a strong
theory, is capable of formalizing logical syntax. That means that in-
side GB we have the notion of formalized syntactical objects. Out of
all syntactical objects, we only need set formulas, i.e. formulas of ZF,
and variables in these formulas. We identify formulas and variables
with their numerical codes assigned to them by some fixed coding
of syntax. Thus we can talk about a formula as being, for exam-
ple, smaller or greater than a natural number x. When speaking
inside GB, formulas are finite objects; when looking at a model of GB
from outside, formulas are its natural numbers that can be both stan-
dard and non-standard. An evaluation of variables is any function
defined on the set of all variables. Thus the domain of an evaluation
is the set of all those natural numbers that are (numerical codes of)
variables; the values of an evaluation of variables are sets (not proper
classes, of course).

Definition 2 (in GB) A relation R between formulas less than x
and evaluations of variables is a truth relation on x if the following
conditions hold.

[ϕ& ψ, e] ∈ R ⇔ [ϕ, e] ∈ R and [ψ, e] ∈ R (i)

whenever ϕ & ψ is (and thus both ϕ and ψ are) less than x; and
similarly for other logical connectives.

[∀xϕ, e] ∈ R ⇔ ∀a([ϕ, e(x/a)] ∈ R) (ii)

whenever ∀xϕ (and thus ϕ itself) is less than x; and similarly for the
other quantifier ∃. Here e(x/a) is the evaluation whose value in x
is a and the remaining values are the same as the values of e.

[x ∈ y, e] ∈ R ⇔ e(x) ∈ e(y). (iii)

In short, a truth relation on x is a relation satisfying the Tarski’s
truth conditions wherever they are applicable, i.e. whenever the for-
mulas in question are less than x. Note that in the left side of (ii) the
quantifier ∀ is a formal symbol (part of the formalized syntax), while
“∀a” in the right is an abbreviation in our speech about the syntax (a
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. . . e1 . . . . . . e2 . . . . . . . . .

...
...

...

ϕ1 . . . 1 . . . . . . 1 . . . . . . . . .

...
...

...

ϕ2 . . . 0 . . . . . . 1 . . . . . . . . .

...
...

...

ϕ1 & ϕ2 . . . 0 . . . . . . 1 . . . . . . . . .

Figure 2: A truth relation

shorthand for “for each set a”). Similarly, “∈” in the left of (iii) is a
formal symbol (part of the atomic set formula “x ∈ y”), while in the
right we say that “e(x), the value assigned to the variable x by the
evaluation e, is an element of e(y)”.

A truth relation is an object like in Fig. 2: a zero-one table where 1
stands for “yes” ([ϕ2, e2] ∈ R, for example) and 0 stands for “no”. The
table has only a finite number of lines (finite in the sense of GB, i.e.
standard or non-standard in its model) but a huge number of columns
(indeed, the class of all evaluations of variables is a proper class).

One can prove by induction on y ≤ x that (a) there exists at most
one truth relation on x. Also, (b) the empty class is (the only) truth
relation on 0. Let a number x be called occupable if there exists a
truth relation on x. In symbols,

Ocp(x) ⇔ ∃R(R is a truth relation on x).

We know from (b) that Ocp(0), and it is possible to verify (c) that if
Ocp(x) then Ocp(S(x)). Indeed, let R be a truth relation on x and
distinguish the cases whether x is not a formula, is obtained from
smaller formula(s) using a logical connective, or is obtained from a
smaller formula using quantification. If, for example, x is the disjunc-
tion ϕ ∨ ψ, the relation

R′ = R ∪ { [x, e] ; [ϕ, e] ∈ R or [ψ, e] ∈ R },

with an additional line for x = ϕ& ψ, is a truth relation on S(x).
We see that the formula Ocp(x) is a cut in GB. If {x ∈ ω ; Ocp(x)}

were a class then it would be a set and then it would equal ω: indeed,
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the fact that if a subset of ω contains 0 and is closed under succes-
sor then it equals ω is a theorem of GB (as well as it is a theorem
of ZF). The axioms of GB (namely, the comprehension scheme) guar-
antee that any normal formula of GB (one that does not contain
quantification of classes) determines a class. However, the formula
Ocp(x) expresses a property of natural numbers which is not normal
(as “∃R” in “∃R(R is a truth relation on x)” is a quantification of a
proper class).

If all natural numbers are occupable then we could develop a no-
tion of truth for all set formulas, show that all axioms of ZF are true
and that deduction rules preserve truth. Then ZF would necessarily
be consistent, and also GB would be consistent since GB knows that
GB and ZF are equi-consistent. Thus we see that to the first observa-
tion, that is is not sure that the formula Ocp(x) determines a set (a
class) because it is not normal, we can add a second observation that
a proof that every number is occupable would yield a contradiction
with Gödel 2nd incompleteness theorem. So GB 6⊢ ∀xOcp(x), the
formula Ocp(x) is a non-trivial cut in GB.

5 Some conclusions

The facts that we do not have full induction in GB and that not
every formula of GB determines a class show interesting differences
between ZF and GB, two theories that otherwise are closely related:
GB is conservative over ZF with respect to set formulas.

Definable cuts in GB also show why structures and models in the
semantics of first order predicate logic are defined as sets rather than
classes. The reason is that the axioms of GB are not strong enough for
that generalized definition to work. The (Tarski’s) definition of satis-
faction, that uses recursion on the structure of formulas, is not quite
innocent. Even in the “normal case”, where structures and models
are sets, the definition needs some axiomatic strength to work. This
is also somewhat surprising: the logical semantics that we teach in el-
ementary logic courses is by no means finitistic, it is quite dependent
on mathematics, i.e. on some axiomatic theory like ZF.

We see that non-standard natural numbers naturally occur. How-
ever, more is true: they can be a useful and applicable tool. We
will mention two application. One of them is in logic. R. Solovay in
(Solovay, 1976) used occupable numbers as a method for construct-
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ing interpretations in GB, and constructed a set sentence (in fact an
arithmetical sentence) ϕ such that GB, ϕ is interpretable in GB but
ZF, ϕ is not interpretable in ZF. This unpublished letter answered a
question raised by P. Hájek and was an important milestone in the
research of interpretability. Before that, the fact that the closely re-
lated theories ZF and GB differ in interpretability was proved by P.
Hájek.

A second application of non-standard models is non-standard anal-
ysis. A non-standard model of PA can easily be extended to an or-
dered field. Then if x is a non-standard number, the number 1/x is
non-zero but infinitely small. Thus the old Leibniz’s idea of infinites-
imals can be reconstructed and made rigorous using non-standard
numbers. As an example, we can give the “reconstructed” definition
of continuousness: a function f is continuous in a if, for every in-
finitesimal dx, the value f(x+ dx) is infinitely close to f(x), that is,
if |f(x + dx) − f(x)| is infinitesimal. In the reconstructed analysis,
there is much less quantifiers than in the “modern” (ǫ–δ) analysis.

The idea that infinitesimals can be reconstructed using non-stan-
dard natural numbers is A. Robinson’s. It was however independently
invented by Vopěnka around 1960. In Vopěnka’s Alternative Set The-
ory AST, see (Vopěnka, 1979), there are only two infinite cardinals,
but infinitesimals do exist.
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Vopěnka, P. (1979). Mathematics in the alternative set theory. Leipzig:
Teubner.
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