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Abstract. In this paper we review the most common forms
of reflection and introduce a new form which we call sharp-
generated reflection. We argue that sharp-generated reflection
is the strongest form of reflection which can be regarded as a
natural generalization of the Lévy reflection theorem. As an ap-
plication we formulate the principle sharp-maximality with the
corresponding hypothesis IMH#. IMH# is an analogue of the
IMH (Inner Model Hypothesis, introduced in [3]) which is com-
patible with the existence of large cardinals.
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1 Introduction

Vertical reflection for the universe V can be intuitively formulated as the
following principle, denoted (Refl):

(Refl) Any property which holds in V already holds in some initial segment
of V .

(Refl) says that V cannot be described as the unique initial segment of the
universe satisfying a given property. The strength of reflection depends on
what we consider by property ; by varying the notion of property we obtain a
hierarchy of reflection principles. We say that a given V is vertically maximal
if it satisfies a formalization of (Refl) which can be viewed, arguably, as being
the strongest possible.1

The weakest form of reflection, with first-order notion of property, is Lévy’s
theorem which is provable in ZF.

1Indeed, we propose the notion of sharp-generation developed in Section 2.2 as a can-
didate for an ultimate form of (Refl).
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Theorem 1.1 (Lévy) Let ϕ(x1, . . . , xn) be a first-order formula with free
variables shown. Then the following is a theorem of ZF:
(1.1)
∀α ∀x1, . . . , xn ∈ Vα ∃β ≥ α

(
ϕ(x1, . . . , xn)↔ (Vβ,∈) |= ϕ(x1, . . . , xn)

)
.

Since the language of ZF is first-order, there is no direct way of generalizing
Lévy’s theorem to higher-order formulas applied to V . Lévy resolved this
problem by studying structures of the form (Vκ,∈, R), with R ranging over
subsets of Vκ. We say that ϕ(R) true in (Vκ,∈, R) reflects if there is some
α < κ such that (Vα,∈, R∩Vα) satisfies ϕ(R∩Vα). For an inaccessible κ, Vκ
is thus identified with an approximation of the universe V and higher-order
properties attributable to Vκ are expressed as first-order properties in V . It
is known that by postulating a range of reflection principles for (Vκ,∈, R),
one can obtain large cardinals compatible with L (such as weakly compact
cardinals).2

Reflection principles discussed in the previous paragraph allow ϕ to be
higher-order, but the parameter R itself is always just second-order. Our
motivation in this paper is to look for strengthenings of reflection with po-
tential to yield vertical maximality, and which in particular should allow
parameters of order higher than 2. For instance, for a third-order parame-
ter R ⊆ P(Vκ) one is tempted to formulate the following natural-looking
principle:

(*)3: If ϕ(R) is true in (Vκ,∈,R), then for some α < κ, (Vα,∈, R̄) satisfies
ϕ(R̄), where R̄ = {R ∩ Vα |R ∈ R}.

However, an easy example shows that (*)3 is inconsistent.3 In order to retain
some sort of reflection with higher-order parameters, we need to tread more
carefully. First in Section 2.1, we reformulate (*)3 (and its generalizations)
using elementary embeddings internal to V (see Definition 2.1). Seeing that
this reformulation has certain drawbacks (in particular it is not compatible
with L), we will develop the idea of elementary embeddings in a different
way, making the resulting notion compatible with L. This construction –
based on indiscernibles and sharp-generation – is described in Section 2.2.
An application of a sharp-generated reflection is given in Section 3.

2Instead of working with Vκ, one can work directly with V in theories with classes,
such as GB. Let R range over classes. We say that ϕ(R) true in V reflects if for some
α < κ, (Vα, Vα+1) satisfies ϕ(R ∩ Vα).

3Consider the following example. For any infinite ordinal κ, let R be the collection of
all α < κ (viewed as subsets of κ), and consider ϕ(R) which says that every element of R
is bounded in κ (ϕ is first-order with a third-order parameter R). Clearly, ϕ(R) is true in
Vκ. However, ϕ(R̄) is false in Vα for every α < κ. See [6] for more discussion of reflection
with higher-order parameters.
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2 Reflection with elementary embeddings

2.1 Embeddings internal to V

To make the following discussion more standard, we will work with struc-
tures of the form H(κ)+n, 0 < n < ω. Let R range over subsets of H(κ+n);
we write

(2.2) (H(κ+n),∈,R) |= ϕ(R)

instead of (H(κ),∈,R) |= ϕ(R) to express that ϕ(R) holds in H(κ) with
appropriately interpreted higher-order quantifiers.4 The notation in (2.2)
has the advantage that it emphasizes that the properties of order n+ 1 over
H(κ) actually reduce to first-order properties over H(κ+n), with R being
second-order over H(κ+n).

The known concept of a subcompact cardinal can be used to make sense of
reflection for higher-order parameters:

Definition 2.1 Let κ be an uncountable regular cardinal. We say that κ
satisfies reflection with parameters of order n + 2, 0 < n < ω, if for every
R ⊆ H(κ+n) there are a regular uncountable cardinal κ̄ < κ, R̄ ⊆ H(κ̄+n),
and an embedding π : H(κ̄+n) → H(κ+n) with critical point κ̄, π(κ̄) = κ,
such that

(2.3) π : (H(κ̄+n),∈, R̄)→ (H(κ+n),∈,R)

is elementary.

Note that demanding (H(κ̄+n),∈, R̄) ≺ (H(κ+n),∈,R) is contradictory;5

thus the requirement that π is not the identity is essential.

Remark 2.2 For n, 0 < n < ω, κ is κ+n-subcompact iff κ satisfies reflection
for parameters of order n + 2 according to Definition 2.1. Subcompact
cardinals were defined by Jensen,6 and apparently for different reasons than
the study of reflection (Jensen isolated the concept of subcompact cardinals
for his study of the failure of the square). α-subcompact cardinals can be
defined for any cardinal α > κ, not just the κ+n’s for n < ω, and are therefore
suitable for expressing reflection with parameters of transfinite order. For
more details about subcompact cardinals, see [2].

4For simplicity, we restrict our attention in this section to higher-order properties of
finite order.

5Set n = 1 and choose R as in the example in Footnote 3. By elementarity, R̄ is equal
to H(κ̄+) ∩ R, which leads to contradiction as in Footnote 3.

6Jensen defined κ to be subcompact if it is κ+-subcompact according to our definition.
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The definition 2.1 forces no “canonicity” on π; any embedding which sat-
isfies the requirements will do. One might wonder whether more stringent
requirements on π, such as demanding constructibility in some sense, might
give the definition more structure. However, this cannot be done if by canon-
icity we mean constructibility in L-like models: by Theorem 2.3, reflection
for parameters of order three implies failure of square and for higher orders
we get supercompact cardinals (of specific degrees):

Theorem 2.3 (GCH) The following hold:

(i) For all n, 0 < n < ω: κ satisfies reflection with parameters of order
n+ 4 iff κ is κn+2-subcompact iff κ is κ+n-supercompact.

(ii) κ satisfies reflection for parameters of order 4 iff κ is κ++-subcompact
iff κ is measurable.

(iii) If κ satisfies reflection for parameters of order 3 (which is the same as
being κ+-subcompact), then �κ fails.

Proof. For proofs, see for instance [2]. �

There are other versions of strong forms of reflection implying transcendence
over L; see for instance [7].

Definition 2.1 seems very natural, but – in our opinion – the postulation of
non-canonical elementary embeddings as elements of the universe V turned
out to make the resulting principle too strong. Theorem 2.3 contradicts our
original intuition regarding (Refl) and its formalization: while we would like
to extend the usual form of reflection to higher-order parameters, we wish
to retain compatibility with L (see Remark 2.8). A more suitable form of
reflection compatible with L is described in next section.

2.2 Sharp-generated reflection

Let us start with V which we view as a transitive set which approximates the
real universe. This viewpoint allows us to consider end-extensions V ⊆ V ∗

of a larger ordinal length. Constructions of this type can be carried out in
certain axiomatic theories more complicated than ZF or GB (for example
Ackermann’s, or theories developed by Reinhardt; see [5], Section 23, for
more details). However we think that by treating V as a transitive set
model (often countable), we obtain a much stronger (indeed the strongest
possible) form of reflection.7

Let us extrapolate from the usual reflection and see where it takes us. It is
natural to strengthen the reflection of individual first-order properties from

7Recall that standard forms of reflection are also formulated with set approximations
of the form (Vκ,∈, R); however, we do not require V to be a rank-initial segment of the
universe which makes it possible to consider countable V ’s.
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V to some Vα to the simultaneous reflection of all first-order properties of
V to some Vα, even with parameters from Vα. Thus Vα is an elementary
submodel of V . Repeating this process suggests that in fact there should
be an increasing, continuous sequence of ordinals (κi | i <∞) such that the
models (Vκi | i <∞) form a continuous chain Vκ0 ≺ Vκ1 ≺ · · · of elementary
submodels of V whose union is all of V (where∞ denotes the ordinal height
of the universe V ).

But the fact that for a closed unbounded class of κ’s in V , Vκ can be “length-
ened” to an elementary extension (namely V ) of which it is a rank initial
segment suggests via reflection that V itself should also have such a length-
ening V ∗. But this is clearly not the end of the story, because we can also
infer that there should in fact be a continuous increasing sequence of such
lengthenings V = Vκ∞ ≺ V ∗κ∞+1

≺ V ∗κ∞+2
≺ · · · of length the ordinals. For

ease of notation, let us drop the ∗’s and write Wκi instead of V ∗κi for ∞ < i
and instead of Vκi for i ≤ ∞. Thus V equals W∞.

But which tower V = Wκ∞ ≺ Wκ∞+1 ≺ Wκ∞+2 ≺ · · · of lengthenings of V
should we consider? Can we make the choice of this tower “canonical”?

Consider the entire sequence Wκ0 ≺ Wκ1 ≺ · · · ≺ V = Wκ∞ ≺ Wκ∞+1 ≺
Wκ∞+2 ≺ · · · . The intuition is that all of these models resemble each other
in the sense that they share the same first-order properties. Indeed by virtue
of the fact that they form an elementary chain, these models all satisfy the
same first-order sentences. But again in the spirit of “resemblance”, it should
be the case that any two pairs (Wκi1

,Wκi0
), (Wκj1

,Wκj0
) (with i0 < i1 and

j0 < j1) satisfy the same first-order sentences, even allowing parameters
which belong to bothWκi0

andWκj0
. Generalising this to triples, quadruples

and n-tuples in general we arrive at the following situation:

(∗) Our approximation V to the universe should occur in a continuous el-
ementary chain Wκ0 ≺ Wκ1 ≺ · · · ≺ V = Wκ∞ ≺ Wκ∞+1 ≺ Wκ∞+2 ≺ · · ·
of length the ordinals, where the models Wκi form a strongly-indiscernible
chain in the sense that for any n and any two increasing n-tuples ~i =
i0 < i1 < · · · < in−1, ~j = j0 < j1 < · · · < jn−1, the structures W~i =
(Wκin−1

,Wκin−2
, · · · ,Wκi0

) and W~j (defined analogously) satisfy the same
first-order sentences, allowing parameters from Wκi0

∩Wκj0
.

But this is again not the whole story, as we would want to impose higher-
order indiscernibility on our chain of models. For example, consider the
pair of models Wκ0 = Vκ0 ,Wκ1 = Vκ1 . Surely we would want that these
models satisfy the same second-order sentences; equivalently, we would want
H(κ+0 )V and H(κ+1 )V to satisfy the same first-order sentences. But as with
the pair H(κ0)

V , H(κ1)
V we would want H(κ+0 )V , H(κ+1 )V to satisfy the

same first-order sentences with parameters. How can we formulate this?
For example, consider κ0, a parameter in H(κ+0 )V that is second-order with
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respect to H(κ0)
V ; we cannot simply require H(κ+0 )V � ϕ(κ0) iff H(κ+1 )V �

ϕ(κ0), as κ0 is the largest cardinal inH(κ+0 )V but not inH(κ+1 )V . Instead we
need to replace the occurrence of κ0 on the left side with a “corresponding”
parameter on the right side, namely κ1, resulting in the natural requirement
H(κ+0 )V � ϕ(κ0) iff H(κ+1 )V � ϕ(κ1). More generally, we should be able to
replace each parameter in H(κ+0 )V by a “corresponding” element of H(κ+1 )V

and conversely, it should be the case that, to the maximum extent possible,
all elements of H(κ+1 )V are the result of such a replacement.This also should
be possible for H(κ++

0 )V , H(κ+++
0 )V , . . . and with the pair κ0, κ1 replaced

by any pair κi, κj with i < j.

It is natural to solve this parameter problem using embeddings, as in the last
subsection. But the difference here is that there is no assumption that these
embeddings are internal to V ; they need only exist in the “real universe”,
outside of V . In this way we will arrive at a principle compatible with V = L
in which the choice of embeddings is indeed “canonical”.

Thus we are led to the following.

Definition 2.4 Let W be a transitive set-size model of ZFC of ordinal
height ∞. We say that W is indiscernibly-generated iff W satisfies the
following:

(i) There is a continuous sequence κ0 < κ1 < . . . of the length ∞ such
that κ∞ = ∞ and there are commuting elementary embeddings πij :
W →W where πij has critical point κi and sends κi to κj.

(ii) For any i ≤ j, any element of W is first-order definable in W from
elements of the range of πij together with κk’s for k in the interval
[i, j).

The last clause in the above definition formulates the idea that to the max-
imum extent possible, elements of W are in the range of the embedding πij
for each i ≤ j; notice that the interval [κi, κj) is disjoint from this range,
but by allowing the κk’s in this interval as parameters, we can first-order
definably recover everything.

Indiscernible-generation as formulated in the above definition does indeed
give us our advertised higher-order indiscernibility: For example, in the no-
tation of the definition, if ~i = i0 < i1 < . . . < in−1 and ~j = j0 < j1 <
. . . < jn−1 with i0 ≤ j0, and xk ∈ H(κ+i0)W for k < n then the structure

W+
~i

= (H(κ+in−1
)W , H(κ+in−2

)W , · · · , H(κ+i0)W ) satisfies a sentence with pa-

rameters (πi0,in−1(xn−1), . . . , πi0,i0(x0)) iff W+
~j

satisfies the same sentence

with corresponding parameters (πi0,jn−1(xn−1), . . . , πi0,j0(x0)). There is a
similar statement with W+ replaced by higher-order structures W+α for
arbitrary α.
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Indiscernible-generation has a clearer formulation in terms of #-generation,
which we explain next.

Definition 2.5 A structure N = (N,U) is called a sharp with critical point
κ, or just a #, if the following hold:

(i) N is a model of ZFC− (ZFC minus powerset, with replacement replaced
by the collection principle) in which κ is the largest cardinal and κ is
strongly inaccessible.

(ii) (N,U) is amenable (i.e. x ∩ U ∈ N for any x ∈ N).
(iii) U is a normal measure on κ in (N,U).
(iv) N is iterable, i.e., all of the successive iterated ultrapowers starting with

(N,U) are well-founded, yielding iterates (Ni, Ui) and Σ1 elementary
iteration maps πij : Ni → Nj where (N,U) = (N0, U0).

We will use the convention that κi denotes the the largest cardinal of the
i-th iterate Ni.

If N is a # and λ is a limit ordinal then LP (Nλ) denotes the union of the
(Vκi)

Ni ’s for i < λ. (LP stands for “lower part”.) LP (N∞) is amodel of
ZFC.

Definition 2.6 We say that a transitive model V of ZFC is #-generated iff
for some sharp N = (N,U) with iteration N = N0 → N1 → · · · , V equals
LP (N∞) where ∞ denotes the ordinal height of V .

Fact 2.7 The following are equivalent for transitive set-size models V of
ZFC:

(i) V is indiscernibly-generated.
(ii) V is #-generated.

Proof. The last clause in the definition of indiscernible-generation ensures
that the embeddings πij in that definition in fact arise from iterated ul-
trapowers of the embedding π01, itself an ultrapower by the measure U0

on κ0 given by X ∈ U0 iff π01(X) contains κ0 as an element. Conversely,
if (N,U) generates V , then the chain of embeddings given by iteration of
(N,U) witnesses that V is indiscernibly-generated. �

In our opinion, #-generation fulfils our intuition for being vertical maximal,
with powerful consequences for reflection. L is #-generated iff 0# exists,
so this principle is compatible with V = L. If V is #-generated via (N,U)
then there are embeddings witnessing indiscernible-generation for V which
are canonically-definable through iteration of (N,U). Although the choice
of # that generates V is not in general unique, it can be taken as a fixed
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parameter in the canonical definition of these embeddings. Moreover, #-
generation evidently provides the maximum amount of vertical reflection:
If V is generated by (N,U) as LP (N∞) where ∞ is the ordinal height of
V , and x is any parameter in a further iterate V ∗ = N∞∗ of (N,U), then
any first-order property ϕ(V, x) that holds in V ∗ reflects to ϕ(Vκi , x̄) in Nj

for all sufficiently large i < j < ∞, where πj,∞∗(x̄) = x. This implies any
known form of vertical reflection and summarizes the amount of reflection
one has in L under the assumption that 0# exists, the maximum amount of
reflection in L.

Thus #-generation tells us what lengthenings of V to look at, namely the
initial segments of V ∗ where V ∗ is obtained by further iteration of a #
that generates V . And it fully realises the idea that V should look exactly
like closed unboundedly many of its rank initial segments as well as its
“canonical” lengthenings of arbitrary ordinal height.

Therefore we believe that #-generated models are the strongest formal-
ization of the principle of reflection (Refl) – we call this form of reflection
sharp-generated reflection, and we shall call these models vertically maximal.

Remark 2.8 Notice that a sharp-generated model can satisfy V = L, and
hence our reflection principle is compatible with L. The reason is that the
non-trivial embeddings obtained from the sharp-iteration are external to the
model in question. This contrasts with the use of nontrivial embeddings in
Section 2.1. Compatibility with L agrees with our intuition that a natural
formulation of vertical reflection (Refl) should be determined by the height
of the universe, and not its width (and L has the same height as V ).

3 An application

We now apply sharp-generated reflection to formulate an analogue of the
IMH principle in [3].

3.1 Vertically maximal models and IMH

The Hyperuniverse is the collection of all countable transitive models of ZFC.
We view members of the Hyperuniverse as possible pictures of V which mir-
ror all possible first-order properties of V . The Hyperuniverse Programme,
which originated in [3], is concerned with the formulation of natural crite-
ria for the selection of preferred members of the Hyperuniverse. First-order
sentences holding in the preferred universes can be taken to be true in the
“real V ”; in other words, preferred universes may lead to adoption of new

8



axioms. Models satisfying IMH, and IMH# introduced below, are examples
of such preferred universes.

Definition 3.1 We say that a #-generated model M is #-maximal if and
only if the following hold. Whenever M is a definable inner model of M ′ and
M ′ is #-generated, then every sentence ϕ, i.e. without parameters, which
holds in a definable inner model of M ′ already holds in some definable inner
model of M .

We say that a #-generated model M satisfies IMH# if it is #-maximal.8

Note that IMH# differs from IMH by demanding that both M and M ′,
the outer model, are of a specific kind, i.e. should be #-generated (while
the outer models considered in IMH are arbitrary). The motivation be-
hind this requirement is that not all outer models count as “maximal”; if
our main motivation is formulated in terms of maximality, consideration of
non-maximal models as the outer models seems counterintuitive. Indeed,
inclusion of such non-maximal models leads to incompatibility of maximal
universes satisfying IMH with inaccessible cardinals (see [3]).

The following theorem is a sharp-generated analogue of the argument in [4].

Theorem 3.2 Assume there is a Woodin cardinal with an inaccessible above.
Then there is a model satisfying IMH#.

Proof. For each real R let M#(R) be Lα[R] where α is least so that Lα[R]
is #-generated. Note that R# exists for each R ⊆ ω by our large cardi-
nal assumption. The Woodin cardinal with an inaccessible above implies
enough projective determinacy to enable us to use Martin’s theorem, see
[5] Proposition 28.4, to find R ⊆ ω such that the theory of (M#(S),∈) for
R ≤T S stabilizes. By this we mean that for R ≤T S, where ≤T denotes the
Turing reducibility relation, the theories of (M#(R),∈) and (M#(S),∈) are
the same.9

We claim that M#(R) satisfies IMH#: Indeed, let M be a #-generated outer
model of M#(R) with a definable inner model satisfying some sentence ϕ.
Let α be the ordinal height of M#(R) (= the ordinal height of M). By
Theorem 9.1 in [1], M has a #-generated outer model W of the form Lα[S]

8We thus give two names two a single concept; denotation IMH# is used to emphasize
the family resemblance to the earlier principle IMH.

9In more detail, given a sentence σ in the language with {∈} consider the set of Turing
degrees Xσ = {S | (M#(S),∈) |= σ}. Xσ has a projective definition (∆1

2). By Martin’s
theorem, Xσ or X¬σ contains a cone of degrees. Denote Yσ∗ the unique set of the two Xσ
and X¬σ which contains the cone. Then

⋂
σ Yσ∗ contains a cone. Take R to be the base

of this cone.
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for some real S with R ≤T S. Of course α is least so that Lα[S] is #-
generated as it is least so that Lα[R] is #-generated.So W equals M#(S).
By the choice of R, M#(R) also has a definable inner model satisfying ϕ.
So M#(R) is #-maximal.10 �

3.2 IMH# is compatible with large cardinals

Finally, we show that – unlike IMH – IMH# is compatible with large cardi-
nals.

Theorem 3.3 Assume there is a Woodin cardinal with an inaccessible above.
Then for some real R, any #-generated transitive model M containing R also
models IMH#.

Proof. Let R be as in the proof of Theorem 3.2. Thus M#(R) = Lα[R] is a
#-generated model of IMH#. Now suppose that M∗ = Lα∗ [R] is obtained by
iterating Lα[R] past α; we claim that M∗ is also a model of IMH#: Indeed,
suppose that W is a #-generated outer model of M∗ which has a definable
inner model satisfying some sentence ϕ. Again by Jensen’s Theorem 9.1
in [1], we can choose W to be of the form Lα∗ [S] for some real S ≥T R.
But then Lα∗ [S] is an iterate of M#(S) (via the iteration given by S#) and
therefore M#(S) also has a definable inner model of ϕ. By the choice of R,
M#(R), and therefore by iteration also Lα∗ [R], has a definable inner model
of ϕ. This verifies the IMH# for M∗.

Now any #-generated transitive model M containing R is an outer model
of such a model of the form Lα∗ [R] as above and therefore is also a model
of IMH#. �

Corollary 3.4 Assume the existence of a Woodin cardinal with an inacces-
sible above and suppose that ϕ is a sentence that holds in some Vκ with κ
measurable. Then there is a transitive model which satisfies both the IMH#

and the sentence ϕ.

Proof. Let R be as in Theorem 3.3 and let U be a normal measure on κ.
The structure N = (H(κ+), U) is a #; iterate N through a large enough
ordinal ∞ so that M = LP (N∞), the lower part of the model generated by

10Woodin noticed that this theorem and also Theorem 3.3 can be proved without re-
course to Jensen’s coding theorem: let R be a real such that every nonempty lightface Σ1

3

set contains a member recursive in R. Then any M which is #-generated and contains R
satisfies IMH#. However, Jensen’s coding theorem does seem necessary for a modification
of IMH# which is formulated for ω1-preserving #-generated extensions (this modification
is not discussed in this paper).
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N , has ordinal height ∞. Then M is #-generated and contains the real R.
It follows that M is a model of the IMH#. Moreover, as M is the union of
an elementary chain Vκ = V N

κ ≺ V N1
κ1 ≺ · · · where ϕ is true in Vκ, it follows

that ϕ is also true in M . �

Note that in Corollary 3.4, if we take ϕ to be any large cardinal property
which holds in some Vκ with κ measurable, then we obtain models of the
IMH# which also satisfy this large cardinal property. This implies the com-
patibility of the IMH# with arbitrarily strong large cardinal properties.
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