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We investigate the extent to which ultrapowers by normal measures on κ can be 
correct about powersets P(λ) for λ > κ. We consider two versions of this question, 
the capturing property CP(κ, λ) and the local capturing property LCP(κ, λ). Both 
of these describe the extent to which subsets of λ appear in ultrapowers by normal 
measures on κ. After examining the basic properties of these two notions, we identify 
the exact consistency strength of LCP(κ, κ+). Building on results of Cummings, 
who determined the exact consistency strength of CP(κ, κ+), and using a variant 
of a forcing due to Apter and Shelah, we show that CP(κ, λ) can hold at the least 
measurable cardinal.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the ultrapower of the universe by a normal measure on some cardinal κ cannot 
be very close to V ; for example, the measure itself never appears in the ultrapower. It follows that these 
ultrapowers cannot compute Vκ+2 correctly. In the presence of GCH, this is equivalent to saying that the 
ultrapower is incorrect about P(κ+). But if GCH fails, it becomes conceivable that a normal ultrapower could 
compute additional powersets correctly. This conjecture turns out to be correct: Cummings [4], answering a 

✩ The authors are grateful to Arthur Apter, Omer Ben-Neria, James Cummings, and Kaethe Minden for helpful discussions 
regarding the topics in this paper. We also thank the referee for their careful reading of the manuscript and their suggestions, 
which significantly improved the exposition in this paper.
The first author was supported in part by the ESIF, EU Operational Programme Research, Development and Education, the 
International Mobility of Researchers in CTU project no. (CZ.02.2.69/0.0/0.0/16_027/0008465) at the Czech Technical University 
in Prague, and the joint FWF–GAČR grant no. 17-33849L: Filters, Ultrafilters and Connections with Forcing.
The second author was supported by the GAČR-FWF grant no. 19-29633L: Compactness principles and combinatorics.
* Corresponding author.

E-mail addresses: mhabic@simons-rock.edu (M.E. Habič), radek.honzik@ff.cuni.cz (R. Honzík).
URLs: https://mhabic.github.io (M.E. Habič), https://logika.ff.cuni.cz/radek (R. Honzík).
https://doi.org/10.1016/j.apal.2023.103261
0168-0072/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.apal.2023.103261
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apal.2023.103261&domain=pdf
mailto:mhabic@simons-rock.edu
mailto:radek.honzik@ff.cuni.cz
https://mhabic.github.io
https://logika.ff.cuni.cz/radek
https://doi.org/10.1016/j.apal.2023.103261


2 M.E. Habič, R. Honzík / Annals of Pure and Applied Logic 174 (2023) 103261
question of Steel, showed that it is relatively consistent that there is a measurable cardinal κ with a normal 
measure whose ultrapower computes P(κ+) correctly; in fact he showed that this situation is equiconsistent 
with a (κ + 2)-strong cardinal κ. In this paper we will study this capturing property and its local variant 
further.

Definition 1. Let κ and λ be cardinals. We say that the local capturing property LCP(κ, λ) holds if, for any 
x ⊆ λ, there is a normal measure Ux on κ such that x ∈ Ult(V, Ux). We shall say that Ux (or Ult(V, Ux)) 
captures x.

The full capturing property will amount to having a uniform witness for the local version.

Definition 2. Let κ and λ be cardinals. We say that the capturing property CP(κ, λ) holds if there is a normal 
measure on κ that captures all subsets of λ; in other words, a normal measure U such that P(λ) ∈ Ult(V, U).

Some quick and easy observations: increasing λ clearly gives us stronger properties, CP(κ, λ) implies 
LCP(κ, λ), and CP(κ, κ) holds for any measurable cardinal κ.

Using this language, we can summarize Cummings’ result as follows:

Theorem 3 (Cummings). If κ is (κ + 2)-strong, then there is a forcing extension in which CP(κ, κ+) holds. 
Conversely, if CP(κ, κ+) holds, then κ is (κ + 2)-strong in an inner model.

We should mention that CP(κ, 2κ) is provably false: if it held, then some normal ultrapower would contain 
all families of subsets of κ, in particular the measure from which it arose, which is impossible. Therefore 
a failure of GCH is necessary for CP(κ, κ+) to hold. By work of Gitik [7], this means that CP(κ, κ+) has 
consistency strength at least that of a measurable cardinal κ with Mitchell rank o(κ) = κ++, and the actual 
consistency strength of a (κ + 2)-strong cardinal κ is only slightly beyond that.

The following are the main results of this paper. In Section 2 we analyze the consistency strength of 
LCP(κ, κ+) and show that it is only a small step below the strength of the full capturing property.

Main Theorem 1. Assuming GCH, if LCP(κ, κ+) holds, then o(κ) = κ++. Conversely, if o(κ) ≥ κ++, then 
LCP(κ, κ+) holds in an inner model.

In Section 3 we continue the analysis in the case that GCH fails at κ and show that the first part of the 
previous theorem, namely that κ has high Mitchell rank, fails dramatically if 2κ > κ+.

Main Theorem 2. If κ is (κ + 2)-strong, then there is a forcing extension in which CP(κ, κ+) holds and κ
is the least measurable cardinal.

This last theorem is a nontrivial improvement of Cummings’ result. Since the forcing he used to achieve 
CP(κ, κ+) was relatively mild, κ remained quite large in the resulting model; for example, it was still a mea-
surable limit of measurable cardinals. Our theorem shows that, while CP(κ, κ+) has nontrivial consistency 
strength, it does not directly imply anything about the size of κ in V (beyond κ being measurable).

We will list questions that we have left open wherever appropriate throughout the paper.

2. The local capturing property

Let us begin our analysis of the local capturing property with some simple observations.

Lemma 4. If LCP(κ, λ) holds, then it can be witnessed by measures U for which Ult(V, U) and V agree on 
cardinals up to and including λ.
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Proof. Using a pairing function we can code a family of bijections fα : α → |α| for α ≤ λ as a single subset 
y ⊆ λ. If we want to capture x ⊆ λ in an ultrapower as in the lemma, we simply capture (a disjoint union 
of) x and y using LCP(κ, λ). �
Proposition 5. LCP(κ, (2κ)+) fails for any measurable κ.

Proof. If LCP(κ, (2κ)+) held, there would have to be a normal measure ultrapower j : V → M with critical 
point κ such that M was correct about cardinals up to and including (2κ)+, by Lemma 4. But no such 
ultrapower can exist, since the ordinals j(κ) and j(κ+) are cardinals in M and both have size 2κ in V . �

The following lemma is quite well known, but it will be key in many of our observations.

Lemma 6. Suppose that j : V → M is an elementary embedding with critical point κ and consider the diagram

V M

N

j

i
k

where i is the ultrapower by the normal measure on κ derived from j and k is the factor map. Then the 
critical point of k is strictly above (2κ)N .

Proof. It is clear that the critical point of k is above κ. Consider some ordinal α ≤ (2κ)N . Fix a surjective 
map f : P(κ) → α in N (and note that both N and M compute P(κ) correctly). Since every ordinal up to 
and including κ is fixed by k, it follows that k(f) = k ◦ f is a surjection from P(κ) to k(α) and so k �α is a 
surjection onto k(α). It follows that we must have k(α) = α. �

Using an old argument of Solovay, we can see that the optimal local capturing property automatically 
holds at sufficiently large cardinals.

Proposition 7. If a cardinal κ is 2κ-supercompact, witnessed by an embedding j : V → M , then LCP(κ, 2κ)
holds in both V and M .

Proof. We first show that LCP(κ, 2κ) holds in V . Suppose it fails. Then there is some x ⊆ 2κ which is not 
captured by any normal measure on κ. The model M agrees that this is the case, since it has all the normal 
measures on κ and all the functions f : κ → P(κ) that could represent x. Let i and k be as in Lemma 6. 
By that same lemma, the model N computes 2κ correctly and it also believes that there is some y ⊆ 2κ
which is not captured by any normal measure on κ. This y is fixed by k, so M also believes that y is not 
captured by any normal measure on κ, and V agrees. But this is a contradiction, since y is captured by the 
ultrapower N . Therefore LCP(κ, 2κ) holds in V .

Observe that LCP(κ, 2κ) only depends on P(2κ), the normal measures on κ, and the representing func-
tions κ → P(κ). The ultrapower M has all of these objects, therefore M must agree that LCP(κ, 2κ)
holds. �

In particular, if κ is 2κ-supercompact, then there are many λ < κ for which LCP(λ, 2λ) holds.
The above argument seems to break down if κ is only θ-supercompact for some θ < 2κ, even if we are 

only aiming to capture subsets of θ; one simply cannot conclude that M has all the necessary measures to 
correctly judge whether a set is a counterexample to LCP(κ, λ) or not. Thus, the following question remains 
open.
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Question 8. Suppose that κ is θ-supercompact for some κ < θ < 2κ. Does it follow that LCP(κ, θ) holds?

The same conclusion as in Proposition 7 follows even if κ is merely (κ + 2)-strong.

Proposition 9. If a cardinal κ is (κ + 2)-strong, witnessed by an embedding j : V → M , then LCP(κ, 2κ)
holds in both V and M .

Proof. The argument works just like in Proposition 7. Note that M has all the functions κ → P(κ) and all 
the normal measures on κ. Furthermore, M has all the subsets of 2κ (use a wellorder of Vκ+1 in Vκ+2 of 
ordertype 2κ). It follows that V and M have all the same counterexamples to LCP(κ, 2κ). �

Reflecting back from M to V , this last proposition implies that below a (κ + 2)-strong cardinal κ there 
are many cardinals λ satisfying LCP(λ, 2λ). This observation, together with Cummings’ Theorem 3, tells 
us that the consistency strength of LCP(κ, κ+) is strictly lower than that of CP(κ, κ+). Let us determine 
this consistency strength exactly.

Recall that the Mitchell order � on a measurable cardinal κ is a relation on the normal measures on κ, 
where U � U ′ if U appears in the ultrapower by U ′. It is a standard fact that � is wellfounded, and the 
Mitchell rank of κ is the height o(κ) of this order.

Proposition 10. If LCP(κ, 2κ) holds, then o(κ) = (2κ)+.

Proof. This is essentially the proof that the large cardinals mentioned in the previous two propositions have 
maximal Mitchell rank. We shall recursively build a Mitchell-increasing sequence 〈Uα ; α < (2κ)+〉 of normal 
measures on κ. So suppose that 〈Uα ; α < δ〉 has been constructed for some δ < (2κ)+. Using a pairing 
function we can code each measure Uα as a subset of 2κ, and then code the entire sequence 〈Uα ; α < δ〉
as a subset of 2κ as well. By LCP(κ, 2κ) there is a normal measure U on κ which captures this subset, and 
thus the whole sequence of measures. We can then simply let Uδ = U . �

To show that the lower bound from this proposition is sharp we will pass to a suitable inner model. 
Recall that a coherent sequence of normal measures U of length λ (where λ is an ordinal or Ord) is given 
by a function oU : λ → Ord and a sequence

U = 〈Uβ
α ; α < λ, β < oU (α)〉 ,

where each Uβ
α is a normal measure on α and for each α, β, if jβα is the corresponding ultrapower map, we 

have

jβα(U) � α + 1 = U � (α, β) .

Here U � (α, β) = 〈Uδ
γ ; (γ, δ) <lex (α, β)〉 and U � α = U � (α, 0).

Theorem 11. Suppose that V = L[U ] where U is a coherent sequence of normal measures of length κ + 1
with oU (κ) = κ++. Then LCP(κ, κ+) holds.

Proof. We shall show that, given any x ⊆ κ+, there is some β < κ++ such that x ∈ L[U � (κ, β)]. The 
theorem then immediately follows since, given x, we can find a β as described, and the ultrapower by Uβ

κ

of L[U ] contains L[U � (κ, β)], and therefore x.
So fix some x ⊆ κ+ and let ρ be a large regular cardinal so that x ∈ Lρ[U ]. Since GCH holds, we can find 

an elementary submodel M ≺ Lρ[U ] of size κ+ such that x, U ∈ M and κ+, P(κ) ⊆ M . Let π : M → M be 
the Mostowski collapse map.
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Note that δ = M ∩ κ++ = π(κ++) is an ordinal below κ++ and that all ordinals below δ are fixed by π. 
Moreover, π will fix all subsets of κ+ in M (since these can be described by sequences of ordinals of length 
< δ), and therefore also all the measures Uβ

α for (α, β) <lex (κ, δ) (since each of these can be coded by a 
subset of κ+). It follows that π(U) is (in M) a coherent sequence of normal measures of length κ + 1 with 
oπ(U)(κ) = δ, and that π(U) = U � (κ, δ). Therefore M = Lρ̄[U � (κ, δ)] for some ρ̄ < ρ. Since x ⊆ κ+ was 
fixed by π as well, we get x ∈ M ⊆ L[U � (κ, δ)]. �

Even if, starting from a measurable cardinal κ of Mitchell order κ++, one could construct a coherent 
sequence U of normal measures with oU(κ) = κ++, it seems to be an open question (according to [15]) 
whether it is necessarily the case that U remains coherent in L[U ]. We avoid this issue by using a result of 
Mitchell [13], who showed in ZFC that there is a sequence of filters F (possibly empty, possibly of length 
Ord, or anything in between) such that L[F ] satisfies GCH, F is a coherent sequence of normal measures 
in L[F ] and oF (α) = min(o(α)V , (α++)L[F ]). The model we need will be exactly this L[F ].

Corollary 12. Assume that o(κ) ≥ κ++. Then LCP(κ, 2κ) holds in a transitive model of GCH.

Proof. We may assume that κ is the largest measurable cardinal; if not, we can cut off the universe at the next 
inaccessible in order to achieve this. Let F be the sequence of filters described above. By Mitchell’s results 
we know that the sequence F is a coherent sequence of normal measures in L[F ] and oF (κ) = (κ++)L[F ]. 
Since κ is the largest measurable, the length of F is κ +1, and it follows from Theorem 11 that LCP(κ, κ+)
holds in L[F ]. �

In fact, these canonical inner models satisfy a strong form of LCP(κ, κ+), where there is a single function 
which represents any desired subset of κ+ in an appropriate normal ultrapower.

Definition 13. Let κ be a measurable cardinal. An Hκ++-guessing Laver function for κ is a function � : κ → Vκ

with the property that for any x ∈ Hκ++ there is an ultrapower embedding j : V → M by a normal measure 
on κ such that j(�)(κ) = x.

It is obvious that the existence of an Hκ++-guessing Laver function for κ implies LCP(κ, κ+). The 
first author [9, Theorem 28] showed that this stronger property holds in appropriate extender models, in 
particular the one from Corollary 12.

Starting with a cardinal κ of high Mitchell rank, we obtained a model of the local capturing property 
by passing to an inner model. We are unsure whether one can obtain the local capturing property from the 
optimal hypothesis via forcing.

Question 14. Suppose that GCH holds and o(κ) = κ++. Is there a forcing extension in which LCP(κ, κ+)
holds?

It is important to note that the hypothesis in Proposition 10 is quite strong: we need to be able to capture 
all subsets of 2κ in order to be able to conclude that the Mitchell rank of κ is large. One might wonder 
whether some large cardinal strength beyond measurability can be derived even from weaker local capturing 
properties, for example LCP(κ, κ+) assuming κ+ < 2κ. As we shall see in the following section, the answer 
is an emphatic no.
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3. The capturing property at the least measurable cardinal

In this section we will give a proof of our second main theorem. Our argument owes a lot to Cummings’ 
original proof of Theorem 3 and to the forcing machinery introduced by Apter and Shelah. Nevertheless, 
we shall strive to give a mostly self-contained account, especially with regard to the forcing notions used.

Let us first explain why we cannot simply use the proof from Theorem 3 and afterwards make κ into the 
least measurable cardinal just by applying the standard methods of destroying measurable cardinals, such 
as iterated Prikry forcing or adding nonreflecting stationary sets. In his argument, Cummings starts with 
a (κ, κ++)-extender embedding, lifts it through a certain iteration of Cohen forcings (which will, among 
other things, ensure that 2κ > κ+, a necessary condition as we explained), and concludes that the lifted 
embedding j : V [G] → M [j(G)] is in fact equal to the ultrapower by some normal measure on κ and M [j(G)]
captures all the subsets of κ+ in the extension. One would now hope to be able to lift this new embedding 
further, through any of the usual forcings which would make κ into the least measurable cardinal. However, 
for this strategy to work, we should somehow ensure that κ is not measurable in M [j(G)]. Otherwise lifting 
the embedding through any of the usual forcing iterations to destroy all the measurables below κ over V [G]
would require us to also destroy the measurability of κ over M [j(G)]. But if we did that and maintained 
the capturing property at the same time, there would be enough agreement between the extensions of V [G]
and M [j(G)] that κ would necessarily be nonmeasurable in the extension of V [G] as well. All this is to say 
that, since κ is very much measurable in M [j(G)] after the forcing done by Cummings, a different approach 
is necessary.

Instead of first forcing the capturing property and then making κ into the least measurable, the solution 
is to destroy all the measurable cardinals below κ and blow up 2κ at the same time. The tools to make this 
approach work are due to Apter and Shelah [1,2].

3.1. The forcing notions

Let us review the particular forcing notions that will go into building our final forcing iteration. The 
material in this subsection is contained, in some form or another, in Sections 1 of [1,2].

Since we will be discussing the strategic closure of some of these posets, let us fix some terminology. If 
P is a poset and α is an ordinal, the closure game for P of length α consists of two players alternately 
playing conditions p ∈ P in a descending sequence of length α, with player II playing at limit steps. Player 
II loses the game if at any stage she is unable to make a move; otherwise she wins. If P is a poset and κ is 
a cardinal, we shall say that:

• P is ≤ κ-strategically closed if player II has a winning strategy in the closure game for P of length κ +1.
• P is ≺ κ-strategically closed if player II has a winning strategy in the closure game for P of length κ.
• P is < κ-strategically closed if it is ≤ λ-strategically closed for all λ < κ.

Recall that, if κ is a cardinal, a poset P is called ≤ κ-distributive (or < κ-distributive) if forcing with P
does not add any new sequences of ordinals of length ≤ κ (or < κ). This is equivalent to saying that the 
intersection of ≤ κ (or < κ) many open dense subsets of P is dense open.

If κ is a cardinal and α is an ordinal, we let Add(κ, α) be the usual forcing notion to add α many Cohen 
subsets of κ. We think of conditions in Add(κ, α) as filling in a grid with α many columns of height κ with 
0 s and 1 s. Each condition is only allowed to fill in fewer than κ many cells in the grid. Eventually, the 
generic will fill in the entire grid, and each column of the grid will be a Cohen subset of κ.
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If δ ≥ ω2 is a regular cardinal, we let Sδ be the forcing to add a nonreflecting stationary subset of δ, 
consisting of points of countable cofinality.1 A condition in Sδ is simply a bounded subset of x ⊆ δ, consisting 
of points of countable cofinality and satisfying the property that x ∩α is nonstationary in α for every limit 
α < δ of uncountable cofinality. The conditions in Sδ are ordered by end-extension. It is a standard fact 
that Sδ is ≺ δ-strategically closed and, if 2<δ = δ, is δ+-cc (see [5, Section 6] for more details). Note that the 
generic stationary set added will also be costationary, since it avoids all ordinals of uncountable cofinality.

If S ⊂ δ is a costationary set, let C(S) be the forcing to shoot a club through δ \S; conditions are closed 
bounded subsets of δ \ S. Again, if 2<δ = δ, then C(S) will be δ+-cc ([5, Section 6] has more details). In 
the cases we will be interested in, C(S) will also be < δ-distributive (see Lemma 16).

Before we continue with the exposition, let us fix some terminology.

Definition 15. Let P and Q be posets. We say that P and Q are forcing equivalent if they have isomorphic 
dense subsets.

This is not the most general definition of forcing equivalence that has appeared in the literature, but it 
has the advantage of being obviously upward absolute between transitive models of set theory.

Lemma 16. If δ is a cardinal satisfying δ<δ = δ then Sδ ∗ C(Ṡ), where Ṡ is the name for the generic 
nonreflecting stationary set added by Sδ, is forcing equivalent to Add(δ, 1).

Proof. This is standard; the iteration has a dense < δ-closed subset of size δ, which is equivalent to Add(δ, 1)
by [5, Theorem 14.1]. �

Suppose that γ and δ are regular cardinals, I ⊆ δ, and �X = 〈xα ; α ∈ I〉 is a ladder system (meaning 
that each xα ⊆ α is a cf(α)-sequence cofinal in α; the xα are called ladders). The forcing A(γ, δ, �X) consists 
of conditions (p, Z) where

(1) p is a condition in the Cohen forcing Add(γ, δ), seen as filling in δ many columns of height γ with 0 s 
and 1 s. We will denote by supp(p) ⊆ δ the set of indices of the nonempty columns of p.

(2) p is a uniform condition, meaning that all of its nonempty columns have the same height.
(3) Z is a set of ladders from the ladder system �X and each ladder z ∈ Z is a subset of supp(p).

The conditions in A(γ, δ, �X) are ordered by letting (p′, Z ′) ≤ (p, Z) if p′ ≤ p and Z ′ ⊇ Z, and for 
any z ∈ Z, if ρ < γ is the index of a row that was empty in p but is nonempty in p′, then both sets 
{ι ∈ z; p′(ι, ρ) = 0} and {ι ∈ z; p′(ι, ρ) = 1} are unbounded in sup z. In other words, when strengthening 
the Cohen part of the condition, the z ∈ Z are promises that we will not add a row whose values stabilize 
when restricted to the columns indexed by z.

The poset A(γ, δ, �X) is similar to the poset P 1
δ,λ[S] defined in [1, Section 4], with some differences which 

we believe will simplify the poset. For example, our definition permits an arbitrary ladder system, whereas 
Apter and Shelah work with a very specific one. For our applications, the specific case studied by Apter 
and Shelah would have sufficed, but the poset can nevertheless be defined more generally. We believe the 
additional generality will make the role of the side conditions in the arguments more transparent and clarify 
where additional assumptions on the parameters in the definition of A(γ, δ, �X) are required.

Some comments are in order regarding the forcing A(γ, δ, �X). It is similar enough to the Cohen poset 
Add(γ, δ) that one would hope that it is just as simple to show that this forcing also adds δ new subsets of 

1 In our argument we could use any other fixed cofinality below the large cardinal in question. We sacrifice a bit of generality in 
order to avoid carrying an extra parameter with us throughout the proof. The specific choice of countable cofinality also simplifies 
some arguments.
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γ and so on. But with the addition of the side conditions this is no longer clear. It is not even immediate 
that generically we will fill out the entire binary matrix. On the other hand, if we want to use this forcing 
as the main part of our construction to destroy many measurable cardinals, then it cannot be too close to 
plain Cohen forcing after all. This tension between the poset A(γ, δ, �X) and the Cohen poset Add(γ, δ) is 
controlled by the ladder system �X, so we will have to choose these ladder systems carefully in our proof.

The following facts are parallel to the ones Apter and Shelah give in [1,2]; we give proofs for the sake of 
completeness, but the reader familiar with their exposition should expect no surprises.

Lemma 17. Two conditions (p, Z) and (q, W ) in A(γ, δ, �X) of equal height are compatible if and only if their 
Cohen parts are compatible.

Proof. The forward implication is immediate. For the reverse, assume that p and q are compatible, so that 
r = p ∪ q is a Cohen condition. Notice that r has the same height as p and q, and that each nonempty 
column in r was either present already in both p and q, or else it was present already in p and was empty in 
q, or vice versa. If we let U = Z ∪W , it then follows that (r, U) is a common strengthening of both (p, Z)
and (q, W ). This is because, as far as ladders z ∈ Z are concerned, no new rows were added to the Cohen 
part when it was strengthened from p to r, and similarly for W . �
Corollary 18. For any regular λ > γ, the poset A(γ, δ, �X) is λ-Knaster (meaning that any collection of λ
many conditions has a subset of size λ of pairwise compatible conditions) if and only if the poset Add(γ, δ)
is λ-Knaster.

Proof. For the forward direction, start with a family of Cohen conditions pα for α < λ, and associate to 
each the condition (pα, ∅) ∈ A(γ, δ, �X). Since A(γ, δ, �X) is λ-Knaster, there is a subset J ⊆ λ of size λ such 
that the conditions (pα, ∅) for α ∈ I are pairwise compatible. This, of course, means that the conditions pα
for α ∈ I are pairwise compatible.

Conversely, suppose that Add(γ, δ) is λ-Knaster and let (pα, Zα) for α < λ be conditions in A(γ, δ, �X). 
If there are λ many conditions among these with the same Cohen part we are done, since all of those will 
be pairwise compatible. So let us assume that this doesn’t happen. Since λ > γ, there is a subset J ⊆ λ of 
size λ such that all conditions (pα, Zα) have the same height. By our assumption and since λ is regular, we 
can thin out J further to assume that pα �= pβ for distinct α, β ∈ J . Since Add(γ, δ) is λ-Knaster, we can 
thin out J even further until the conditions pα for α ∈ J are all pairwise compatible. But since we already 
arranged them all to have the same height, Lemma 17 implies that the conditions (pα, Zα) for α ∈ J are 
also pairwise compatible in A(γ, δ, �X). �

This corollary will be convenient when we need to gauge the chain condition or the Knasterness of the 
poset A(γ, δ, �X). Typical applications will have γ inaccessible, λ a finite successor of γ and GCH between 
γ and λ. In those cases, a standard Δ-system argument will guarantee that Add(γ, δ) (and therefore also 
A(γ, δ, �X)) is λ-Knaster.

Lemma 19. Suppose that γ is regular, δ is regular, and �X is a ladder system on some subset of δ. Then 
A(γ, δ, �X) is < γ-closed.

The outright closure of the poset is a slight improvement over the presentation that Apter and Shelah 
chose; they could only guarantee strategic closure, but the difference will not be significant.

Proof. Start with a descending sequence of conditions (pα, Zα) for α < λ < γ. We can get a candidate for 
a lower bound by simply taking unions in each coordinate, letting p =

⋃
α<λ pα and Z =

⋃
α<λ Zα, but we 

need to verify that (p, Z) ≤ (pα, Zα). Consider any ladder z ∈ Zα and look at the restrictions pα � z and 
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p � z. For each new row in p �z, we can find a β with α < β < λ such that that row appears already in pβ � z. 
But because we assumed that (pβ, Zβ) ≤ (pα, Zα), it must be the case that that row has unboundedly many 
0 s and 1 s. �

Going forward, we will focus particularly on ladder systems supported on very sparse sets, meaning those 
without any stationary initial segments. The following is essentially [1, Lemma 2] and also [2, Lemma 2]: 
although Apter and Shelah state the result for a very special ladder system, an inspection of their proof 
shows that the argument works in general.

Lemma 20. Let γ be inaccessible and δ regular. Suppose that I ⊆ δ is nonstationary in its supremum and 
all of its initial segments are nonstationary in their suprema as well. Let �X be a ladder system on I. Then 
there are (nonempty) final segments yα of each xα ∈ �X such that the yα are pairwise disjoint.

Let us briefly explain why this lemma will be useful. Suppose that we have a condition (p, Z) ∈ A(γ, δ, �X)
and we would like to strengthen its Cohen part. We cannot just blindly extend p, since the ladders in Z
exert some control over what the rows of any extension of p might look like. If the ladders in Z are all 
pairwise disjoint, then this isn’t a significant issue: we can fill in one cell of p and consider each ladder in Z
separately, filling in more of the row to ensure that unboundedly many 0 s and 1 s appear in the columns 
mentioned by z. This naive strategy seems less solid when the ladders in Z overlap, since it might happen 
that, while satisfying the requirements given by one ladder z ∈ Z, we inadvertently violate those given by 
a different z′ ∈ Z.

The point of Lemma 20 is to allow us, under certain circumstances, to pretend that the ladders in Z really 
are pairwise disjoint. More precisely, instead of the ladders in z ∈ Z, we are going to focus on their (pairwise 
disjoint) final segments y as provided by Lemma 20. The point is that, if we want to strengthen the Cohen 
part p of (p, Z) to p′ by filling in a cell in row ρ, it suffices, for each z ∈ Z, to have {ι ∈ y; p′(ι, ρ) = 0} and 
{ι ∈ y; p′(ι, ρ) = 1} be unbounded in sup y = sup z, instead of the same requirement where y is replaced by 
z, since y is a cofinal subset of z.

Lemma 21. Suppose γ is inaccessible and δ ≥ γ is regular. Suppose that I ⊆ δ and that all of its proper 
initial segments are nonstationary. Let �X be a ladder system on I. Then a generic for A(γ, δ, �X) is a total 
function on δ × γ and each of its columns is a new subset of γ.

Proof. We only need to show that, given a condition (p, Z), we may extend that condition in order to fill 
any given empty cell with an arbitrary value. This is sometimes easy to do: if the height of p is ρ and 
we wish to fill a cell below height ρ, we can simply fill that cell (and even its column up to height ρ) in 
whatever way we want. The reason is that the cell will only be empty if its whole column is empty (since 
p is uniform), but that means that no ladder in Z mentions that column. Consequently, the side condition 
plays no part when strengthening the Cohen part in that column.

Let us now consider the case when we are attempting to fill in a cell in row ρ, meaning the first new 
row above the height of p. We start building the stronger Cohen condition by filling in that new cell in the 
desired way. We still need to make this new Cohen condition uniform (all previously nonempty columns 
now need to get an entry in row ρ, but also the column we just added an entry to might have empty cells 
below row ρ if it was empty prior to this step), and pay attention to the promises we made regarding the 
ladders in Z.

If the column we just added to was empty, we can fill it up to height ρ in whatever way we want. The 
reason is the same as before: this column doesn’t appear in supp(p), so no ladder in Z mentions it, and 
therefore the side condition has nothing to say about how we extend this column. So let us focus on adding 
entries in row ρ to columns that were nonempty in p.
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Since γ is inaccessible, Z has size less than γ. Since δ ≥ γ is regular, the ladders in Z are bounded below δ
and we can pick some δ′ < δ so that each ladder in Z is a subset of δ′. By assumption I ∩δ′ is nonstationary 
in δ′ and all of its initial segments are nonstationary in their suprema as well. It follows that we can apply 
Lemma 20 to Z (seen as a ladder system on I ∩ δ′) in order to find pairwise disjoint final segments y of each 
z ∈ Z.

For each α ∈ supp(p), there is at most one such final segment y for which α ∈ y. If there is no such y, 
we fill the cell in row ρ and column α with a 0. On the other hand, if such a y exists, we fill the cells in row 
ρ and columns in y in an alternating pattern to make sure that there are unboundedly many 0 s and 1 s. 
The key fact is that these specifications do not contradict each other, since the sets y are pairwise disjoint. 
In this way, we extend p to a uniform condition p′ of height ρ + 1. If we were filling in a cell in a previously 
nonempty column, then supp(p′) = supp(p), and otherwise supp(p′) = supp(p) ∪ {β}, where β is the index 
of the empty column in p that we filled cells in. Using the reasoning described after Lemma 20, it is also 
clear that (p′, Z) ≤ (p, Z): given any z ∈ Z, consider the values p′(ι, ρ) for ι ∈ z. Let y ⊆ z be the associated 
final segment. Our construction made sure that p′(ι, ρ) = 0 and p′(ι′, ρ) = 1 for unboundedly many ι, ι′ ∈ y, 
and therefore also for unboundedly many ι, ι′ ∈ z, so it follows that (p′, Z) ≤ (p, Z).

Having seen how to fill a cell in row ρ of a condition (p, Z) of height ρ, we can use the same process to fill 
a cell in any row above ρ as well. We simply use the same argument to increase the height of p one step at 
a time and the closure of A(γ, δ, �X) from Lemma 19 to pass through limit steps, until we reach the desired 
cell to be filled in. �

If δ is a regular cardinal and S ⊆ δ is stationary, recall that a ♣δ(S)-sequence is a ladder system 
〈xα ; α ∈ S〉 such that for any unbounded A ⊆ δ there is some α ∈ S such that xα ⊆ A.2

Lemma 22. Suppose that γ < δ are regular cardinals, with γ inaccessible and θ<γ < δ for all θ < δ.3
Let S ⊆ δ be a nonreflecting stationary set consisting of points of countable cofinality, and let �X be a 
♣δ(S)-sequence. Then A(γ, δ, �X) forces that γ is not measurable.

Proof. The proof follows the strategy of [2, Lemma 3]. We start with a condition (p, Z) and a name U̇ for a 
countably complete ultrafilter on γ. For each i < δ, let Ṡ1

i be the canonical name for the subset of γ whose 
characteristic function is given by the ith column of the generic, and let Ṡ0

i be the name for its complement. 
For each i < δ we can find a stronger condition (pi, Zi) ≤ (p, Z) which decides whether Ṡ1

i ∈ U̇ or Ṡ0
i ∈ U̇ . 

By thinning out if necessary, we may assume that all of the Cohen parts pi have the same height, and that 
the value of ki ∈ {0, 1} determining which of Ṡki

i is forced to be in U̇ , is independent of i and equal to 
some k ∈ {0, 1}. Moreover, we may further strengthen these conditions to ensure that i ∈ supp(pi) for all 
i. Our cardinal arithmetic assumption implies that Add(γ, δ) and, according to Corollary 18, A(γ, δ, �X) are 
δ-Knaster, so we can find an unbounded set I ⊆ δ such that the conditions (pi, Zi) for i ∈ I are pairwise 
compatible.

We now use the ♣δ(S)-sequence: there is an α ∈ S for which xα ⊆ I. We can now let p∗ =
⋃

i∈xα
pi

and Z∗ =
⋃

i∈xα
Zi. Since the conditions pi were all pairwise compatible, p∗ is also a Cohen condition, 

stronger than each pi. Moreover, since the conditions pi and p∗ have the same height, (p∗, Z∗) is actually a 
strengthening of each (pi, Zi) (the argument is the same as in the proof of Lemma 17).

Now consider the (even stronger) condition (p∗, Z∗ ∪ {xα}); it really is a condition since each i ∈ xα was 
in the support of pi, so xα ⊆ supp(p∗). This condition forces that Ṡk

i ∈ U̇ for i ∈ xα. Since xα is countable, 
it follows that (p∗, Z∗ ∪ {xα}) also forces that the intersection 

⋂
i∈xα

Ṡk
i is in U̇ .

2 The principle ♣δ(S) is usually stated in the apparently stronger form where there are stationarily many α ∈ S for which 
xα ⊆ A. This formulation is equivalent to the one we use; see [14, Observation I.7.2].
3 Again, it is best to think of the case when δ is a finite successor of γ and GCH holds for cardinals in the interval [γ, δ].
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We now show that the condition (p∗, Z∗ ∪ {xα}) also forces that the above intersection is bounded 
in γ. Suppose otherwise, that there is a stronger condition (q, W ) forcing that the intersection 

⋂
i∈xα

Ṡk
i

has an element ξ above the height of p∗. This can only happen if q has k as the entries in row ξ and 
columns i ∈ xα. But this is impossible, since the definition of the ordering in A(γ, δ, �X) and the fact that 
(q, W ) ≤ (p∗, Z∗ ∪ {xα}) require there to be unboundedly many 0 entries as well as unboundedly many 1 
entries in row ξ and columns i ∈ xα in q.

This shows that the countably complete ultrafilter U̇ is forced to have a bounded element. Therefore it 
cannot be a normal ultrafilter on γ, so γ is not measurable in the forcing extension. �

The following lemma is [1, Lemma 1] (and also [2, Lemma 1]); the reader may find the proof there. The 
argument is much like the proof that Add(ω1, 1) forces ♦.

Lemma 23. Let δ be a regular cardinal satisfying δω = δ. Then Sδ forces that ♣δ(S) holds, where S is the 
generic stationary set added.

Since we now know that Sδ adds a ♣δ(S)-sequence, it makes sense to consider the iteration Sδ∗A(γ, δ, �X), 
where �X is a ♣δ(S)-sequence added by the first stage of forcing. Lemma 22 implies that this iteration will 
definitely make γ nonmeasurable (assuming we start from GCH or a similar hypothesis). The following 
lemma is a complement to that result and can be used to show that the measurability of γ may be resurrected. 
It corresponds to [2, Lemma 4].

Lemma 24. Let γ < δ be regular cardinals with γ inaccessible and δ satisfying δ<δ = δ. Then the iteration 
Sδ ∗ (A(γ, δ, �X) ×C(Ṡ)), where �X is an arbitrary ladder system on S, is equivalent to Add(δ, 1) ×Add(γ, δ).

Proof. We stick closely to the argument from [2]. Lemma 16 already told us that Sδ ∗C(Ṡ) is equivalent to 
Add(δ, 1), so it only remains to show that, in the resulting extension V [S][C], A(γ, δ, �X)V [S] is equivalent to 
Add(γ, δ)V = Add(γ, δ)V [S][C]. Since in V [S][C], the formerly stationary set S is no longer stationary, nor 
does it have any stationary initial segments, Lemma 20 implies that we can disjointify the ladder system �X
by picking final segments yα ⊆ xα for each α ∈ S.

The set δ can now be decomposed into the disjoint union of the yα plus the remainder R = δ \
⋃

α yα. 
The key realization (as in the proof of Lemma 21) is that we can honor the promises given by a condition 
(p, Z) ∈ A(γ, δ, �X)V [S] by strengthening p carefully on each yα (and these regions are pairwise disjoint and 
do not interfere with each other), and strengthening p quite freely on the remainder R.

To make this precise, let us write, given α ∈ S, Aα for the subposet of conditions (p, {yα}) ∈ A(γ, δ, �X)V [S]

for which supp(p) = yα. Let us also write AR for the subposet of those conditions (p, ∅) for which supp(p) ⊆
R. Each of the posets Aα is a < γ-closed poset with the induced ordering, and each has size γ. This means 
that each Aα is equivalent to Add(γ, 1) by [5, Theorem 14.1]. On the other hand, since the conditions in 
AR have empty side conditions, the induced ordering there behaves exactly like Add(γ, R).

Given a condition (p, Z) ∈ A(γ, δ, �X)V [S], we can decompose it into the sequence of restrictions (p �
yα, {yα}) and (p �R, ∅). We would like to say that this decomposition gives rise to an isomorphism between 
A(γ, δ, �X)V [S] and 

∏
α∈S Aα × AR (where the product is taken with < γ-support). Unfortunately, that is 

not quite the case: this map is not surjective, as its range consists exactly of those conditions in the product 
whose Cohen components in each factor have the same height. However, the range is still dense in the 
product, which shows that A(γ, δ, �X)V [S] and 

∏
α∈S Aα ×AR are equivalent.

Putting together the equivalences from the last two paragraphs, we obtain an equivalence between 
A(γ, δ, �X)V [S] and 

∏
α∈S Add(γ, 1) × Add(γ, R), where the product 

∏
α∈S Add(γ, 1) is taken with < γ-

support, and we can conclude that A(γ, δ, �X)V [S] is equivalent to Add(γ, δ). �
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3.2. Some additional facts about forcing and elementary embeddings

In this subsection we collect some facts about forcing and ultrapowers, some more standard than others, 
that we will need throughout our paper. We indicate at each the parallel result from [3] or [5], where proofs 
are also given.

Fact 25 ([5, Proposition 9.1]). Suppose that M and N are transitive models of ZFC and j : M → N is an 
elementary embedding. Let P ∈ M be a poset, let G be P -generic over M and let H be j(P )-generic over 
N . If j[G] ⊆ H then j can be extended to an elementary embedding j : M [G] → N [H] satisfying j(G) = H.

Fact 26 ([3, Section 1.2.2, Fact 3]). With the notation of the previous fact, if j : M → N is a (κ, λ)-extender 
embedding, then so is the lift j : M [G] → N [H]. In particular, if i is the ultrapower by a normal measure on 
κ, then so is j.

Fact 27 ([3, Section 1.2.2, Fact 2]). With the notation of the previous fact, suppose that j is a (κ, λ)-extender 
embedding and that P is ≤ κ-distributive in M . Then j[G] generates a j(P )-generic filter over N .

Fact 28 ([5, Proposition 8.1]). Let M be an inner model of ZFC, let P ∈ M be a poset and let κ be a 
cardinal. Suppose that P is ≺ κ-strategically closed (in V ) and that the set of maximal antichains of P in 
M has cardinality at most κ in V . Then there is a P -generic filter G over M in V .

Fact 29 ([3, Section 1.2.3, Fact 3]). Let M be an inner model of ZFC, let P ∈ M be a poset and let κ be a 
cardinal. Suppose that κM ⊆ M and that P is κ+-cc in V . Let G be P -generic over V . Then M [G] is an 
inner model of V [G] and κM [G] ⊆ M [G] in V [G].

Recall that if P is a poset and Q̇ is a P -name for a poset, the term forcing poset Term(P , Q̇) consists of 
P -names for elements of Q̇, ordered by letting σ ≤ τ if P � σ ≤ τ .

Fact 30 ([3, Section 1.2.5, Fact 1]). If G ⊆ P and H ⊆ Term(P , Q̇) are generic over V , then {σG ; σ ∈
H} ⊆ Q̇G is generic over V [G].

Lemma 31 ([3, Section 1.2.5, Fact 2]). Suppose that κ is a cardinal satisfying κ<κ = κ and let P be a 
κ-cc forcing of size κ. Let Q̇λ be the P -name for Add(κ, λ) in the extension. Then Term(P , Q̇λ) is forcing 
equivalent, in V , to Add(κ, λ).

Lemma 32. Let κ be a measurable cardinal satisfying 2κ = κ+ and let j : V → M be the ultrapower by a 
normal measure on κ. Given any finite n ≥ 1, the forcings j(Add(κ, κ+n)) and Add(κ+, κ+n) are equivalent 
in V .

Cummings gave a proof of this lemma for n = 2 in [3, Section 1.2.6, Fact 2] (attributing the proof to 
Woodin), and Gitik and Merimovich proved the generalization to all n in [8, Lemma 3.2].

Lemma 33. Let κ be a regular cardinal, let P be some < κ-distributive forcing notion, and let Q be a κ-cc 
forcing notion. If P forces that Q is κ-cc, then Q forces that P is < κ-distributive.

Proof. Let G ×H be P ×Q-generic over V and consider a sequence �x of ordinals in V [H][G] of some length 
less than κ. We wish to see that �x ∈ V [H]. Since �x ∈ V [H][G] = V [G][H] and Q is κ-cc in V [G], we can 
find a nice Q-name σ for �x in V [G] that can also be coded by a sequence of ordinals of length < κ. Since 
P is < κ-distributive, this name σ is already in V , and so �x must appear in V [H], as desired. �
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The following key observation was already implicit in Cummings’ proof of Theorem 3. It shows that, as 
long as one can arrange the value of 2κ appropriately, the apparently difficult part of the capturing property 
tends to follow for free from the construction.

Lemma 34. Suppose that j : V → M is a (κ, λ)-extender embedding and 2κ ≥ λ. Then j is the ultrapower 
by a normal measure on κ.

Proof. Let i : V → N be the ultrapower by the normal measure derived from j and let k : N → M be the 
factor embedding. Consider some x ∈ M . Since j is a (κ, λ)-extender embedding, we can write x = j(f)(α)
for some α < λ and some function with domain κ. By Lemma 6 the critical point of k is above λ and 
therefore

x = j(f)(α) = k(i(f))(α) = k(i(f)(α)) ,

which shows that k is surjective. On the other hand, k is an elementary embedding, so it is also injective. It 
follows that k is an isomorphism of transitive structures and thus trivial, so we can conclude that j = i. �
3.3. The proof

We are now ready to prove the second main theorem. We restate it here for convenience.

Theorem 35. If κ is (κ + 2)-strong, then there is a forcing extension in which CP(κ, κ+) holds, 2κ = κ++, 
and κ is the least measurable.

This theorem shows that the hypothesis in Proposition 10 is in some sense optimal: if 2κ > κ+ then 
LCP(κ, κ+) is not enough to conclude that the Mitchell rank of κ is large. In fact, even CP(κ, κ+) can hold 
at the least measurable cardinal.

Proof. We make some simplifying assumptions to start with. We may assume that GCH holds and that 
the (κ + 2)-strongness of κ is witnessed by a (κ, κ++)-extender embedding j : V → M . We have the usual 
diagram

V M

N

j

i
k

where i is the induced normal ultrapower map. Using the GCH and Lemma 6, we can see that the critical 
point of k is (κ++)N . Using the argument from [4], we may also assume that, in V , there is an i(Add(κ, κ++))-
generic filter over N .

The following observation will be important, and we include the straightforward proof.

Lemma 36. The map k is a ((κ++)N , κ++)-extender embedding. That is,

M = {k(g)(α);α < κ++,dom(g) = (κ++)N} .

Proof. We assumed that we could write M in the form

M = {j(f)(α);α < κ++,dom(f) = κ} .



14 M.E. Habič, R. Honzík / Annals of Pure and Applied Logic 174 (2023) 103261
Now take an arbitrary element j(f)(α) of M . We can rewrite it as (k(i(f))(α)). If we now take g =
i(f) � (κ++)N , it is not hard to see that j(f)(α) = k(g)(α), showing inclusion in one direction.

For the other direction, take an element of the form k(g)(α). The function g itself is of the form i(F )(κ)
for some function F with domain κ, since N is the ultrapower of V by a normal measure on κ. This 
means we can write k(g)(α) = k(i(F )(κ))(α) = (j(F )(κ))(α), since the critical point of k is above κ. 
Let 〈·, ·〉 : κ++ × κ++ → κ++ be a bijection, and define a function f : κ++ → V by f(ξ) = F (ξ1)(ξ2), 
where ξ = 〈ξ1, ξ2〉 and where the definition only makes sense if F (ξ1) is a function with ξ2 in its domain 
(in other cases we can define f arbitrarily). It is now straightforward to see, using elementarity, that 
j(f)(〈κ, α〉) = (j(F )(κ))(α) = k(g)(α). �

We now specify the forcing we will use. Let Pκ be the Easton support iteration of length κ which forces 
at inaccessible γ < κ with Sγ++ ∗ A(γ, γ++, �X), where �X is some ♣γ++(S)-sequence added by Sγ++ .4 Let 
Gκ be Pκ-generic over V . We can factor j(Pκ) as

j(Pκ) = Pκ ∗ Sκ++ ∗A(κ, κ++, �Y ) ∗ Ptail ,

where �Y is the ♣κ++-sequence used by the forcing at stage κ in M [Gκ] and Ptail is the remainder of the 
forcing between κ and j(κ). The full forcing that will give us our result is then

P = Pκ ∗ Sκ++ ∗ (A(κ, κ++, �Y ) ×C(Ṡ)) .

Let us carefully try to lift the embedding j through this forcing.
First, we can rewrite i(Pκ) as

i(Pκ) = Pκ ∗ (Sκ++ ∗A(κ, κ++, �Y ′))N
Pκ ∗ P ′

tail ,

where �Y ′ and P ′
tail are defined similarly to �Y and Ptail in the case of j(Pκ) above. Since Gκ is generic over 

all of V , it is definitely generic over N and M . The forcing Pκ is below the critical point of the embedding 
k, so we can easily lift it to k : N [Gκ] → M [Gκ]. Moreover, since Pκ is κ-cc, N [Gκ] will be closed under 
κ-sequences in V [Gκ].

We now claim that, in V [Gκ], there is an (Sκ++)N [Gκ]-generic over N [Gκ], and moreover that this generic 
amounts to a nonstationary subset of (κ++)N (which is an ordinal of cofinality κ+ in V ) in V [Gκ]. This 
follows from Lemma 16, which tells us that the iteration Sκ++ ∗ C(Ṡ) is equivalent to Add(κ++, 1). Since 
V [Gκ] has an Add(κ++, 1)N [Gκ]-generic over N [Gκ] (as this forcing is ≤ κ-closed in V [Gκ] and only has 
κ+ many dense subsets from N [Gκ]), we can also extract the generic for SN [Gκ]

κ++ . Furthermore, this generic 
stationary set will be nonstationary in V [Gκ], as witnessed by the generic club added by C(Ṡ).

So let S′ ∈ V [Gκ] be (Sκ++)N [Gκ]-generic over N [Gκ]. This means that S′ is, in N [Gκ][S′], a nonreflecting 
stationary subset of (κ++)N [Gκ]. In particular, none of its proper initial segments are stationary in their 
supremum. This statement is upwards absolute, so V [Gκ] ⊇ N [Gκ][S′] agrees about the nonstationarity 
of the initial segments of S′. But more than this, S′ itself is nonstationary in its supremum (κ++)N , as 
we noted in the previous paragraph. Finally, observe that (κ++)N < κ++; this is because i(κ) > (κ++)N
and i(κ) has size 2κ = κ+ in V , since i is the ultrapower by a normal measure on κ. Together, these facts 
imply that S′ is a condition in the real Sκ++ . Let S be some Sκ++-generic over V [Gκ] containing S′. The 
embedding k lifts again to k : N [Gκ][S′] → M [Gκ][S]; this is because the critical point of k is (κ++)N , which 
means that k[S′] = S′ ⊆ S by the choice of S.

4 It does not matter much how we pick these ♣-sequences. One possible way is to fix in advance a wellordering of some large Hθ

and always pick the least appropriate name.
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Now consider the ♣(κ++)N -sequence �Y ′ used by i(Pκ) at stage κ. Since the critical point of k is (κ++)N , 
the sequence �Y ′ is simply an initial segment of the sequence �Y = k(�Y ′) used by j(Pκ) at stage κ.5 It follows 
that, if we look at the forcing A(κ, κ++, �Y ) in V [Gκ][S], we can write it as a product

A(κ, κ++, �Y ) ∼= A(κ, (κ++)N , �Y ′) ×A(κ, κ++ \ (κ++)N , �Y \ �Y ′) . (1)

There is a slight abuse of notation in the second factor, since the set κ++ \ (κ++)N is not an ordinal. 
Nevertheless, we trust that our meaning is clear. Observe also that, since Sκ++ does not add bounded 
subsets to κ++, we know

A(κ, (κ++)N , �Y ′)V [Gκ][S] = A(κ, (κ++)N , �Y ′)V [Gκ] = A(κ, (κ++)N , �Y ′)N [Gκ][S′] .

Let g′ be A(κ, (κ++)N , �Y ′)-generic over V [Gκ][S]; in particular, it is also generic over N [Gκ][S′]. Since g′

is generic for a forcing that is κ+-cc in V [Gκ], it follows that N [Gκ][S′][g′] is still closed under κ-sequences 
in V [Gκ][g′]. We can conclude from this that P ′

tail is ≺ κ+-strategically closed in V [Gκ][g′]. This is because 
this poset is such in N [Gκ][S′][g′], being an Easton support iteration all of whose iterands are at least 
≺ κ+-strategically closed according to Lemma 19. As we mentioned, the model N [Gκ][S′][g′] is closed under 
κ-sequences in V [Gκ][g′], and therefore the winning strategy in the closure game for P ′

tail of length κ+ in 
N [Gκ][S′][g′] remains winning in the larger model V [Gκ][g′] (since any losing play would be of length shorter 
than κ+ and available in the smaller model). This, together with the fact that P ′

tail has only κ+ many dense 
open subsets from V [Gκ][g′] (and therefore only κ+ many maximal antichains), allows us to build, using 
Fact 28 in V [Gκ][g′], a P ′

tail-generic G′
tail over N [Gκ][S′][g′] and lift the embedding i to

i : V [Gκ] → N [Gκ][S′][g′][G′
tail] .

We can now force over V [Gκ][S], using the factorization (1), to complete g′ to g which is fully 
A(κ, κ++, �Y )-generic over V [Gκ][S]. In the extension V [Gκ][S][g] we can finally also lift the map k through 
the last two stages of forcing and obtain

k : N [Gκ][S′][g′][G′
tail] → M [Gκ][S][g][Gtail] ,

where Gtail is the filter generated by the pointwise image of G′
tail. The lift through g′ is straightforward: the 

critical point of k is (κ++)N , so k[g′] = g′ ⊆ g. On the other hand, the forcing P ′
tail is at least ≤ (κ++)N -

strategically closed in N [Gκ][S′][g′], so Fact 27 together with the knowledge that k is a ((κ++)N , κ++)-
extender embedding show that the pointwise image of G′

tail really does generate a generic filter.
Composing the two lifts of i and k gives us a lift of j. The situation is summarized in the following 

diagram; we should keep in mind that the pictured embeddings exist in V [Gκ][S][g].

V [Gκ] M [Gκ][S][g][Gtail]

N [Gκ][S′][g′][G′
tail]

j

i k

As the final act of forcing, let C be C(S)V [Gκ][S]-generic over V [Gκ][S][g]. We claim that V [Gκ][S][g×C]
is our desired final extension. Recall that Lemma 24 tells us that we can also write this extension as 

5 We could have arranged matters so that �Y was also a ♣κ++ (S)-sequence in V [Gκ][S], but this will not be important for the 
argument.
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V [Gκ][H0 ×H2] for some generic H0 ⊆ Add(κ, κ++)V [Gκ] and H2 ⊆ Add(κ++, 1)V [Gκ]. We will work from 
now on in this final model, using this alternative representation, and try to lift the embedding j.

By Lemma 31 we know that Term(Pκ, Add(κ, κ++)) is forcing equivalent to Add(κ, κ++) in V . It follows 
from this by elementarity that the poset Term(i(Pκ), i(Add(κ, κ++))) is equivalent to i(Add(κ, κ++)) in 
N . Now we return to an assumption we made at the start of the proof. Since V has an i(Add(κ, κ++))-
generic over N , we can use this equivalence to also find a Term(i(Pκ), i(Add(κ, κ++)))-generic over N . Using 
Fact 30, we can combine this term forcing generic with the i(Pκ)-generic Gκ ∗ S′ ∗ g′ ∗ G′

tail to extract an 
i(Add(κ, κ++)V [Gκ])-generic K ′ over N [Gκ][S′][g′][G′

tail] in V [Gκ][g′]. Since the forcing i(Add(κ, κ++)V [Gκ])
is < i(κ)-distributive in N [Gκ][S′][g′][G′

tail], Fact 27 again tells us that the pointwise image k[K ′] generates a 
j(Add(κ, κ++)V [Gκ])-generic filter K̃0 over M [Gκ][S][g][Gtail]. It is not necessarily the case that j[H0] ⊆ K̃0, 
but we can surgically6 alter K̃0 to obtain another j(Add(κ, κ++)V [Gκ])-generic K0 over M [Gκ][S][g][Gtail]
for which this will be the case, and we are able to lift j to

j : V [Gκ][H0] → M [Gκ][S][g][Gtail][K0] .

We can now forget about the maps i and k and focus solely on j. To complete the lift, observe that 
Add(κ++, 1)V [Gκ] remains ≤ κ+-distributive in V [Gκ][H0] by Easton’s lemma, and so Fact 27 implies that 
the filter j[H2] generates a generic K2 over M [Gκ][S][g][Gtail][K0], which gives us our final lift

j : V [Gκ][H0 ×H2] → M [Gκ][S][g][Gtail][K0 ×K2] .

Since j was originally a (κ, κ++)-extender embedding, the same remains true for the lifted embedding, by 
Fact 26. Since we clearly have 2κ = κ++ in the final model, Lemma 34 tells us that the lift j is the ultrapower 
by a normal measure.

Lemma 37. The embedding j witnesses CP(κ, κ+) in V [Gκ][H0][H2].

Proof. Let us write M∗ = M [Gκ][S][g][Gtail][K0][K2]. We need to show that every subset x of κ+ in 
V [Gκ][S][C][g] appears in M∗. To that end, we will first show that x is already in V [Gκ][S][g]. This follows 
from Lemma 33: the forcing to add C is < κ++-distributive in V [Gκ][S], and A(κ, κ++, �Y )V [Gκ][S] is κ+-cc 
(and therefore trivially κ++-cc) in V [Gκ][S][C], since it is equivalent to Add(κ, κ++) in that model, as we 
explained in the proof of Lemma 24. Moreover, because of the distributivity of the forcing to add C, the 
poset A(κ, κ++, �Y )V [Gκ][S] is κ++-cc in the model V [Gκ][S] as well. Lemma 33 then implies that the forcing 
to add C to V [Gκ][S][g] could not have added x, and so x is already in that model.

We next show that x has a name in M [Gκ]. To start with, let σ ∈ V [Gκ][S] be a nice A(κ, κ++, �Y )-name 
for x. Observe that A(κ, κ++, �Y ) is actually a subset of HV [Gκ]

κ++ (even though it is not an element of V [Gκ]), 
so the name σ is as well. Moreover, since A(κ, κ++, �Y ) is κ+-cc, σ has size κ+. But as a κ+-sized subset of 
V [Gκ], the name σ could not have been added by the ≤ κ+-distributive forcing to add S, and we conclude 
that σ ∈ H

V [Gκ]
κ++ . Now, since Pκ is κ-cc and P(P(κ)) ∈ M , we know that HM [Gκ]

κ++ = H
V [Gκ]
κ++ , so the name σ

also appears in M [Gκ].
It follows that we can interpret the name σ by the generic filter g in M [Gκ][S][g] to find the set x in that 

model. Finally, we can conclude that M [Gκ][S][g] contains all the subsets of κ+ from V [Gκ][S][C][g], and 
so M∗ ⊇ M [Gκ][S][g] does as well. �

We have shown that CP(κ, κ+) holds in V [Gκ][H0 ×H2]. To finish the proof we also need to see that κ
is the least measurable cardinal in that model. This follows easily from the way we designed the forcing Pκ. 

6 See [5, Theorem 25.1] or [4, Theorem 1, Second step] for fairly detailed examples of this concrete use of the surgery method.
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If γ < κ were measurable in V [Gκ][H0 ×H2], it must definitely be inaccessible in V . It follows that we did 
some nontrivial forcing at stage γ in the iteration Pκ and Lemma 22 implies that after the stage γ forcing 
γ is not measurable. The remaining forcing to get from that model to the model V [Gκ][H0 ×H2] is at least 
≤ 2γ-strategically closed, which means that it could not have possibly added any measures on γ. We can 
therefore conclude that γ remains nonmeasurable in V [Gκ][H0 ×H2]. �

The iteration we used is essentially the one described in [1, Section 4]. It follows from the results outlined 
there that, had we additionally assumed in Theorem 35 that κ were κ+-supercompact, this would remain 
true in the resulting extension.

Corollary 38. If GCH holds and κ is κ+-supercompact, then there is a forcing extension in which CP(κ, κ+)
holds, and κ is κ+-supercompact and the least measurable.

By starting with a stronger large cardinal hypothesis and modifying the forcing iteration appropriately, 
we can push up the value of 2κ beyond just κ++ and capture even more powersets. In order to state the 
results as simply as possible, we make the following definition to add some convenient stages to the hierarchy 
of strong cardinals.

Definition 39. If X is a set, a cardinal κ is called X-strong if there is an elementary embedding j : V → M

with critical point κ and M a transitive inner model with X ∈ M .

Theorem 40. Assume GCH holds and suppose that κ is Hλ-strong for some regular cardinal λ ≥ κ++ which 
is not the successor of a cardinal of cofinality less than κ. Then there is a forcing extension in which κ is 
the least measurable cardinal, 2κ = λ, and CP(κ, < λ) holds (meaning that a single normal measure on κ
captures every P(μ) for μ < λ).

Note that this is a strict improvement over Theorem 35 (we can pick λ = κ++ in the present theorem 
to recover the previous one). In particular, the value of 2κ = λ is optimal in the presence of CP(κ, < λ), 
since this capturing property implies CP(κ, λ′) for each λ′ < λ, and those in turn imply that 2κ > λ′, as we 
remarked earlier.

Proof. The argument is much like the proof of Theorem 35, with a handful of changes: we will modify the 
forcing used slightly, and, more importantly, instead of preparing the model as in [4], we use a preparation 
due to the second author. The different preparatory forcing also leads to the additional hypothesis on λ
and, even assuming GCH in the ground model, will require some cardinal arithmetic calculations in order 
to be able to apply Lemma 22.

As mentioned, we first use [12, Corollary 2.7] to pass to a forcing extension V ∗ of V in which the following 
hold:

(1) 2κ = κ+ and 2κ+ = λ.
(2) κ is Hλ-strong and this is witnessed by a (κ, λ)-extender embedding j : V ∗ → M ; moreover, M is closed 

under κ-sequences.
(3) There is a function � : κ → κ such that �(γ) > γ++ is regular and not the successor of a cardinal of 

cofinality less than γ for all inaccessible γ < κ, and j(�)(κ) = λ.
(4) There is in V ∗ an M -generic filter for the poset j(Add(κ, λ)).

The hypothesis on the values of �(γ) in (3) will allow us to conclude some cardinal arithmetic facts in 
V ∗, as we will describe momentarily. But first, let us briefly sketch the key parts of the preparatory forcing 
(details can be found in [12, Section 2.2]). First, we force, if necessary, with Woodin’s fast function forcing 
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to add a function � (see [12, Section 2.1]) which satisfies j(�)(κ) = λ for some embedding j witnessing the 
Hλ-strongness of κ. This � may be assumed to have the properties described in the previous paragraph.

The following forcing P 1 is the Easton supported product of a collection of ≤ α-closed forcings Q1
α, where 

α runs through the set M+ = M ∪{κ}, where M ⊆ κ is the set of measurable closure points of the function 
�. Each Q1

α is a lottery sum of forcing notions Q which are very close to being equal to Add(α+, �(α)); 
more precisely, they are equal to iW (Add(α, �(α))), where iW is the ultrapower embedding derived from 
some normal measure W on α (see [12, Section 3.1] for more details on the connection between the Q and 
Cohen forcing at α+). In any case, the forcing notions constituting Q1

α live morally speaking on successors 
of cardinals in M+, so the product-style definition of P 1 is more natural (the Easton support iteration is 
usually indicated when nontrivial forcing is done on a stationary set below κ). Additionally, and equally 
important, the product-style definition allows us to deal first with Q1

κ and only later with the rest of P 1, 
using the mutual genericity of the respective forcing notions. See [12, Lemma 2.3, Lemma 2.4] for more 
details.

Lemma 41. In V ∗, if γ < κ is Mahlo and θ < �(γ) then θ<γ < �(γ).

Proof sketch. It will suffice to show that θγ′
< �(γ) for any Mahlo γ, any θ satisfying γ < θ < �(γ), and any 

inaccessible γ′ < γ. Given such a γ′, we can split up the product P 1 = P 1
<γ′ ×P 1

≥γ′ by grouping coordinates 
with indices less than γ′ separately, and those with indices greater than or equal to γ′ separately. The forcing 
P 1
≥γ′ is ≤ γ′-closed, so it will not affect the value of θγ′ . Let us focus on P 1

<γ′ .
Since γ′ is inaccessible in V ∗, we know that it cannot belong to any interval (α, �(α)], since the forcing 

P 1 forced 2α+ = �(α). In other words, we know that �(β) < γ′ for all β < γ′ in M+. It follows that P 1
<γ′

has size at most γ′. From here, a simple calculation shows that there are at most θγ′ many nice P 1
<γ′ -names 

for functions γ′ → θ. Since GCH holds in V , we get θγ′ = θ if cf(θ) > γ′ and θγ
′ = θ+ if cf(θ) ≤ γ′. This 

means that, in V ∗, there are either θ or θ+ many functions γ′ → θ, depending on the cofinality of θ. Now 
recall that we wish to see that θγ′

< �(γ) in V ∗. We already know that θ < �(γ), so the required inequality 
is immediate in the case that cf(θ) > γ′. In the other case, when cf(θ) ≤ γ′, we recall that we assumed that 
�(γ) was not the successor of a cardinal of cofinality less than γ. Since cf(θ) ≤ γ′ < γ, it cannot be that 
�(γ) is equal to θ+, so θ+ < �(γ), as required. �

A similar argument also shows that if θ < λ then, in V ∗, we have θ<κ < λ for all θ < λ.
The point of these calculations is to conclude that starting from V ∗, we can apply Lemma 22 to succes-

sively destroy the measurability of all cardinals below κ, even without assuming GCH.
Let us now move on from the preparatory forcing. In the interest of simpler notation, we will write just 

V instead of V ∗, and assume that all the properties enumerated above hold in V . The initial iteration 
Pκ will now be an Easton support iteration which forces at inaccessible cardinals γ < κ with the forcing 
S�(γ) ∗A(γ, �(γ), �X), with �X being an appropriate ♣-sequence, provided that γ is inaccessible in V Pγ .

Since Pκ factors at each inaccessible γ < κ into a two-step iteration of a small forcing (definitely of size 
less than κ) and a < γ-strategically closed forcing, we can readily see that κ remains a strong limit cardinal 
after forcing with Pκ. Moreover, since Pκ is κ-cc, κ will remain inaccessible and there will be nontrivial 
forcing at stage κ of the iteration j(Pκ), so we can write

j(Pκ) = Pκ ∗ Sλ ∗A(κ, λ, �Y ) ∗ Ptail .

The full forcing that will give us the theorem is then

P = Pκ ∗ Sλ ∗ (A(κ, λ, �Y ) ×C(Ṡ)) .
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The argument now proceeds very much like the proof of Theorem 35, but with some simplifications due to 
the difference between the preparations from [4] and [12]. We sketch the argument here, referring to the 
previously given proof and noting the main differences.

Let Gκ ∗ S ∗ g be Pκ ∗ Sλ ∗ A(κ, λ, �Y )-generic over V . We wish to lift the embedding j : V → M to 
the extension V [Gκ] in the model V [Gκ][S][g]. Given the factorization of j(Pκ) above, we need to find a 
Ptail-generic over M [Gκ][S][g]. Previously we worked with the embeddings i and k, but now we will be able 
to do without.7

Consider any dense open subset D of Ptail in M [Gκ][S][g]. Since j was a (κ, λ)-extender embedding, this 
D has the form D = j(f)(α)Gκ∗S∗g for some f : κ → Vκ and some α < λ. For each fixed f like this, the 
set {j(f)(α)Gκ∗S∗g; α < λ} is an element of M [Gκ][S][g], since j(f) ∈ M [Gκ][S][g] and this model can 
evaluate this function and the resulting names and collect them together. Let Df be the subset of those 
elements of the form j(f)(α)Gκ∗S∗g that are dense open subsets of Ptail. Then Df is also an element of 
M [Gκ][S][g], since Ptail ∈ M [Gκ][S][g]. The set Df has size (at most) λ in M [Gκ][S][g]. Since the first stage 
of forcing in Ptail occurs beyond λ, the forcing Ptail is ≤ λ-strategically closed in M [Gκ][S][g]. This means 
that 

⋂
Df ∈ M [Gκ][S][g] is a dense open subset of Ptail, and is also a subset of D.

Finally, observe that there are 2κ = κ+ many functions f (counted in V ), and therefore only κ+ many 
dense sets 

⋂
Df . Since the forcing Pκ ∗ Sλ ∗ A(κ, λ, �Y ) is composed of a κ+-cc part, a < λ-distributive 

part, and another κ+-cc part, applying Fact 29 twice allows us to conclude that M [Gκ][S][g] is closed under 
κ-sequences in V [Gκ][S][g]. It follows that Ptail remains ≺ κ+-strategically closed in V [Gκ][S][g], which will 
allow us to line up and meet all the dense sets 

⋂
Df in turn, and so build a generic Gtail for Ptail. This 

allows us to lift the embedding j to

j : V [Gκ] → M [Gκ][S][g][Gtail]

in V [Gκ][S][g].
For the final step of the lift, we use Lemma 24 to see P as the iteration Pκ∗(Add(κ, λ) ×Add(λ, 1)). The lift 

through the forcing Add(κ, λ) proceeds as in the proof of Theorem 35, except that we deal directly with the 
embedding j instead of passing through i and k as before. We apply Lemma 31 to j(Term(Pκ, Add(κ, λ))) in 
M and use our starting assumption that we have an M -generic for that poset in V ; a surgery argument like 
the one we alluded to before allows us to build a suitable j(Add(κ, λ))-generic K0 over M [Gκ][S][g][Gtail]
and lift j to

j : V [Gκ][H0] → M [Gκ][S][g][Gtail][K0] .

The lift through the final forcing Add(λ, 1)V [Gκ] is handled exactly as in the proof of Theorem 35.
It remains for us to see that this lifted embedding witnesses CP(κ, < λ) in the final model and that κ is 

the least measurable cardinal there.
We need to show that every bounded subset x of λ in V [Gκ][S][g][C] appears in the target model of the 

lifted embedding j. This works almost exactly as in Lemma 37. We first use Lemma 33 to show that x is 
already in V [Gκ][S][g]. Then we argue that x has a name in M [Gκ]. This is because we can find a nice 
A(κ, λ, �Y )-name σ for x in V [Gκ][S], of size less than λ, that is a subset of HV [Gκ]

λ . Since the forcing to add 

S is < λ-distributive, this name could not have been added by it, so σ ∈ H
V [Gκ]
λ . But since Pκ is κ-cc and 

HV
λ = HM

λ (as j witnesses the Hλ-strongness of κ), it follows that HV [Gκ]
λ = H

M [Gκ]
λ . As in the previous 

proof, this means that we can interpret σ in M [Gκ][S][g] to find x in that model, as well as in the target 
model of j. So the lifted embedding j really does witness CP(κ, < λ).

7 In fact, we could have employed the methods of [12] even in the previous theorem, but we decided to give more details for the 
specific case 2κ = κ++.
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To see that κ is the least measurable cardinal in the final model, we simply inspect our construction of the 
forcing Pκ. If γ < κ were measurable in the final model, it must necessarily be Mahlo in the intermediate 
extension V [Gγ ], and so some nontrivial forcing must have occurred in the next step. It follows from 
Lemma 41 that, over this model, the next step of forcing with A(γ, �(γ), �X) destroyed the measurability of 
γ, and the remainder of the forcing possesses too much closure to ever recover this measurability. �

Conversely, we can extend Cummings’ argument to show that the large cardinal hypothesis we used 
above is optimal.

Theorem 42. Suppose that CP(κ, < λ) holds for some regular cardinal λ ≥ κ++. Then κ is Hλ-strong in an 
inner model. Moreover, this inner model satisfies GCH, and so κ is (κ + α)-strong there, where λ = κ+α.

Proof. This is essentially standard. Suppose that j : V → M is an ultrapower embedding by a normal 
measure witnessing CP(κ, < λ); it follows that Hλ ∈ M .8 We assume that there is no inner model with a 
strong cardinal and let K be the core model with the (nonoverlapping) extender sequence �E. It follows that 
j �K is the result of a normal iteration of �E and, since the critical point of j is κ, the first extender applied 
in this iteration must have index (κ, η) for some η. Since �E is coherent, the sequence j( �E) has no extenders 
with indices (κ, β) for β ≥ η. But since M captured all of Hλ, we must have K � λ = KM � λ, and so �E and 
j( �E) must agree up to λ. It follows that η ≥ λ and so o(κ) ≥ λ + 1 (and κ is Hλ-strong) in K.

Since K satisfies GCH, V K
κ+α is a transitive set of size κ+α = λ there. It follows that the transitive 

closure of each element of V K
κ+α has size strictly less than λ, so these elements appear in the codomain of 

the embedding witnessing the Hλ-strongness of κ in K. �
The preparation from [12] works even for singular λ of cofinality strictly above κ (if the cofinality of λ is 

equal to κ+, we get 2κ+ = λ+ in (1) above). It is unclear, however, whether Theorem 40 can allow for this 
weaker hypothesis (in particular, Lemma 24 seems to rely crucially on the second parameter in the forcing 
A being regular).

Question 43. Can Theorem 40 be improved to allow for arbitrary λ of cofinality strictly above κ?

Another question raised by Theorem 40 is whether CP(κ, λ) can fail for the first time at some κ+ < λ <
2κ. The following theorem shows that the answer is yes.

Theorem 44. Suppose that there is no inner model with a strong cardinal and let V = K be the core model. 
Suppose that κ is Hκ+3-strong. Then there is a forcing extension in which κ is the least measurable cardinal, 
2κ = κ+3, and CP(κ, κ+) holds while LCP(κ, κ++) fails.

Proof. We will use the same forcing as in the proof of Theorem 40, letting λ = κ+3 (note that the core 
model satisfies GCH, so the hypotheses of that theorem are satisfied). That is, we shall force with

R = P 1 ∗ Pκ ∗ Sκ+3 ∗ (A(κ, κ+3, �Y ) ×C(Ṡ)) ,

using the notation from the proof of Theorem 40. We already know that after forcing with this R we obtain 
2κ = κ+3 and CP(κ, κ++), while κ becomes the least measurable cardinal. To obtain the desired extension, 
we shall force with R × Add(κ++, 1)V .

Lemma 45. The forcing Add(κ++, 1)V remains ≤ κ+-distributive in V R.

8 Recall that CP(κ, < λ) implies 2κ ≥ λ, so Hλ being in M is weaker than Vκ+α being in M , where λ = κ+α. In particular, κ
might not be (κ + α)-strong in V .
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Proof. This is essentially a version of Easton’s lemma. Let us write R′ = P 1 ∗ Pκ. We can rewrite R as

R′ ∗ (Add(κ, κ+3) × Add(κ+3, 1)) ,

using Lemma 24. It follows from [12, Lemma 2.3] that R′∗Add(κ, κ+3) is κ++-cc, and, of course, Add(κ+3, 1)
is ≤ κ++-closed in V R′ .

Now let ḟ be an R ×Add(κ++, 1)V -name for a κ+-sequence of ordinals. For an ordinal α < κ+, a condition 

s ∈ Add(κ++, 1)V , and an R′-name q̇ for a condition in Add(κ+3, 1)V R′
, say that the pair (q̇, s) is α-good

if there is a maximal antichain of conditions (r, ṗ) ∈ R′ ∗Add(κ, κ+3) such that (r, ṗ, q̇, s) decides the value 
of ḟ(α). We will see that any condition in R × Add(κ++, 1)V can be strengthened to one whose latter two 
coordinates are α-good for all α < κ+.

Pick q̇ and s as above and consider the set of all (r, ṗ) such that (r, ṗ, q̇, s) decides ḟ(0). This is an open 
set of conditions, so we may pick a maximal antichain W 0

0 from this set, and it will remain an antichain as 
a subset of R′ ∗Add(κ, κ+3). If W 0

0 is already a maximal antichain in R′ ∗Add(κ, κ+3), then (q̇, s) is 0-good. 
Otherwise we can find some (r0, ṗ0) which is incompatible with every condition in W 0

0 . We can also find 
some (r1, ṗ1, q̇′, s1) ≤ (r0, ṗ0, q̇, s) which decides ḟ(0). Using a mixing argument, let q̇1 be an R′-name such 
that R′ � q̇1 ≤ q̇ and r1 � q̇1 = q̇′. Now consider the set of all (r, ṗ) such that (r, ṗ, q̇1, s1) decides ḟ(0). 
This set includes W 0

0 as well as (r1, ṗ1), so we may again pick a maximal antichain W 0
1 ⊃ W 0

0 from it. If 
W 0

1 turns out to be maximal in R′ ∗ Add(κ, κ+3), then (q̇1, s1) is 0-good, and otherwise we can keep going.
We continue recursively, constructing larger and larger antichains W 0

η . At limit stages we take unions of 
the previously constructed antichains and use the ≤ κ+-closure of Add(κ++, 1)V and the (forced) ≤ κ++-
closure of Add(κ+3, 1)V R′

to find lower bounds for the sequences of conditions sη and q̇η. The closure suffices 
to continue this construction for all η < κ++ (although notice that the degree of closure in the s component 
is too low to find a putative lower bound sκ++). However, the construction must in fact stop at some stage 
before κ++, otherwise the union W 0 =

⋃
η<κ++ W 0

η would be an antichain in R′ ∗ Add(κ, κ+3) of size κ++, 
contradicting the chain condition of that poset. Once the construction stabilizes, we’ve reached a 0-good 
pair (q̇η, sη), as witnessed by the maximal antichain W 0

η . Notice that sη ≤ s and �R′ q̇η ≤ q̇.
Repeating the same argument for all α < κ+, we see that, starting with any q̇ and s, we can find 

�R′ q̇′ ≤ q̇ and s′ ≤ s such that (q̇′, s′) is α-good. Since any pair stronger than an α-good pair is itself 
α-good, we can use closure in both coordinates one last time to find, below any (q̇, s), a pair which is α-good 
for all α < κ+.

Finally, let G ×H ⊆ R × Add(κ++, 1)V be generic. By the density property just described, we can find 
a condition (r, ṗ, q̇, s) ∈ G ×H whose latter two coordinates are α-good for all α < κ+. But given such a 
condition, we can find f(α) by consulting where the generic G (or even G � R′ ∗ Add(κ, κ+3)) meets the 
maximal antichain witnessing the α-goodness of (q̇, s). Therefore we can find f ∈ V [G], which is what we 
needed to show. �

The poset Add(κ++, 1)V has size κ++ in V (since we have GCH), so it remains κ+3-cc in the extension 
by R. Since Lemma 45 shows that this poset is also ≤ κ+-distributive in the extension by R, it follows that 
cardinals are preserved to the final extension by R ×Add(κ++, 1)V and that κ remains the least measurable 
cardinal. Moreover, the ultrapower embedding witnessing CP(κ, κ++) lifts to the extension by Fact 27 and, 
since the extension by Add(κ++, 1)V does not add any subsets of κ+, the lifted embedding still witnesses 
CP(κ, κ+).

Lemma 46. LCP(κ, κ++) fails in the final extension.

Proof. Recall that we are forcing over V = K using the poset
(
P 1 ∗ Pκ ∗ Sκ+3 ∗ (A(κ, κ+3, �Y ) ×C(Ṡ))

)
× Add(κ++, 1)V ,
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which we can rewrite in the form
(
P 1 ∗ Pκ ∗ (Add(κ, κ+3) × Add(κ+3, 1))

)
× Add(κ++, 1)V .

Let (G1 ∗Gκ ∗ (H0 ×H3)) ×H2 be generic over V for this poset. Now suppose that LCP(κ, κ++) holds in 
the final extension V [(G1 ∗Gκ ∗ (H0 ×H3)) ×H2]. This means that there is a normal ultrapower

j∗ : V [G1][Gκ][H0 ×H3 ×H2] → M∗[g1][G∗][H∗]

on κ which captures both H2 ⊆ κ++ and P(κ+)V (which can be coded as a subset of κ++, since GCH holds 
in V ). Above, we intended g1 to be j∗(P 1)-generic over M∗, G∗ to be j∗(Pκ)-generic over M∗[g1], and H∗

to be generic over M∗[g1][G∗] for the remaining Cohen forcing. Since no cardinals were collapsed between 
V and the final extension and we insisted that P(κ+)V ∈ M∗[g1][G∗][H∗], we can conclude that this model 
computes κ++ correctly.

Since j∗ is an elementary embedding of a generic extension of the core model, its restriction to j∗ : V →
M∗ is an iteration of the core model itself, and therefore M∗ = V ∩M∗[g1][G∗][H∗] is an inner model of 
V .9 This implies that P(κ+)V ∈ M∗ (since we explicitly put this powerset into M∗[g1][G∗][H∗]) and also 
that GCH holds in M∗.

Consider the forcing j∗(P 1) = P 1 � κ × P 1∗
κ × P 1∗

tail, where P 1∗
κ is the factor of j∗(P 1) indexed at κ. 

Note that P 1 � κ really is an initial segment of j∗(P 1), since we necessarily have p = j∗(p) ∈ j∗(P 1) for 
p ∈ P 1 �κ. The forcing P 1 �κ has size κ, and it follows from the precise description of Q1

α in [12, Section 2.2]
and Lemma 32 that P 1∗

κ is equivalent, over M∗, to Add(κ+, κ+3)M∗ . Since M∗ satisfies GCH, this poset is 
κ++-Knaster in M∗. As the product of two κ++-Knaster posets, P 1 � κ × P 1∗

κ is itself κ++-Knaster in M∗, 
which implies that its square is κ++-cc in M∗.

Unger [16, Lemma 2.4] showed that any poset whose square was λ-cc for some regular λ has the λ-
approximation property, which states that any set of ordinals in the extension, all of whose subsets of size 
less than λ are in the ground model, must itself be in the ground model. As a special case, such forcings 
cannot add fresh subsets of λ (recall that a set of ordinals is fresh over a model if it is not in that model but 
all of its initial segments are). Applying this to our situation, we can see that forcing over M∗ by P 1 �κ ×P 1∗

κ

does not add any new fresh subsets of κ++. Of course, H2 is a fresh subset of κ++ over V , and since V and 
M∗ have the same bounded subsets of κ++, it is also fresh over M∗. Therefore H2 is not added to M∗ by 
P 1 � κ × P 1∗

κ . Moreover, the tail forcing P 1∗
tail is ≤ κ++-closed over M∗ by [12, Lemma 2.3], and therefore 

does not add any subsets of κ++ to the extension of M∗ by P 1 � κ × P 1∗
κ by Easton’s lemma. Hence, H2

does not appear in M∗[g1].
Now let us write G∗ = Gκ∗(S∗∗g∗∗G∗

tail), where S∗ is generic for Sκ+3 , and g∗ is generic for A(κ, κ+3, �Y ). 
As was the case above, Gκ really is an initial segment of G∗, for the same reason. The forcing Gκ has size 
κ and therefore cannot add H2 to M∗[g1] by another application of Unger’s result. On the other hand, the 
forcing to add S∗ is ≤ κ++-distributive and therefore also cannot add H2.

Note that M∗[g1] satisfied 2κ = κ+ and 2κ+ = κ+3 by [12, Corollary 2.7]. This remains true after adding 
Gκ ∗ S∗ as well, and Corollary 18 tells us that the forcing A(κ, κ+3, �Y ) is κ++-Knaster, which implies that 
its square is κ++-cc. Applying Unger’s result yet again, we see that H2 does not appear in M∗[g1][S∗ ∗ g∗]. 
On the other hand, the tail forcing adding G∗

tail is ≤ κ++-closed, and also does not add H2.
Finally, observe that the forcing to add H∗ is at least < j∗(κ)-distributive, so it definitely cannot add 

H2 to M∗[g1][G∗]. But this contradicts our original assumption that H2 ∈ M∗[g1][G∗][H∗]. �

To summarize, we’ve obtained a forcing extension of V in which κ is the least measurable cardinal, 
CP(κ, κ+) holds, but LCP(κ, κ++) fails, as required. �
9 This is the only place we use the fact that we started this construction in the core model.
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One would expect that it should be possible to force 2κ = κ+3 and CP(κ, κ+) starting from a large 
cardinal hypothesis weaker than an Hκ+3-strong cardinal κ; an Hκ+2-strong and κ+3-tall cardinal κ likely 
suffices (recall that κ is λ-tall if there is an elementary embedding j : V → M with critical point κ such 
that M is closed under κ-sequences and j(κ) > λ; see [11]).

Question 47. What is the consistency strength of CP(κ, κ+) and 2κ = κ+3 holding at the least measurable 
cardinal κ but LCP(κ, κ++) failing?

It is also unclear whether the anti-large cardinal hypothesis and use of the core model are crucial for 
the above result. The only use of that hypothesis comes when we wish to understand the nature of generic 
embeddings of the ground model. It is plausible that one could use Hamkins’ results on elementary embed-
dings in generic extensions with the approximation and cover properties (see [10]) to prove a more general 
result, but those theorems do not interact well with the product nature of our preparation P 1. One poten-
tial approach would be to mimic the proof of Theorem 35 but to weave more complicated forcing into the 
preparation.

Question 48. Can one obtain a model as in Theorem 44 without starting from the core model?

At the end of the paper, let us give another example of the power of Lemma 34 in showing that CP(κ, κ+)
holds in known forcing extensions. As we have seen, CP(κ, κ+) does not have any implications for the outright 
size of κ, since it may consistently hold at the least measurable cardinal κ. But one might try to measure 
its effects slightly differently. While the capturing property says that there is a normal measure on κ which 
is quite “fat”, in the sense that it captures all subsets of κ+, perhaps κ must inevitably also carry some, 
or many, “thin” measures which do not capture much at all. In other words, perhaps CP(κ, κ+) has some 
implications about the number of normal measures on κ. A combination of Lemma 34 and a theorem of 
Friedman and Magidor will show us that this is not the case.

Theorem 49. If V is the minimal extender model with a (κ +2)-strong cardinal κ and λ ≤ κ++ is a cardinal, 
then there is a forcing extension in which κ carries exactly λ many normal measures and each of them 
witnesses CP(κ, κ+). In particular, it is consistent that κ has a unique normal measure and CP(κ, κ+)
holds.

Proof. The hard part of the proof was done by Friedman and Magidor [6, Theorem 19], who showed that, 
starting from a model V as in the hypothesis of this theorem, there is a forcing extension V [G] satisfying 
2κ = κ++ in which κ carries exactly λ many normal measures. They also show that each of these normal 
measures is derived from a lift of the ground model extender embedding j : V → M witnessing the (κ + 2)-
strongness of κ. However, Lemma 34 implies that these lifts are themselves already ultrapowers by a normal 
measure on κ. Finally, an analysis of their proof shows that the forcing used to obtain the model V [G] can 
be written as P ∗ Q̇ where P ⊆ Hκ++ is a κ++-cc poset which is regularly embedded in j(P ), and Q̇ is 
forced to be ≤ κ+-distributive. It follows that every subset of κ+ in V [G] has a nice name in HV

κ++ ∈ M

and therefore appears in M [j(G)]. �
It is unclear whether one can obtain similar results at the least measurable cardinal κ. It seems likely 

that, to do so, it would be necessary to adapt the forcing A to incorporate the Sacks forcing machinery that 
Friedman and Magidor used in their arguments.
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Question 50. Is it consistent that the least measurable cardinal κ carries a unique normal measure and 
CP(κ, κ+) holds?10
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