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Abstract. Starting from a Laver-indestructible supercompact κ and a weakly
compact λ above κ, we show there is a forcing extension where κ is a strong
limit singular cardinal with cofinality ω, 2κ = κ+3 = λ+, and the tree property
holds at κ++ = λ. Next we generalize this result to an arbitrary cardinal µ
such that κ < cf(µ) and λ+ ≤ µ. This result provides more information about
possible relationships between the tree property and the continuum function.
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1 Introduction

In [2], Cummings and Foreman showed that starting from a Laver-indestructible supercom-
pact cardinal κ and a weakly compact λ > κ, one can construct a generic extension where
2κ = λ = κ++, κ is a singular strong limit cardinal with cofinality ω, and the tree property
holds at κ++. It is natural to try to generalize this result in at least two directions.

First, one can ask whether – in addition to the properties identified in the previous para-
graph – κ can equal ℵω. Cummings and Foreman suggested in [2] that this is possible, but
did not provide any details. A model with the tree property at ℵω+2, with ℵω strong limit,
was first constructed by Friedman and Halilović in [3], moreover from a significantly lower
large cardinal assumption of hypermeasurability.1 Shortly afterwards, Gitik, answering a
question posed in [3], showed in [6] that the same result can be proved from a weaker and
optimal assumption.

Second, one can ask whether it is possible to have 2κ greater than κ++ with the tree
property at κ++. Using a variant of the Mitchell forcing, Friedman and Halilović [4] proved
that starting from a sufficiently hypermeasurable κ, one can keep the measurability of κ
together with 2κ > κ++ and the tree property at κ++.

1The technique of proof in [3] used the Sacks forcing to obtain the tree property, unlike the proof in [2]
which is based on a Mitchell-style analysis.
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In this paper, we generalize [2] in the second direction. In Theorem 3.1, we prove that
starting from a Laver-indestructible supercompact κ and a weakly compact λ above, one
can find a forcing extension where κ is a strong limit singular cardinal with cofinality ω,
2κ = κ+3 = λ+, and the tree property holds at κ++. In Theorem 4.1 we give an outline of
a generalization in which the gap (κ, 2κ) can be arbitrarily large: 2κ = µ for any cardinal
µ > λ with cofinality greater than κ. The method of the proof is in general based on the
argument of Cummings and Foreman [2], with the final part of the argument following
Unger’s presentation in [10].2

The basic idea of our proof is as follows: Recall that the basic Mitchell forcing for obtaining
2κ = κ++ = λ with the tree property at λ, as presented for instance in Abraham [1], can
be viewed as being composed of two components: of the Cohen forcing for adding λ-many
subsets of κ (we denote this forcing by Add(κ, λ)), and of the collapsing component which
ensures 2κ = κ++ = λ in the final extension. It is important that the collapsing component
at stage α < λ depends on the first α-many subsets of κ added by the Cohen forcing, i.e. on
Add(κ, α). Cummings and Foreman generalized this idea by making the first component of
the Mitchell forcing more complex: they made the collapsing part at stage α < λ depend
not only on Add(κ, α), but on Add(κ, α) followed by the Prikry forcing on κ defined with
respect to a certain normal measure Uα existing in the generic extension by Add(κ, α). To
make this definition coherent, these Uα’s are obtained uniformly from a single measure U
which exists in the extension of V by Add(κ, λ). Importantly, they still retain the same
length of the first component (now a Cohen forcing followed by a Prikry forcing) and the
collapsing component (they both have length λ).

In our case, we would like to add µ-many subsets of κ, with the final measure U living
in the extension by Add(κ, µ), where µ is typically much larger than λ. This introduces
a mismatch between the length of the first and second component of the Mitchell forcing
(our collapsing component needs to have the same length as before, i.e. λ). We solve this
problem by reflecting U more carefully and in several stages. To simplify the exposition,
we first provide the argument for the special case of µ = λ+ (Theorem 3.1), and articulate
the modifications for the general case only later (Theorem 4.1).

The argument in Theorem 3.1 (and implicitly also the argument in Theorem 4.1) is divided
into two stages. In the first stage, Section 3.1, we fix some β0, λ < β0 < λ+ (Theorem 3.1),
or in general some y0 ∈ [µ]λ, λ + 1 ⊆ y0 (Theorem 4.1), which reflects the measure U on
a set of size λ, and we also fix the associated bijection π between β0 (or y0) and the even
ordinals below λ.3 These fixed objects are used to define the main forcing R while ensuring
that the measure U – or more precisely its π-image – becomes a normal measure in the
extension of V by the Cohen forcing defined on cofinally many even coordinates below λ.4

The definition of the collapsing component of R uses only the even ordinals below λ for the
reason of reserving some free space for conditions in the forcing Add(κ, µ) which do not
have a role in the collapsing component of R, but need to be mapped onto the odd ordinals

2 There seems to be a problem with Lemma 7.1 in [2] which states that a certain forcing is κ+-Knaster,
but without a convincing proof. Unger in [10] proved a version of Lemma 7.1, weakening κ+-Knasterness
to “κ+-square-cc”, which is still sufficient to conclude the whole proof. See Lemmas 3.22 and 3.28 in the
present paper which follow Unger’s presentation.

3β0 is fixed in (3.11) and y0 in item (2) of the proof of Theorem 4.1.
4Definition 3.9 for Theorem 3.1 and item (4) for Theorem 4.1.

2



THE TREE PROPERTY WITH A LARGER GAP

below λ by the following argument: Assuming for contradiction that R adds a λ-Aronszajn
tree Ṫ , we choose some β∗ (which again reflects U), β0 < β∗ < λ+, or in general y∗ ∈ [µ]λ,
y0 ( y∗, which is large enough to contain all coordinates in Add(κ, µ) which appear in Ṫ .5

We argue that R naturally restricts to β∗, or y∗, and moreover is isomorphic to a forcing
with domain λ, which we denote R∗, so that the original argument of [2] can be invoked
with this R∗.6

The argument concludes in the second stage (Section 3.2) – which is identical both for the
Theorem 3.1 and Theorem 4.1 – by showing that R∗ cannot add a λ-Aronszajn tree, which
yields the final contradiction. The argument is very similar to [2], with the key ingredient
in this part being Lemma 3.28 which shows that a certain forcing cannot add a branch to a
λ-tree on account of its being “κ+-square-cc”. At this point we follow the presentation of
Unger, stated in [10], diverging from [2] which claims that the relevant forcing is κ+-Knaster
(see Footnote 2 for more details).

2 Preliminaries

We review some useful results regarding projections of partial orders and their Boolean
completions. Let us recall that a projection π between a partial order (P,≤P) and (Q,≤Q)
is an order-preserving function from P into Q such that π(1P) = 1Q, and for all p ∈ P and
all q ≤Q π(p) there is p̄ ≤P p such that π(p̄) ≤Q q. Note that the condition π(1P) = 1Q
ensures that the range of π is dense in Q, and is sometimes omitted from the definition of
a projection. It is a standard fact (see for instance [9]) that if π : P → Q is a projection,
then P is forcing equivalent to an iteration Q ∗ P/Q for a quotient forcing which we denote
P/Q.

Recall that if P is a separative partial order, we can identify P with a dense suborder of the
canonical Boolean completion of P without least element, denoted by RO+(P).

Lemma 2.1 Let P and Q be two separative partial orders. Assume that for every P-generic
filter G over V , there is in V [G] a Q-generic filter F over V . Let Ḟ be a P-name such that
P 
 (Ḟ is a Q-generic filter). Then the following hold:

(i) Define π : P→ RO+(Q) by

(2.1) π(p) =
∧
{b ∈ RO+(Q) | p 
 b ∈ Ḟ}.

Set bP = π(1) =
∧
{b ∈ RO+(Q) | 1 
 b ∈ Ḟ}. Let RO+(Q)|bP denote the partial order

{b ∈ RO+(Q) | b ≤ bP}. Then

(2.2) π : P→ RO+(Q)|bP is a projection

and the range of π is dense in RO+(Q)|bP.

5β∗ introduced below Lemma 3.13, and y∗ is fixed in item (5).
6This is the import of Lemma 3.17 for Theorem 3.1, and of item (5) for Theorem 4.1. See Definition

3.16 for the definition of R∗ in Theorem 3.1 and item (5) for Theorem 4.1. The isomorphism is induced by
a bijection π∗ between β∗ (or y∗) extending the original bijection π fixed at the beginning which sends the
ordinals in β∗ \ β0 (or y∗ \ y0) onto the odd ordinals below λ.
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(ii) Suppose π is as in (i), π(1) = 1 and all q1, q2 in Q have their supremum in Q (i.e.
the supremum of q1 and q2 in RO+(Q) is an element of Q). Then π can be defined
just using −Q = {−q | q ∈ Q}, where −q is the Boolean complement of q in RO+(Q):

(2.3) π(p) =
∧
{−q | q ∈ Q & p 
 −q ∈ Ḟ} =

∧
{−q | q ∈ Q & p 
 q 6∈ Ḟ}.

Proof. (i). We first show (2.2). The preservation of the ordering is easy. We check the
density condition, i.e. for every p ∈ P and every c ≤ π(p), there is p′ ≤ p such that π(p′) ≤ c.
Let p and c be given. If c = π(p), we are trivially done. So suppose c < π(p). If for every
p′ ≤ p, p′ 6
 c ∈ Ḟ , then p 
 π(p) − c ∈ Ḟ , which contradicts the fact that π(p) is the
infimum of {b ∈ RO+(Q) | p 
 b ∈ Ḟ}. It follows that there is some p′ ≤ p, p′ 
 c ∈ Ḟ .
Then π(p′) ≤ c as required.

We now show that the range of π is dense. Suppose for contradiction there is b ≤ bP such
that the range of π is disjoint from {b′ ∈ RO+(Q)|bP | b′ ≤ b}. Then bP − b is forced by 1 to
be in Ḟ , a contradiction because bP − b < bP.

(ii). Let p be fixed and let ap denote
∧
{−q | q ∈ Q & p 
 −q ∈ Ḟ}. We wish to show that

π(p) as in (2.1) is equal to ap. Clearly π(p) ≤ ap. Suppose for contradiction π(p) < ap and
set b = ap − π(p). By density, there is qb ∈ Q such that qb ≤ b; in particular

(2.4) ap − qb < ap.

Since ap − qb ≥ π(p) and p 
 π(p) ∈ Ḟ , we have

(2.5) p 
 ap − qb ∈ Ḟ .

Now,

(2.6) ap − qb = ap ∧ −qb =
∧
{−q ∧ −qb | q ∈ Q & p 
 −q ∈ Ḟ}.

By (2.5), p 
 −q∧−qb = −(q∨ qb) ∈ Ḟ , and hence −(q∨ qb) is an element of {−q | q ∈ Q &
p 
 −q ∈ Ḟ} whenever p forces −q ∈ Ḟ . It follows ap− qb = ap, contradicting (2.4), and so
π(p) = ap as desired.

Note that if the supremum of q1, q2 is not in general in Q, then the proof still provides a
simplification of the definition of π(p):

(2.7) π(p) = ∧
{−b | (∃n ∈ ω)(∃q1, . . . , qn ∈ Q)(b = q1 ∨ . . . ∨ qn & p 
 −b ∈ Ḟ )}.

�

It would be tempting to try and prove that π(p) is equivalent to

(2.8)
∧
{q ∈ Q | p 
 q ∈ Ḟ},

and not the rather unintuitive (2.3) or (2.7).7 However, (2.8) does not work in general.

7Perhaps some intuition is salvaged by considering that if p 
 q ∈ Ḟ , q ∈ Q, and q′ ∈ Q is incompatible
with q, then p 
 −q′ ∈ Ḟ by the upwards closure of Ḟ . Thus using density, q is captured as the infimum of
all complements of q′ which are incompatible with q: q =

∧
{−q′ | q′ ∈ Q & q′ ⊥ q}.
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The following folklore results will be used tacitly later on when we deal with projections on
Boolean completions:

Lemma 2.2 Assume P and Q are separative partial orders and π : P → RO+(Q) is a
projection.

(i) If P′ is dense in P, then π|P′ : P′ → RO+(Q) is a projection.
(ii) (a) If P is dense in P′, then there is π′ ⊇ π such that π′ : P′ → RO+(Q) is a projection.

(b) Assume P′ is forcing equivalent with P. Then there is a projection π′ : P′ →
RO+(Q).

(iii) Let R be a P-name for a forcing notion. Then π naturally extends to a projection
π′ : P ∗ R→ RO+(Q).

Proof. (i). Obvious.

(ii)(a). For p′ ∈ P′ define

π′(p′) =
∨
{π(p) | p ≤ p′}.

By density of P in P′, {π(p) | p ≤ p′} is non-empty for every p′ and therefore π′(p′) is in
RO+(Q) . If p′ ≤ q′ in P′, then clearly π′(p′) ≤ π′(q′). Suppose p′ ∈ P′ is arbitrary and
b ≤ π′(p′). By the definition of π′(p′), there is b′ ≤ b such that for some p ≤ p′, p ∈ P,
b′ ≤ π(p). It follows there is some q ≤ p ≤ p′, q ∈ P, such that π(q) = π′(q) ≤ b′ ≤ b as
desired.

(ii)(b). As P is dense in RO+(P), by the previous item there is a projection π∗ from RO+(P)
to RO+(Q). Since P′ is forcing equivalent with P, P′ is dense in RO+(P), and π′ = π∗|P′ is
a projection from P′ to RO+(Q) by (i).

(iii). Define

(2.9) π′(p, r) = π(p),

for every (p, r) in P ∗R. If (p1, r1) ≤ (p2, r2), then in particular p1 ≤ p2, and so π′(p1, r1) ≤
π′(p2, r2) because π is order-preserving. If (p, r) is arbitrary and b ≤ π′(p, r) = π(p), then
since π is a projection, there is p′ ≤ p such that π(p′) ≤ b. Since (p′, r) ≤ (p, r), π′(p′, r) ≤ b
is as required. �

3 Gap three

Let µ be a regular cardinal. We write TP(µ) to say that µ satisfies the tree property. If P
is a forcing notion, we write V [P] to denote an arbitrary generic extension by the forcing P.
We say that a supercompact cardinal κ is Laver-indestructible if it remains supercompact
in any forcing extension by a forcing which is κ-directed closed (where P is κ-directed closed
if for every D ⊆ P of size less than κ, if for all p1, p2 in D there is e ∈ D such that e ≤ p1

and e ≤ p2, then there is p ∈ P, with p ≤ d for all d ∈ D).

Theorem 3.1 Assume GCH and let κ be a Laver-indestructible supercompact cardinal and
κ < λ, λ weakly compact. Then there is a forcing notion R such that the following hold:

5
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(i) R preserves cardinals ≤ κ+ and ≥ λ.
(ii) V [R] |= (κ++ = λ & 2κ = λ+ & cf(κ) = ω & κ is strong limit).

(iii) V [R] |= TP(λ).

The proof will be given in a sequence of lemmas, and is divided into two stages. Stage 1
defines R, verifies some basic properties for (i) and (ii) of Theorem 3.1 and shows that if R
adds an Aronszajn tree on λ, then already a regular subforcing, which we denote R∗, adds
an Aronszajn tree on λ. The forcing R∗ is designed to be very similar to the forcing used in
[2]. In stage 2, we show that indeed R∗ allows a very similar analysis to [2] (with correction
according to [10]), and therefore cannot add an Aronszajn tree on λ, which finishes the
proof.

3.1 Stage 1

Definition 3.2 Let P denote the Cohen forcing Add(κ, λ+) and for α < λ+, let P|α denote
Add(κ, α). For concreteness, we identify conditions in P with partial functions from λ+×κ
to 2 with domain of size < κ.

We will abuse notation slightly and say that α < λ+ is in the support of p ∈ P if (α, ξ) is
in the domain of p for some ξ < κ.

The following lemma will be useful.

Lemma 3.3 Let U̇ be a P-name such that

1P 
 U̇ is a normal measure on κ.

Then there is a set A of unboundedly many α < λ+ containing its limit points of cofinality
> κ such that for every α ∈ A and every P-generic filter G,

U̇G ∩ V [G|α] ∈ V [G|α].

Proof. Let α0 < λ+ be given, we show how to find α ≥ α0 which satisfies the requirements
of the lemma. Let 〈ẋi | i < ν〉 be an enumeration of all nice P|α0-names for subsets of κ
where ν < λ+. Note that there are at most λ-many such names so we can indeed choose
ν < λ+. For every i < ν, let Xi be a maximal antichain in P of conditions deciding the
statement ẋi ∈ U̇ ; by the κ+-cc of P, the size of Xi is at most κ. Let β0 ≥ α0 be such
that the supports of all conditions in

⋃
i<ν Xi are contained in β0. Repeat this procedure

κ+-many times, building an increasing chain of ordinals and let α = sup{βk | k < κ+},
cf(α) = κ+. Now, if ẋ is a P|α-name for a subset of κ, then there is some α′ < α such
that all coordinates mentioned by ẋ are below α′; it follows that ẋ was considered in the
construction, together with a maximal antichain X in P of conditions deciding the statement
ẋ ∈ U̇ . Using these ẋ’s and X’s, one can build a P|α-name U̇α such that for every nice
P|α-name ẋ for a subset of κ:

ẋG|α = ẋG ∈ U̇G ⇔ ẋG|α ∈ U̇G|αα .

�
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Remark 3.4 It is clear that if α with cofinality > κ is a limit point of elements in A, then
α satisfies the defining property of A, and we can therefore assume that α is in A.8

Fix temporarily a P-generic filter G. Denote U̇G = U . For any α ∈ A such that λ < α < λ+

there is by Lemma 3.3 a Pα-name, which we denote by U̇α, such that

(3.10) (U̇α)G|α = U ∩ V [G|α].

Let us write Uα for U ∩ V [G|α]. Let us fix for the remainder of the proof some

(3.11) β0 ∈ A, λ < β0.

Recall the review of the proof in Section 1 where we mentioned that we need to reserve
some space below λ, and we will therefore use even and odd ordinals for different purposes.
Making good on this promise, let Even(α) denote the set of even ordinals below α, where
α ≤ λ (limit ordinals count as even). For α ≤ λ, let us write P|Even(α) to denote the Cohen
forcing Add(κ,Even(α)) which only mentions coordinates indexed by even ordinals. Let π
be a bijection between β0 fixed in (3.11) and Even(λ); π naturally generates an isomorphism
between P|β0 and P|Even(λ) which we also denote π. Let us further extend the domain of
π to all P|β0-names, and also to P|β0-generic filters, in the obvious way.

Since 1P|β0

 U̇β0 is a measure, we have 1P|Even(λ) 
 π(U̇β0) is a measure.

Remark 3.5 Note that π generates a P|Even(λ)-generic filter π(G|β0) such that V [G|β0] =
V [π(G|β0)], and

(3.12) Uβ0
= (U̇β0

)G|β0 = π(U̇β0
)π(G|β0).

However, it is not true that π(U̇β0
)G|Even(λ) = Uβ0

, where G|Even(λ) is the P|Even(λ)-
generic filter composed of the Cohen generics on the even coordinates of G below λ. The
reason is that V [G|Even(λ)] is a proper submodel of V [π(G|β0)] = V [G|β0].

The proof of the following lemma is the same as for Lemma 3.3.

Lemma 3.6 There is a set B of unboundedly many α < λ containing its limit points of
cofinality > κ such that for every α ∈ B and every P|Even(λ)-generic filter H,

(3.13) π(U̇β0
)H ∩ V [H|Even(α)] ∈ V [H|Even(α)],

where H|Even(α) is the restriction of H to P|Even(α), and β0 is the one fixed in (3.11).

Let us write U̇πα for the natural (i.e. obtained from the construction in the proof of Lemma
3.6) P|Even(α)-name for the measure π(U̇β0)H ∩ V [H|Even(α)].

For concreteness, let us review the definition of Prikry forcing.

8We mention the closure of A because the current proof is directly applicable to Lemma 3.6 with a set
B, where the closure is relevant to ensure B∗ ⊆ B for a certain set B∗ defined in Section 3.2, 2nd paragraph.
The closure will not be used for A, though.
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Definition 3.7 Assume κ is measurable and U is a normal measure at κ. Prikry forcing
at κ with the measure U , which we will denote Q, is a collection of pairs (s,A) where s is
a finite subset of κ, A is in U , and A ∩max(s) + 1 = ∅. (s,A) is stronger than (t, B) if s
extends t, A ⊆ B and s \ t ⊆ B.

We fix the following notation: Denote Â = (A ∩ [β0, λ
+)) ∪ {λ+}, where A was specified

in Lemma 3.3. For every γ ∈ Â, let P|γ ∗Qγ denote the Cohen forcing Add(κ, γ) followed

by the Prikry forcing Qγ defined with respect to the measure U̇γ (where we identify U̇λ+

with U̇ and P|λ+ ∗ Qλ+ with P ∗ Q). For α ∈ B, where B is as in Lemma 3.6, let Qπα be a
P|Even(α)-name for the Prikry forcing defined with the P|Even(α)-name U̇πα . Let us also
define Qπλ as the Prikry forcing with the measure π(U̇β0

) in P|Even(λ).

The following lemma defines certain projections which will be used later on.

Lemma 3.8 (i) For every γ, δ ∈ Â with γ < δ, there is a projection

(3.14) σδγ : P|δ ∗Qδ → RO+(P|γ ∗Qγ).

(ii) For every γ in Â and every α ∈ B, there is a projection

(3.15) σγα : P|γ ∗Qγ → RO+(P|Even(α) ∗Qπα).

(iii) For γ ∈ A∩(β0, λ
+) and α ∈ B, let σ̂γα be the extension of σγα to the Boolean completion

of P|γ ∗Qγ obtained according to Lemma 2.2(ii)(b):

(3.16) σ̂γα : RO+(P|γ ∗Qγ)→ RO+(P|Even(α) ∗Qπα).

Then the projections commute:

(3.17) σλ
+

α = σ̂γα ◦ σλ
+

γ ,

where σλ
+

α is as in item (ii) of the present lemma.

Proof. (i). Let G ∗ x be a P|δ ∗Qδ-generic filter,9 where x is an ω-sequence cofinal in κ.
By the geometric condition for Prikry genericity,10 and the fact that U̇γ is the restriction

of U̇δ, it is clear that G|γ ∗ x is P|γ ∗Qγ-generic. The result follows by Lemma 2.1.

(ii). Let G ∗ x be a P|γ ∗Qγ-generic filter, where x is an ω-sequence cofinal in κ. By (3.12)
and the geometric condition for the generic filters for Prikry forcings,

π(G|β0) ∗ x is P|Even(λ) ∗Qπλ-generic.

Substituting H = π(G|β0) in Lemma 3.6, for every α ∈ B, Qπα is a forcing in V [H|Even(α)]
defined with respect to the restriction of the measure U ; it follows that H|Even(α) ∗ x is a

9We abuse notation here and identify G ∗ x with the generic filter which it determines.
10The geometric condition characterises the genericity for Prikry forcing: a cofinal ω-sequence in κ

determines a generic filter if and only if it is eventually contained in every element of the measure used to
define the forcing.

8
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generic filter for P|Even(α) ∗ Qπα existing in V [G ∗ x]. The result again follows by Lemma
2.1.

(iii). σγα is correctly defined by Lemma 2.2(ii)(a). Let us fix (p, (s, Ȧ)) in P ∗ Q and let us
denote

bα =
∧
{b ∈ RO+(P|Even(α) ∗Qπα) | (p, (s, Ȧ)) 
 b ∈ Ġα},

bγ =
∧
{b ∈ RO+(P|γ ∗Qγ) | (p, (s, Ȧ)) 
 b ∈ Ġγ},

and
bγα =

∧
{b ∈ RO+(P|Even(α) ∗Qπα) | bγ 
 b ∈ Ġα},

where Ġγ and Ġα are the canonical names for the generic filters. The intuition is that the

Boolean value bα (and similarly bγ and bγα) corresponds to a condition (π(p|β0)|α, (s, Ċ))

for some Ċ which is the intersection of all elements in U̇α in V P|Even(α)∗Qπ
α which contain

Ȧ; the problem is that this condition in general may not exist in P|Even(α) ∗Qπα, and it is
necessary to use the more abstract Boolean names.

We show that bα = bγα.

To argue for bγα ≤ bα, notice that we can identify every element of RO+(P|Even(α) ∗ Qπα)
with an element b of RO+(P|γ ∗Qγ) by virtue of the projection σ̂γα; now if (p, (s, Ȧ)) forces

b into Ġα, then clearly (p, (s, Ȧ)) forces b into Ġγ . In particular bγ forces b into Ġα, and so
bγα ≤ bα.

Conversely, bγ can be identified with an element of RO+(P∗Q), and under this identification

(p, (s, Ȧ)) ≤ bγ . It follows that if bγ forces b ∈ RO+(P|Even(α) ∗ Qπα) into Ġα, so does

(p, (s, Ȧ)), and hence bα ≤ bγα. �

We are now ready to define the main forcing R.

Definition 3.9 Conditions in R are triples (p, q, r) which satisfy the following (where B is
as in Lemma 3.6):

(i) (p, q) is a condition in P ∗Q.
(ii) r is a function with dom(r) ⊆ B and |dom(r)| ≤ κ such that for every α ∈ dom(r),

r(α) is a nice P|Even(α) ∗Qπα-name and:

P|Even(α) ∗Qπα 
 r(α) ∈ ˙Add(κ+, 1).

The ordering is defined as follows: (p′, q′, r′) ≤ (p, q, r) if the following hold:

(i) (p′, q′) ≤ (p, q) in P ∗Q.
(ii) dom(r) ⊆ dom(r′) and for every α ∈ dom(r),

σλ
+

α (p′, q′) 
RO+(P|Even(α)∗Qπ
α) r

′(α) ≤ r(α).

The following lemmas identify the basic properties of R.

Define U to consist of all elements of R of the form (1, 1, r), with the induced partial
ordering. Let ν : (P ∗Q)× U→ R be given by ν((p, q), (1, 1, r)) = (p, q, r).

9
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Assume µ is a regular uncountable cardinal. We say that a partial order has the µ-Knaster
property if every family of conditions of size µ contains µ-many pairwise compatible condi-
tions.

Lemma 3.10 The following hold:

(i) P ∗Q has a dense subset which has the κ+-Knaster property.
(ii) U is κ+-closed, i.e. every decreasing sequence of conditions in U of length less than

κ+ has a lower bound.
(iii) ν is a projection which commutes with the natural projections from R and (P ∗Q)×U

to P ∗Q (so that in a natural way V [P ∗Q] ⊆ V [R] ⊆ V [(P ∗Q)× U]).
(iv) V [R] and V [P ∗Q] have the same κ-sequences.

Proof. (i). Let Z contain all conditions of the form (p, (š, Ȧ)); then Z is dense in P ∗ Q
because the first coordinate can always be extended to determine š. By GCH and the fact
that conditions in the Prikry forcing with the same stem s are compatible, this dense set
has the κ+-Knaster property. (ii)–(iii) are obvious. Regarding (iv), by (i), (ii) and the
Easton lemma, U is κ+-distributive over V [P ∗Q]; then (iv) follows by (iii). �

Lemma 3.11 The following hold:

(i) R has the λ-Knaster property.
(ii) R collapses cardinals in the interval (κ+, λ) (and no other cardinals), making κ++ in

V [R] equal to λ. In V [R], 2κ = λ+ = κ+3.

Proof. (i). Let us work in V , and let Y = {(pα, qα, rα) |α < λ} be a set of conditions in
R of size λ. We wish to find a subset Y ′ of size λ which consists of pairwise compatible
conditions. By a ∆-system argument there is a cofinal a ⊆ λ such that {(pα, qα) |α ∈ a} is
a family of pairwise compatible conditions in P ∗Q. By another ∆-system argument, there
is a cofinal a′ ⊆ a, and a root r ⊆ B of size ≤ κ, such that for all α, β ∈ a′, α 6= β, dom(rα)∩
dom(rβ) = r. By the inaccessibility of λ, the number of nice P|Even(γ) ∗Qπγ -names, γ ∈ r,
for conditions in Add(κ+, 1) is less than λ. Hence there is a cofinal a′′ ⊆ a′ such that if
α, β are in a′′, then for all γ ∈ r, rα(γ) = rβ(γ). It follows Y ′ = {(pα, qα, rα) |α ∈ a′′} is as
required.

(ii). The preservation of κ+, and the collapsing of the cardinals in the open interval (κ+, λ),
follows as in the classical case (see [1]) using the results from Lemma 3.10 (in particular
the existence of the projections in (iii)). λ and larger cardinals are preserved by the λ-
Knasterness of R, and 2κ = λ+ follows by the inclusion of Add(κ, λ+) in R. �

We will need to consider truncations of R, which we define next.

Definition 3.12 Let γ ∈ A be such that λ < β0 < γ, where A is as in Lemma 3.3 and β0

as in (3.11). Conditions in R|γ are triples (p, q, r) which satisfy the following (where B is
as in Lemma 3.6):

(i) (p, q) is a condition in P|γ ∗ Qγ , where Qγ is the Prikry forcing defined with respect

to the measure U̇γ .

10
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(ii) r is a function with dom(r) ⊆ B and |dom(r)| ≤ κ such that for every α ∈ dom(r),
r(α) is a nice P|Even(α) ∗Qπα-name and:

P|Even(α) ∗Qπα 
 r(α) ∈ Add(κ+, 1).

The ordering is defined as for R, but using the projections σγα, α ∈ B.

Lemma 3.13 Let γ ∈ A be such that β0 < γ < λ+. There is a projection from R to
RO+(R|γ).

Proof. First notice that R|γ is densely embeddable in R̂|γ, which is defined as R|γ but
with elements of RO+(P|γ ∗Qγ) instead of P|γ ∗Qγ , and with the projection σ̂γα. Because

of the commutativity σλ
+

α = σ̂γα ◦ σλ
+

γ , see Lemma 3.8(iii), it is easy to check that in V R,

we can find a generic for R̂|γ. �

We now show that if R adds an Aronszajn tree on λ, then a truncation R|β∗ for a certain
β∗ must add an Aronszajn tree on λ.

Before we give the lemma, let us define some terminology. Let (p, q) be a condition in P∗Q;
without loss of generality, q is of the form (s, Ȧ) for some finite subset s of κ and some nice
P-name Ȧ for a subset of κ. We say that α is in the support of (p, q) if it is in the support
of p or some p′ which occurs in the nice name Ȧ (see the convention following Definition
3.2).

Lemma 3.14 Suppose R forces that there is an Aronszajn tree on λ. Then for some β∗ in
A, β0 < β∗, R|β∗ forces there is an Aronszajn tree on λ.

Proof. Let Ṫ be a nice name for a subset of λ which in some natural way corresponds to an
Aronszajn tree on λ, which we assume exists in V R. Ṫ is of the form

⋃
{{α}×Kα |α < λ},

where Kα for α < λ is an antichain in R. By the λ-Knaster property, |Kα| < λ for every
α < λ. It follows there are at most λ many coordinates α < λ+ which are in the support
of (p, q) such that for some r, (p, q, r) ∈

⋃
α<λKα (we say that α is in the support of Ṫ ).

Hence we can choose β∗ in A such that β0 < β∗, and R|β∗ forces that Ṫ ′ is an Aronszajn
tree on λ, for some name Ṫ ′ which is naturally obtained from Ṫ . �

Suppose now that R does force that there is an Aronszajn tree on λ and let us fix β∗ as
above (we will later show that the assumption that R adds an Aronszajn tree on λ leads to
a contradiction).

Let π∗ be an isomorphism between P|β∗ and P|λ; choose π∗ so that it extends π (the fixed
isomorphism between P|β0 and P|Even(λ)). This implies π(U̇β0) = π∗(U̇β0), and therefore

the measure π∗(U̇β∗) is forced to extend the measure π(U̇β0
). More precisely, if G|β∗ is

P|β∗-generic, then the following hold:

(i) Ḡ = π∗(G|β∗) is P|λ-generic and its restriction to its even coordinates, to be denoted
as Ḡ|Even(λ), is equal to π(G|β0) (and Ḡ|Even(λ) is P|Even(λ)-generic).

(ii) The measure π(U̇β0
)Ḡ|Even(λ) in V [Ḡ|Even(λ)] is extended by the measure π∗(U̇β∗)

Ḡ

in V [Ḡ].

11
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Define Qπ∗λ as the Prikry forcing in P|λ with the measure π∗(U̇β∗).

Lemma 3.15 (i) π∗ extends to an isomorphism from P|β∗ ∗Qβ∗ onto P|λ ∗Qπ∗λ .
(ii) For every α ∈ B, σλα = σβ

∗

α ◦ (π∗)−1 is a projection

(3.18) σλα : P|λ ∗Qπ
∗

λ → RO+(P|Even(α) ∗Qπα).

Proof. (i). Let us view P|β∗ ∗ Qβ∗ as a collection of conditions (p, (s, Ȧ)), where Ȧ is a

nice P|β∗-name. It is clear that we can naturally extend π∗ so that π∗(Ȧ) is a nice name in
P|λ. Moreover, since π∗ is an isomorphism, P|β∗ forces that Ȧ is in U̇β∗ if and only if π(Ȧ)

is in π∗(U̇β∗).

(ii). This is clear because (π∗)−1 is an isomorphism. �

Let us define the following variant of R, and call it R∗:

Definition 3.16 Conditions in R∗ are triples (p, q, r) which satisfy the following (where B
is as in Lemma 3.6):

(i) (p, q) is a condition in P|λ ∗Qπ∗λ .
(ii) r is a function with dom(r) ⊆ B and |dom(r)| ≤ κ such that for every α ∈ dom(r),

r(α) is a nice P|Even(α) ∗Qπα-name and:

P|Even(α) ∗Qπα 
 r(α) ∈ Add(κ+, 1).

The ordering is defined by means of the projections σλα, α ∈ B.

Lemma 3.17 R|β∗ and R∗ are isomorphic.

Proof. Define f : R|β∗ → R∗ by assigning to (p, (s, Ȧ), r) the condition (π∗(p), (s, π∗(Ȧ)), r),
where (s, Ȧ) is a condition in Qβ∗ . Since σλα is determined by π∗ and σβ

∗

α (3.18), it is easy
to check that f is an isomorphism. �

By Lemma 3.14, it follows that if R adds an Aronszajn tree on λ, R∗ adds an Aronszajn
tree on λ. In Stage 2, we show that this cannot happen.

3.2 Stage 2

We verify that the method of [2], and the ideas from [10], can be applied in our case to
verify that R∗ does not add an Aronszajn tree at λ (see the review of the proof in Section
1).

In order to carry out the analysis of R∗, we need to be able to define truncations R∗|α for
a large set B∗ ⊆ B below λ, where B is as in Lemma 3.6. In order to obtain such B∗, first
apply the construction in Lemma 3.6 to the measure π∗(U̇β∗) in the generic extension of

V by P|λ, and obtain an unbounded set B∗ below λ where the measure π∗(U̇β∗) reflects in
the sense that if H is P|λ-generic and α ∈ B∗, then

(3.19) π∗(U̇β∗)
H ∩ V [H|α] ∈ V [H|α].

12
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Using the closure at points of cofinality > κ, one can in fact refine to ensure

(3.20) B∗ ⊆ B.

For α ∈ B∗, define Qπ∗α as the Prikry forcing defined with respect to the restriction of the
measure π∗(U̇β∗) in (3.19); let us denote this measure U̇π

∗

α . Denote B̂∗ = B∗∪{λ}. We now
proceed as in Lemma 3.8, and in particular using Lemma 2.1, to obtain for every α < γ in
B̂∗ projections:

(3.21) %γα : P|γ ∗Qπ
∗

γ → RO+(P|Even(α) ∗Qπα)

and

(3.22) %̂γα : RO+(P|γ ∗Qπ
∗

γ )→ RO+(P|Even(α) ∗Qπα),

which moreover satisfy:

(3.23) %λα = %̂γα ◦ %λγ .

Recall we used projections σλα, α ∈ B, to define the forcing R∗. We show that σλα is the
same projection as %λα for α ∈ B∗, and therefore we can view R∗ as being defined with the
projections %λα, α ∈ B∗.

Lemma 3.18 For α ∈ B∗, σλα = %λα.

Proof. Let us fix α ∈ B∗ and a condition (p, q) in P|λ∗Qπ∗λ , and let us temporarily denote
RO+(P|Even(α)∗Qπα) by PEven(α). Let F be a P|λ∗Qπ∗λ -generic filter, F ∗ a P|β∗∗Qβ∗ -generic

filter, and let Ḟ |Even(α) and Ḟ ∗|Even(α) be the canonical names for the PEven(α)-generic
filters existing in V [F ] and V [F ∗], respectively. Since π∗ extends π, it is clear that for every
b ∈ PEven(α),

(p, q) 
 b ∈ Ḟ |Even(α)⇔ (π∗)−1(p, q) 
 b ∈ Ḟ ∗|Even(α),

and therefore

%λα(p, q) =
∧
{b ∈ PEven(α) | (p, q) 
 b ∈ Ḟ |Even(α)} =∧

{b ∈ PEven(α) | (π∗)−1(p, q) 
 b ∈ Ḟ ∗|Even(α)} = σλα(p, q),

as desired. �

Now we can define truncations R|γ for γ ∈ B∗:

Definition 3.19 For γ ∈ B∗, define R∗|γ as follows. Conditions in R∗|γ are triples
(p, q, r), where B∗ is from (3.20):

(i) (p, q) is a condition in P|γ ∗Qπ∗γ .
(ii) r is a function with dom(r) ⊆ B∗∩γ and |dom(r)| ≤ κ such that for every α ∈ dom(r),

r(α) is a nice P|Even(α) ∗Qπα-name and:

P|Even(α) ∗Qπα 
 r(α) ∈ Add(κ+, 1).

13
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The ordering is defined as follows: (p′, q′, r′) ≤ (p, q, r) if the following hold:

(i) (p′, q′) ≤ (p, q) in P ∗Q.
(ii) dom(r) ⊆ dom(r′) and for every α ∈ dom(r),

%γα(p′, q′) 
RO+(P|Even(α)∗Qπ
α) r

′(α) ≤ r(α).

Lemma 3.20 For every γ ∈ B∗ there exists a projection from R∗ to RO+(R∗|γ).

Proof. It follows as in Lemma 3.13, using the fact that σλα = %λα, α ∈ B∗ (see Lemma
3.18). �

The analysis in Lemma 3.10 can be applied to R∗ straightforwardly. Let U∗ denote the κ+-
closed forcing such that there is a projection from (P|λ ∗ Qπ∗λ ) × U∗ to R∗. By arguments

similar to Lemma 3.10 and 3.11, for an inaccessible α ∈ B̂∗, R∗|α preserves all cardinals
except in the interval (κ+, α) and forces 2κ = α. Moreover, V [R∗|α] is a submodel of V [R∗]
and every bounded subset of λ in V [R∗] appears in V [R∗|α], for some α ∈ B∗.

The existence of U∗ generalizes to the truncations R∗|α, α ∈ B∗.

Lemma 3.21 Let α be in B∗. Then R∗/(R∗|α) is in V [R∗|α] a projection of (P|λ∗Qπ∗λ /P|α∗
Qπ∗α )× U∗α for some κ+-closed forcing U∗α in R∗|α.

Proof. The proof follows the analysis of the classical Mitchell forcing in [1], using the
facts given in Lemma 3.10. �

Following [2, Lemma 6.5], and the correction in [10], the proof is finished by showing that
for every α ∈ B∗, the product (P|λ∗Qπ∗λ /P|α∗Qπ∗α )× (P|λ∗Qπ∗λ /P|α∗Qπ∗α ) (“the square of
(P|λ ∗ Qπ∗λ /P|α ∗ Qπ∗α )”) is κ+-cc in V [R∗|α] (this result is stated as Lemma 3.28). Please
see the paragraph after the proof of Lemma 3.28 for a brief explanation why Lemma 3.28
suffices to finish the proof.

The importance of the square of the forcing being κ+-cc follows from the following Lemma
due to Unger [10] which we give with a proof for the convenience of the reader (our proof
is a bit simpler).

Lemma 3.22 Suppose γ is regular and a forcing P adds a subset x of γ such that x is not
in V but x ∩ α is in V for all α < γ. Then P × P is not γ-cc.

Proof. It suffices to show that if G is P -generic then P is not γ-cc in V [G]. In V [G]
let x = (ẋ)G be a subset of γ as in the hypothesis and choose a sequence 〈pi | i < γ〉 of
conditions in G and an increasing sequence of ordinals 〈αi | i < γ〉 less than γ such that pi
fixes ẋ ∩ αi (i.e. forces it to equal a specific element of V ) but does not fix ẋ ∩ αi+1. This
is possible as x ∩ α is fixed by some condition in G for each α < γ but x itself is fixed by
no condition in G. Now choose qi+1 extending pi to disagree with pi+1 about ẋ ∩ αi+1.
This is possible as pi does not fix ẋ ∩ αi+1. But then the qi+1’s form an antichain as any
condition extending qi+1 disagrees with pi+1 (and therefore with pj for all j > i) about ẋ
and therefore cannot extend qj+1 for j > i, as qj+1 extends pj . �
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Since the argument in [10] is stated for a different forcing, we provide a self-contained proof
of Lemma 3.28. For the proof of Lemma 3.28, we need to prove some preliminary facts
(Lemma 3.23 – Lemma 3.27).

Lemma 3.23 Let α be in B∗. Assume (p, (s, Ȧ)) ∈ P|α ∗ Qπ∗α and (q, (t, Ḃ)) ∈ P|λ ∗ Qπ∗λ
are arbitrary conditions. Then (p, (s, Ȧ)) forces that (q, (t, Ḃ)) is not a condition in P|λ ∗
Qπ∗λ /P|α ∗Qπ∗α if and only if one of the following conditions holds:

(i) q|α is incompatible with p,

(ii) q|α is compatible with p, s does not extend t and t does not extend s,

(iii) q|α is compatible with p, s extends t and q ∪ p 
 s \ t * Ḃ,

(iv) q|α is compatible with p, t extends s and (q|α) ∪ p 
 t \ s * Ȧ.

Proof. (p, (s, Ȧ)) 
 (q, (t, Ḃ)) /∈ P|λ∗Qπ∗λ /P|α∗Qπ∗α if and only if there is no generic filter

G ∗ x such that (q, (t, Ḃ)) ∈ G ∗ x and (p, (s, Ȧ)) ∈ G|α ∗ x.

First, it is easy to see that each of the conditions above rules out the existence of such a
generic filter G ∗ x.

Second, assume that all conditions above fail. Then p is compatible with q and it has to
hold that either s extends t or t extends s. If s extends t, then q∪p 6
 s\ t * Ḃ. This means

that there is r below q ∪ p such that r 
 s \ t ⊆ Ḃ. Consider the condition (r, (s, Ȧ ∩ Ḃ))
and let G ∗ x be generic filter such that (r, (s, Ȧ ∩ Ḃ)) ∈ G ∗ x. It is easy to verify that
(q, (t, Ḃ)) ∈ G ∗ x and (p, (s, Ȧ)) ∈ G|α ∗ x. The second case, if t extends s, is similar. �

We have just characterised the case when a condition in P|λ ∗ Qπ∗λ is forced out of the
quotient. Now, we focus on the case when a condition is forced into the quotient. First we
prove an auxiliary lemma.

Lemma 3.24 Let α be in B∗. Assume (p, (s, Ȧ)) ∈ P|α ∗ Qπ∗α and (q, (t, Ḃ)) ∈ P|λ ∗ Qπ∗λ
are arbitrary conditions such that p ≤ q|α. Then there is a P|α-name Ċ such that p forces

that Ċ is in U̇π
∗

α and for each finite set x in Ċ such that s∪x is a stem,11 q 6
V [P|α]
P|λ/P|α x * Ḃ.

Proof. Assume that G is a P|α-generic filter such that p ∈ G. We define a colouring of
[κ]<ω as follows:

f(x) =


0 if s ∪ x is a stem and q 6
V [G]

P|λ/P|α x * Ḃ;

1 if s ∪ x is a stem and q 
V [G]
P|λ/P|α x * Ḃ;

2 if s ∪ x is not a stem.

By Rowbottom’s theorem, there is a set C in Uπ
∗

α homogeneous for f . Let Ċ be a P|α-name
for C.

11s ∪ x is a stem if s ∪ x extends s.
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Assume for contradiction that Ċ is not as required. Then there is some r ≤ p and a finite

set x in Ċ such that r forces that q 
V [P|α]
P|λ/P|α x * Ḃ. Let n be the size of x. Since Ċ is

a homogeneous set for f , we know that for each set y of size n, f(y) = 1. As we assume
p ≤ q|α, r ∪ q is a condition in P|λ. Let H be a P|λ-generic filter which contains r ∪ q.
Then ḂV [H] ∩ ĊV [H] = ∅ in V [H]. This is a contradiction since ḂV [H] and ĊV [H] are sets
in (U̇π

∗

λ )V [H]. �

Now we provide a sufficient condition for a condition in P|λ ∗ Qπ∗λ to be forced into the
quotient.

Lemma 3.25 Let α be in B∗. Assume (p, (s, Ȧ)) ∈ P|α ∗ Qπ∗α and (q, (t, Ḃ)) ∈ P|λ ∗ Qπ∗λ
are arbitrary conditions. If they satisfy the following conditions

(i) s extends t,

(ii) p ≤ q|α and

(iii) q ∪ p 
 s \ t ⊆ Ḃ,

then for the set Ċ from Lemma 3.24, it holds that (p, (s, Ȧ ∩ Ċ)) forces (q, (t, Ḃ)) into the
quotient P|λ ∗Qπ∗λ /P|α ∗Qπ∗α .

Proof. For contradiction assume that there is (p′, (s′, Ȧ′)) ≤ (p, (s, Ȧ ∩ Ċ)) such that
(p′, (s′, Ȧ′)) 
 (q, (t, Ḃ)) /∈ P|λ ∗ Qπ∗λ /P|α ∗ Qπ∗α . It means that one of the conditions in
Lemma 3.23 is true. It is easy to see that conditions (i), (ii) and (iv) are false, hence the
condition (iii) has to be true. Thus p′ ∪ q 
 s′ \ t * Ḃ. By the assumptions (i) and (iii) of

the present lemma, s extends t and p ∪ q 
 s \ t ⊆ Ḃ. Therefore p′ ∪ q 
 s′ \ s * Ḃ.

Since (p′, (s′, Ȧ′)) ≤ (p, (s, Ȧ ∩ Ċ)), p′ 
 s′ \ s ⊆ Ȧ ∩ Ċ. Hence p′ 
 s′ \ s ⊆ Ċ. By Lemma

3.24, we know that p′ forces q 6
V [P|α]
P|λ/P|α s

′ \ s * Ḃ. Therefore p′ ∪ q 6
 s′ \ s * Ḃ. This is in

contradiction with the result of the previous paragraph. �

Lemma 3.26 Let α be in B∗. Assume (p, (s, Ȧ)) is a condition in P|α ∗ Qπ∗α , and ṙi
for i < 2, are conditions forced by the weakest condition of P|α ∗ Qπ∗α into the quotient
P|λ ∗ Qπ∗λ /P|α ∗ Qπ∗α . Then there are (p′, (s′, Ȧ′)) ≤ (p, (s, Ȧ)), (qi, (ti, Ḃi)) and q̄i ≤ qi,
i < 2, such that for i < 2:

(i) (p′, (s′, Ȧ′)) decides ṙi to be (qi, (ti, Ḃi)),

(ii) (p′, (s′, Ȧ′)) and (q̄i, (ti, Ḃi)) satisfy the assumptions (i)–(iii) of Lemma 3.25.

Proof. Let (p′, (s′, Ȧ′)) ≤ (p, (s, Ȧ)) be such that it decides the value of ṙi to be (qi, (ti, Ḃi))
for i < 2. We may assume that s′ extends ti and p′ ≤ qi|α for i < 2. Since (p′, (s′, Ȧ′))
forces that ṙ0 is in P|α ∗ Qπ∗α , the condition (iii) in Lemma 3.23 has to fail, hence there is
q̄0 ≤ p′ ∪ q0 such that q̄0 forces s′ \ t0 ⊆ Ḃ0. Now, if it is necessary we can extend p′ to
ensure p′ ≤ q̄0|α.
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Now, we need to deal with ṙ1 = (q1, (t1, Ḃ1)). Since (p′, (s′, Ȧ′)) forces that ṙ1 is in P|α∗Qπ∗α ,
the condition (iii) in Lemma 3.23 has to fail. Therefore there is q̄1 ≤ p′ ∪ q1 such that q̄1

forces s′ \ t1 ⊆ Ḃ1. Again, if it is necessary we can extend p′ to ensure p′ ≤ q̄1|α. �

Lemma 3.27 Let α be in B∗. (P|λ ∗Qπ∗λ )2 × (P|α ∗Qπ∗α ) is κ+-cc.

Proof. The Cohen forcing at κ is κ+-Knaster by GCH and the Prikry forcing at κ is
κ+-Knaster because its conditions are compatible whenever the stems are the same. The
result follows by the productivity of the Knaster property. �

Finally we can prove the desired lemma which finishes the proof of Theorem 3.1.

Lemma 3.28 Let α be in B∗. Then the square of P|λ ∗Qπ∗λ /P|α ∗Qπ∗α is κ+-cc in V [P|α ∗
Qπ∗α ].

Proof. For contradiction assume that {(ṙ0
β , ṙ

1
β) |β < κ+} is a P|α ∗ Qπ∗α -name for an

antichain in P|λ ∗Qπ∗λ /P|α ∗Qπ∗α . By Lemma 3.26, we can find for each β < κ+ and i < 2

conditions (pβ , (sβ , Ȧβ)), (qiβ(tiβ , Ḃ
i
β)) and extensions q̄iβ ≤ qiβ which satisfy items (i) and

(ii) in Lemma 3.26.

By Lemma 3.27, there are β < β′ < κ+ such that pβ is compatible with pβ′ and q̄iβ is

compatible with q̄iβ′ for i < 2. This means that pβ ∪pβ′ and q̄iβ ∪ q̄iβ′ for i < 2 are conditions

in P|λ. Moreover we may assume that ti = tiβ = tiβ′ and s = sβ = sβ′ for i < 2.

For i < 2, the conditions (pβ ∪ pβ′ , (s, Ȧβ ∩ Ȧβ′)) and (q̄iβ ∪ q̄iβ′ , (ti, Ḃiβ ∩ Ḃiβ′)) satisfy the

assumptions of Lemma 3.25. Therefore, there is an extension of (pβ∪pβ′ , (s, Ȧβ∩Ȧβ′)) which
forces the compatibility of (ṙ0

β , ṙ
1
β) and (ṙ0

β′ , ṙ
1
β′) in the quotient. This is a contradiction.

�

This finishes the proof of Theorem 3.1: Exactly as in [2] we argue that if T is a λ-Aronszajn
tree in V [R∗], there exist some α ∈ B∗ such that T restricted to α is an α-Aronszajn tree
in V [R∗|α] which has a cofinal branch in V [R∗|α][(P|λ ∗Qπ∗λ /P|α ∗Qπ∗α )×U∗α] (see Lemma
3.21). However the product forcing (P|λ ∗Qπ∗λ /P|α ∗Qπ∗α )× U∗α cannot add such a branch
over V [R∗|α] as U∗α is κ+-closed and the square of (P|λ ∗Qπ∗λ /P|α ∗Qπ∗α ) is κ+-cc (this uses
Lemma 3.22).

4 An arbitrary gap

Theorem 4.1 Assume GCH and let κ be a Laver-indestructible supercompact cardinal, λ
a weakly compact cardinal and µ a cardinal of cofinality greater than κ such that κ < λ < µ.
Then there is a forcing notion R such that the following hold:

(i) R preserves cardinals ≤ κ+ and ≥ λ.
(ii) V [R] |= (κ++ = λ & 2κ = µ & cf(κ) = ω & κ is strong limit).

(iii) V [R] |= TP(λ).
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We will not give a detailed proof, but instead specify what modifications to the proof of
Theorem 3.1 are needed to prove Theorem 4.1. Assume the notation is the same as in the
proof of Theorem 3.1 unless said otherwise.

Modify the construction in Stage 1 in Section 3.1 as follows:

(1) In analogy with Lemma 3.3, find a set A ⊆ [µ]λ which is unbounded in [µ]λ and closed
under unions of increasing chains of cofinality larger than κ which satisfies:

• For every x ∈ A, λ+ 1 ⊆ x.

• For every x ∈ A, there is a name U̇x such that in V [P|x], U̇x interprets as the
restriction of the measure U̇ on κ. Let us denote by P|x ∗ Qx the Cohen forcing
restricted to x followed by the Prikry forcing with the measure U̇x.

(2) Choose an arbitrary y0 ∈ A and an isomorphism π : P|y0 → P|Even(λ). Thus π(U̇y0)
is a measure in P|Even(λ).

(3) Denote Â = {y ∈ A | y0 ⊆ y}. As in Lemma 3.8, and with the notation naturally
modified for the current situation, there is an unbounded set B ⊆ λ closed under limits
of cofinality larger than κ, and commutative projections

σµy : P ∗Q→ RO+(P|y ∗Qy), for y ∈ Â,

σ̂yα : RO+(P|y ∗Qy)→ RO+(P|Even(α) ∗Qπα), for y ∈ Â, α ∈ B,

and
σµα : P ∗Q→ RO+(P|Even(α) ∗Qπα), for α ∈ B

with
σµα = σ̂yα ◦ σµy , for y ∈ Â, α ∈ B.

Note that we denote by Qπα the Prikry forcing defined with respect to the restriction of
the measure π(U̇y0) to V [P|Even(α)].

(4) Modify Definition 3.9 of R to use π and σµα, in the sense of the previous paragraph. As
in Definition 3.12, define the truncations R|y for y ∈ Â.

(5) The key step is to show that if Ṫ is a λ-Aronszajn tree added by R, then for some y ∈ Â,
R|y adds an Aronszajn tree on λ and importantly, R|y is isomorphic to R∗ (which is
the same forcing as in Definition 3.16). We argue as follows:

By the λ-Knaster property of (a dense subset of) R, there is y∗ ∈ Â such that the
support of Ṫ (see the paragraph after Lemma 3.13) is included in y∗ and y0 ( y∗.
Choose a bijection π∗ extending π, π∗ : P|y∗ → P|λ. Denote Qπ∗λ the Prikry forcing in

V [P|λ] defined with respect to the measure π∗(U̇y∗). As in Lemma 3.15, π∗ extends to
an isomorphism between P|y∗ ∗Qy∗ and P|λ ∗Qπ∗λ . Finally, as in Lemma 3.17, R|y∗ is
isomorphic to R∗.

Stage 2 of the argument is exactly the same as in the proof of Theorem 3.1
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5 Open questions and comments

There are several generalizations of Theorem 4.1 which can be considered:

(1) Can κ have an uncountable cofinality? By the result of Golshani and Mohammadpour
[8], this is consistent with 2κ = κ++. By a more recent result of Golshani [7], a finite
fixed gap is consistent with the tree property holding at every other cardinal (including
the double successors of singular strong limit cardinals of uncountable cofinality). This
leaves open the question of obtaining a singular strong limit cardinal κ of uncountable
cofinality with an infinite gap (κ, 2κ) and the tree property at κ++.

(2) More specifically, can κ be equal to ℵω or ℵω1
? This has been answered in Friedman,

Honzik, and Stejskalova [5] for the case of ℵω and finite gap. Building on the technique
in [5], Golshani extended this result to other strong limit singular cardinals in the
above-mentioned [7]. This leaves open (again) the question of an infinite gap.

(3) By the construction in [5], the large-cardinal assumption for Theorem 4.1 can be weak-
ened to a hypermeasurable cardinal of a suitable degree. What is the optimal large-
cardinal assumption and can it be used to obtain the result in this paper?
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