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CAPTURING SETS OF ORDINALS BY NORMAL

ULTRAPOWERS

MIHA E. HABIČ AND RADEK HONZÍK

Abstract. We investigate the extent to which ultrapowers by normal
measures on κ can be correct about powersets P(λ) for λ > κ. We
consider two versions of this question, the capturing property CP(κ, λ)
and the local capturing property LCP(κ, λ). Both of these describe the
extent to which subsets of λ appear in ultrapowers by normal measures
on κ. After examining the basic properties of these two notions, we
identify the exact consistency strength of LCP(κ, κ+). Building on re-
sults of Cummings, who determined the exact consistency strength of
CP(κ, κ+), and using a forcing due to Apter and Shelah, we show that
CP(κ, λ) can hold at the least measurable cardinal.

1. Introduction

It is well known that the ultrapower of the universe by a normal measure
on some cardinal κ cannot be very close to V ; for example, the measure itself
never appears in the ultrapower. It follows that these ultrapowers cannot
compute Vκ+2 correctly. In the presence of GCH, this is equivalent to saying
that the ultrapower is incorrect about P(κ+). But if GCH fails, it becomes
conceivable that a normal ultrapower could compute additional powersets
correctly. This conjecture turns out to be correct: Cummings [4], answering
a question of Steel, showed that it is relatively consistent that there is a
measurable cardinal κ with a normal measure whose ultrapower computes
P(κ+) correctly; in fact he showed that this situation is equiconsistent with a
(κ+2)-strong cardinal κ. In this paper we will study this capturing property
and its local variant further.
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Definition 1. Let κ and λ be cardinals. We say that the local capturing
property LCP(κ, λ) holds if, for any x ⊆ λ, there is a normal measure Ux on
κ such that x ∈ Ult(V,Ux). We shall say that Ux (or Ult(V,Ux)) captures x.

The full capturing property will amount to having a uniform witness for
the local version.

Definition 2. Let κ and λ be cardinals. We say that the capturing property
CP(κ, λ) holds if there is a normal measure on κ that captures all subsets of
λ; in other words, a normal measure U such that P(λ) ∈ Ult(V,U).

Some quick and easy observations: increasing λ clearly gives us stronger
properties, CP(κ, λ) implies LCP(κ, λ), and CP(κ, κ) holds for any measur-
able cardinal κ.

Using this language, we can summarize Cummings’ result as follows:

Theorem 3 (Cummings). If κ is (κ + 2)-strong, then there is a forcing
extension in which CP(κ, κ+) holds. Conversely, if CP(κ, κ+) holds, then κ
is (κ+ 2)-strong in an inner model.

We should mention that CP(κ, 2κ) is provably false: if it held, then some
normal ultrapower would contain all families of subsets of κ, in particular the
measure from which it arose, which is impossible. Therefore a failure of GCH
is necessary for CP(κ, κ+) to hold. By work of Gitik [7], this means that
CP(κ, κ+) has consistency strength at least that of a measurable cardinal
κ with Mitchell rank o(κ) = κ++, and the actual consistency strength of a
(κ+ 2)-strong cardinal κ is only slightly beyond that.

The following are the main results of this paper. In section 2 we analyse
the consistency strength of LCP(κ, κ+) and show that it is only a small step
below the strength of the full capturing property.

Main theorem 1. Assuming GCH, if LCP(κ, κ+) holds, then o(κ) = κ++.
Conversely, if o(κ) ≥ κ++, then LCP(κ, κ+) holds in an inner model.

In section 3 we continue the analysis in the case that GCH fails at κ and
show that the first part of the previous theorem, namely that κ has high
Mitchell rank, fails dramatically if 2κ > κ+.

Main theorem 2. If κ is (κ + 2)-strong, then there is a forcing extension
in which CP(κ, κ+) holds and κ is the least measurable cardinal.

This last theorem is a nontrivial improvement of Cummings’ result. Since
the forcing he used to achieve CP(κ, κ+) was relatively mild, κ remained
quite large in the resulting model; for example, it was still a measurable
limit of measurable cardinals. Our theorem shows that, while CP(κ, κ+) has
nontrivial consistency strength, it does not directly imply anything about
the size of κ in V (beyond κ being measurable).

We will list questions that we have left open wherever appropriate through-
out the paper.

2. The local capturing property

Let us begin our analysis of the local capturing property with some simple
observations.
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Lemma 4. If LCP(κ, λ) holds, then it can be witnessed by measures U for
which Ult(V,U) and V agree on cardinals up to and including λ.

Proof. Using a pairing function we can code a family of bijections fα : α →
|α| for α ≤ λ as a single subset y ⊆ λ. If we want to capture x ⊆ λ in an
ultrapower as in the lemma, we simply capture (a disjoint union of) x and
y using LCP(κ, λ). �

Proposition 5. LCP(κ, (2κ)+) fails for any measurable κ.

Proof. If LCP(κ, (2κ)+) held, there would have to be a normal measure ul-
trapower j : V → M with critical point κ such that M was correct about
cardinals up to and including (2κ)+, by Lemma 4. But no such ultrapower
can exist, since the ordinals j(κ) and j(κ+) are cardinals in M and both
have size 2κ in V . �

The following lemma is quite well known, but it will be key in many of
our observations.

Lemma 6. Suppose that j : V → M is an elementary embedding with critical
point κ and consider the diagram

V M

N

j

i
k

where i is the ultrapower by the normal measure on κ derived from j and k
is the factor map. Then the critical point of k is strictly above (2κ)N .

Proof. It is clear that the critical point of k is above κ. Consider some ordinal
α ≤ (2κ)N . Fix a surjective map f : P(κ) → α in N (and note that both
N and M compute P(κ) correctly). Since every ordinal up to and including
κ is fixed by k, it follows that k(f) = k ◦ f is a surjection from P(κ) to
k(α) and so k ↾ α is a surjection onto k(α). It follows that we must have
k(α) = α. �

Using an old argument of Solovay, we can see that the optimal local cap-
turing property automatically holds at sufficiently large cardinals.

Proposition 7. If a cardinal κ is 2κ-supercompact, witnessed by an embed-
ding j : V → M , then LCP(κ, 2κ) holds in both V and M .

Proof. We first show that LCP(κ, 2κ) holds in V . Suppose it fails. Then there
is some x ⊆ 2κ which is not captured by any normal measure on κ. The
model M agrees that this is the case, since it has all the normal measures on
κ and all the functions f : κ → P(κ) that could represent x. Let i and k be as
in Lemma 6. By that same lemma, the model N computes 2κ correctly and it
also believes that there is some y ⊆ 2κ which is not captured by any normal
measure on κ. This y is fixed by k, so M also believes that y is not captured
by any normal measure on κ, and V agrees. But this is a contradiction, since
y is captured by the ultrapower N . Therefore LCP(κ, 2κ) holds in V .

Observe that LCP(κ, 2κ) only depends on P(2κ), the normal measures on
κ, and the representing functions κ → P(κ). The ultrapower M has all of
these objects, therefore M must agree that LCP(κ, 2κ) holds. �



4 MIHA E. HABIČ AND RADEK HONZÍK

In particular, if κ is 2κ-supercompact, then there are many λ < κ for
which LCP(λ, 2λ) holds.

The above argument seems to break down if κ is only θ-supercompact for
some θ < 2κ, even if we are only aiming to capture subsets of θ; one simply
cannot conclude that M has all the necessary measures to correctly judge
whether a set is a counterexample to LCP(κ, λ) or not. Thus, the following
question remains open.

Question 8. Suppose that κ is θ-supercompact for some κ < θ < 2κ. Does
it follow that LCP(κ, θ) holds?

The same conclusion as in Proposition 7 follows even if κ is merely (κ+2)-
strong.

Proposition 9. If a cardinal κ is (κ+2)-strong, witnessed by an embedding
j : V → M , then LCP(κ, 2κ) holds in both V and M .

Proof. The argument works just like in Proposition 7. Note that M has all
the functions κ → P(κ) and all the normal measures on κ. Furthermore, M
has all the subsets of 2κ (use a wellorder of Vκ+1 in Vκ+2 of ordertype 2κ). It
follows that V and M have all the same counterexamples to LCP(κ, 2κ). �

Reflecting back from M to V , this last proposition implies that below a
(κ + 2)-strong cardinal κ there are many cardinals λ satisfying LCP(λ, 2λ).
This observation, together with Cummings’ Theorem 3, tells us that the
consistency strength of LCP(κ, κ+) is strictly lower than that of CP(κ, κ+).
Let us determine this consistency strength exactly.

Recall that the Mitchell order ⊳ on a measurable cardinal κ is a relation
on the normal measures on κ, where U ⊳ U ′ if U appears in the ultrapower
by U ′. It is a standard fact that ⊳ is wellfounded, and the Mitchell rank of
κ is the height o(κ) of this order.

Proposition 10. If LCP(κ, 2κ) holds, then o(κ) = (2κ)+.

Proof. This is essentially the proof that the large cardinals mentioned in the
previous two propositions have maximal Mitchell rank. We shall recursively
build a Mitchell-increasing sequence 〈Uα ; α < (2κ)+〉 of normal measures on
κ. So suppose that 〈Uα ; α < δ〉 has been constructed for some δ < (2κ)+.
Using a pairing function we can code each measure Uα as a subset of 2κ,
and then code the entire sequence 〈Uα ; α < δ〉 as a subset of 2κ as well. By
LCP(κ, 2κ) there is a normal measure U on κ which captures this subset, and
thus the whole sequence of measures. We can then simply let Uδ = U . �

To show that the lower bound from this proposition is sharp we will pass to
a suitable inner model. Recall that a coherent sequence of normal measures U
of length λ (where λ is an ordinal or Ord) is given by a function oU : λ → Ord
and a sequence

U = 〈Uβ
α ; α < λ, β < oU (α)〉 ,

where each Uβ
α is a normal measure on α and for each α, β, if jβα is the

corresponding ultrapower map, we have

jβα(U) ↾ α+ 1 = U ↾ (α, β) .

Here U ↾ (α, β) = 〈U δ
γ ; (γ, δ) <lex (α, β)〉 and U ↾ α = U ↾ (α, 0).
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Theorem 11. Suppose that V = L[U ] where U is a coherent sequence of
normal measures of length κ+1 with oU (κ) = κ++. Then LCP(κ, κ+) holds.

Proof. We shall show that, given any x ⊆ κ+, there is some β < κ++ such
that x ∈ L[U ↾ (κ, β)]. The theorem then immediately follows since, given

x, we can find a β as described, and the ultrapower by Uβ
κ of L[U ] contains

L[U ↾ (κ, β)], and therefore x.
So fix some x ⊆ κ+ and let ρ be a large regular cardinal so that x ∈ Lρ[U ].

Since GCH holds, we can find an elementary submodel M ≺ Lρ[U ] of size κ+

such that x,U ∈ M and κ+,P(κ) ⊆ M . Let π : M → M be the Mostowski
collapse map.

Note that the δ = M ∩ κ++ = π(κ++) is an ordinal below κ++ and that
all ordinals below δ are fixed by π. Moreover, π will fix all subsets of κ+ in
M (since these can be described by sequences of ordinals of length < δ), and

therefore also all the measures Uβ
α for (α, β) <lex (κ, δ) (since each of these

can be coded by a subset of κ+). It follows that π(U) is (in M ) a coherent

sequence of normal measures of length κ + 1 with oπ(U)(κ) = δ, and that
π(U) = U ↾(κ, δ). Therefore M = Lρ̄[U ↾(κ, δ)] for some ρ̄ < ρ. Since x ⊆ κ+

was fixed by π as well, we get x ∈ M ⊆ L[U ↾ (κ, δ)]. �

Even if, starting from a measurable cardinal κ of Mitchell order κ++, one
could construct a coherent sequence U of normal measures with oU (κ) = κ++,
it seems to be an open question (according to [16]) whether it is necessarily
the case that U remains coherent in L[U ]. We avoid this issue by using a
result of Mitchell [14], who showed in ZFC that there is a sequence of filters
F (possibly empty, possibly of length Ord, or anything in between) such that
L[F ] satisfies GCH, F is a coherent sequence of normal measures in L[F ]

and oF (α) = min(o(α)V , (α++)L[F ]). The model we need will be exactly this
L[F ].

Corollary 12. Assume that o(κ) ≥ κ++. Then LCP(κ, 2κ) holds in a tran-
sitive model of GCH.

Proof. We may assume that κ is the largest measurable cardinal; if not, we
can cut off the universe at the next inaccessible in order to achieve this. Let
F be the sequence of filters described above. By Mitchell’s results we know
that the sequence F is a coherent sequence of normal measures in L[F ] and

oF (κ) = (κ++)L[F ]. Since κ is the largest measurable, the length of F is
κ+ 1, and it follows from Theorem 11 that LCP(κ, κ+) holds in L[F ]. �

In fact, these canonical inner models satisfy a strong form of LCP(κ, κ+),
where there is a single function which represents any desired subset of κ+ in
an appropriate normal ultrapower.

Definition 13. Let κ be a measurable cardinal. An Hκ++-guessing Laver
function for κ is a function ℓ : κ → Vκ with the property that for any x ∈
Hκ++ there is an ultrapower embedding j : V → M by a normal measure on
κ such that j(ℓ)(κ) = x.

It is obvious that the existence of an Hκ++-guessing Laver function for
κ implies LCP(κ, κ+). The first author [9, Theorem 28] showed that this
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stronger property holds in appropriate extender models, in particular the
one from Corollary 12.

Starting with a cardinal κ of high Mitchell rank, we obtained a model
of the local capturing property by passing to an inner model. We are un-
sure whether one can obtain the local capturing property from the optimal
hypothesis via forcing.

Question 14. Suppose that GCH holds and o(κ) = κ++. Is there a forcing
extension in which LCP(κ, κ+) holds?

It is important to note that the hypothesis in Proposition 10 is quite
strong: we need to be able to capture all subsets of 2κ in order to be able
to conclude that the Mitchell rank of κ is large. One might wonder whether
some strength can be derived even from weaker local capturing properties,
for example LCP(κ, κ+) assuming κ+ < 2κ. As we shall see in the following
section, the answer is an emphatic no.

3. The capturing property at the least measurable cardinal

In this section we will give a proof of our second main theorem. Our
argument owes a lot to Cummings’ original proof of Theorem 3 and to the
forcing machinery introduced by Apter and Shelah. Nevertheless, we shall
strive to give a mostly self-contained account, especially with regard to the
forcing notions used.

Let us first explain why we cannot simply use the proof from Theorem 3
and afterwards make κ into the least measurable cardinal just by applying the
standard methods of destroying measurable cardinals, such as iterated Prikry
forcing or adding nonreflecting stationary sets. In his argument, Cummings
starts with a (κ, κ++)-extender embedding, lifts it through a certain itera-
tion of Cohen forcings (which will, among other things, ensure that 2κ > κ+,
a necessary condition as we explained), and concludes that the lifted embed-
ding j : V [G] → M [j(G)] is in fact equal to the ultrapower by some normal
measure on κ and M [j(G)] captures all the subsets of κ+ in the extension.
One would now hope to be able to lift this new embedding further, through
any of the usual forcings which would make κ into the least measurable cardi-
nal. However, for this strategy to work, we should somehow ensure that κ is
not measurable in M [j(G)]. Otherwise lifting the embedding through any of
the usual forcing iterations to destroy all the measurables below κ over V [G]
would require us to also destroy the measurability of κ over M [j(G)]. But if
we did that and maintained the capturing property at the same time, there
would be enough agreement between the extensions of V [G] and M [j(G)]
that κ would necessarily be nonmeasurable in the extension of V [G] as well.
All this is to say that, since κ is very much measurable in M [j(G)] after the
forcing done by Cummings, a different approach is necessary.

Instead of first forcing the capturing property and then making κ into
the least measurable, the solution is to destroy all the measurable cardinals
below κ and blow up 2κ at the same time. The tools to make this approach
work are due to Apter and Shelah [1, 2].
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3.1. The forcing notions. Let us review the particular forcing notions
that will go into building our final forcing iteration. The material in this
subsection is contained, in some form or another, in sections 1 of [1, 2].

Since we will be discussing the strategic closure of some of these posets,
let us fix some terminology. If P is a poset and α is an ordinal, the closure
game for P of length α consists of two players alternately playing conditions
p ∈ P in a descending sequence of length α, with player II playing at limit
steps. Player II loses the game if at any stage she is unable to make a move;
otherwise she wins. If P is a poset and κ is a cardinal, we shall say that:

• P is ≤ κ-strategically closed if player II has a winning strategy in the
closure game for P of length κ+ 1.

• P is ≺ κ-strategically closed if player II has a winning strategy in the
closure game for P of length κ.

• P is < κ-strategically closed if it is ≤ λ-strategically closed for all
λ < κ.

If κ is a cardinal and α is an ordinal, we let Add(κ, α) be the usual
forcing notion to add α many Cohen subsets to κ. We think of conditions in
Add(κ, α) as filling in an α-by-κ grid with 0s and 1s. Each condition is only
allowed to fill in fewer than κ many cells in the grid. Eventually, the generic
will fill in the entire grid, and each column of the grid will be a Cohen subset
of κ.

If δ ≥ ω2 is a regular cardinal, we let Sδ be the forcing to add a nonre-
flecting stationary subset of δ, consisting of points of countable cofinality.1

A condition in Sδ is simply a bounded subset of x ⊆ δ, consisting of points of
countable cofinality and satisfying the property that x ∩ α is nonstationary
in α for every limit α < δ of uncountable cofinality. The conditions in Sδ are
ordered by end-extension. It is a standard fact that Sδ is ≺ δ-strategically
closed and, if 2<δ = δ, is δ+-cc (see [5, Section 6] for more details). Note
that the generic stationary set added will also be costationary, since it avoids
all ordinals of uncountable cofinality.

If S ⊂ δ is a costationary set, let C(S) be the forcing to shoot a club
through δ \ S; conditions are closed bounded subsets of δ \ S. Again, if
2<δ = δ, then C(S) will be δ+-cc ([5, Section 6] has more details). In
the cases we will be interested in, C(S) will also be < δ-distributive (see
Lemma 16).

Before we continue with the exposition, let us fix some terminology.

Definition 15. Let P and Q be posets. We say that P and Q are forcing
equivalent if they have isomorphic dense subsets.

This is not the most general definition of forcing equivalence that has ap-
peared in the literature, but it has the advantage of being obviously upward
absolute between transitive models of set theory.

1In our argument we could use any other fixed cofinality below the large cardinal in
question. We sacrifice a bit of generality in order to avoid carrying an extra parameter
with us throughout the proof. The specific choice of countable cofinality also simplifies
some arguments.
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Lemma 16. If δ is a cardinal satisfying δ<δ = δ then Sδ ∗C(Ṡ), where Ṡ is
the name for the generic nonreflecting stationary set added by Sδ, is forcing
equivalent to Add(δ, 1).

Proof. This is standard; the iteration has a dense < δ-closed subset of size
δ, which is equivalent to Add(δ, 1) by [5, Theorem 14.1]. �

Suppose that γ is a cardinal, δ is an ordinal, I ⊆ δ, and ~X = 〈xα ; α ∈ I〉
is a ladder system (meaning that each xα ⊆ α is a cf(α)-sequence cofinal in

α; the xα are called ladders). The Apter–Shelah forcing2 A(γ, δ, ~X) consists
of conditions (p, Z) where

(1) p is a condition in the Cohen forcing Add(γ, δ), seen as filling in
δ many columns of height γ with 0s and 1s. We will denote by
supp(p) ⊆ δ the set of indices of the nonempty columns of p.

(2) p is a uniform condition, meaning that all of its nonempty columns
have the same height.

(3) Z is a set of ladders from the ladder system ~X and each ladder z ∈ Z
is a subset of supp(p).

The conditions in A(γ, δ, ~X) are ordered by letting (p′, Z ′) ≤ (p, Z) if
p′ ≤ p and Z ′ ⊇ Z, and for any z ∈ Z each new row in (p′ \ p), restricted
to the columns indexed by z, has unboundedly many 0s and 1s. In other
words, when strengthening the Cohen part of the condition, the z ∈ Z are
promises that we will not add a row whose values stabilize when restricted
z.

The poset A(γ, δ, ~X) is similar to the poset P 1
δ,λ[S] defined in [1, Section

4], with some differences which we believe will simplify the poset. For exam-
ple, our definition permits an arbitrary ladder system, whereas Apter and
Shelah work with a very specific one. For our applications, the specific case
studied by Apter and Shelah would have sufficed, but the poset can never-
theless be defined more generally. We believe the additional generality will
make the role of the side conditions in the arguments more transparent and
clarify where additional assumptions on the parameters in the definition of

A(γ, δ, ~X) are required.

Some comments are in order regarding the forcing A(γ, δ, ~X). It is similar
enough to the Cohen poset Add(γ, δ) that one would hope that it is just as
simple to show that this forcing also adds δ new subsets of γ and so on. But
with the addition of the side conditions this is no longer clear. It is not even
immediate that generically we will fill out the entire δ-by-γ matrix. On the
other hand, if we want to use this forcing as the main part of our construction
to destroy many measurable cardinals, then it cannot be too close to plain
Cohen forcing after all. This tension between the Apter–Shelah poset and

the Cohen poset is controlled by the ladder system ~X , so we will have to
choose these ladder systems carefully in our proof.

The following facts are parallel to the ones Apter and Shelah give in [1, 2];
we give proofs for the sake of completeness, but the reader familiar with their
exposition should expect no surprises.

2We chose the letter A without prejudice against Shelah, but rather to emphasize that
the forcing is derived from the Cohen forcing Add(γ, δ) by adding some side conditions.
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Lemma 17. Suppose γ is inaccessible, δ is an ordinal, and ~X is a ladder

system on some subset of δ. Then the forcing A(γ, δ, ~X) is γ+-Knaster and
γ++-Knaster (meaning that any set of γ+ (or γ++) many conditions has a
subset of γ+ (or γ++) many pairwise compatible conditions).

Proof. In the described situation, the poset Add(γ, δ) is both γ+-Knaster
and γ++-Knaster, as can be seen by the standard ∆-system argument. We

show that A(γ, δ, ~X) is γ+-Knaster, and the γ++ case works exactly the same
way.

Suppose that (pα, Zα) for α < γ+ are conditions in A(γ, δ, ~X). We may
assume that all of the working parts pα have the same height. Since the
poset Add(γ, δ) is γ+-Knaster, we can find a subset J ⊆ γ+ of size γ+ such
that the conditions pα for α ∈ J are pairwise compatible.

Now suppose that we have two full conditions (pα, Zα) and (pβ, Zβ) for
α, β ∈ J . By our choice of J we know that p = pα∪pβ is a Cohen condition.
Observe that p has the same height as pα and pβ, and that every nonempty
column in p was either present already in both pα and pβ, or else it was
present already in pα and was empty in pβ, or vice versa. If we let Z =
Zα ∪ Zβ, it then follows that (p, Z) is a common strengthening of both
(pα, Zα) and (pβ, Zβ). This is because, as far as ladders z ∈ Zα are concerned,
no new rows were added to the Cohen part when it was strengthened from
pα to p, and similarly for Zβ . �

Lemma 18. Suppose that γ is regular, δ is an ordinal, and ~X is a ladder

system on some subset of δ. Then A(γ, δ, ~X) is < γ-closed.

The outright closure of the poset is a slight improvement over the pre-
sentation that Apter and Shelah chose; they could only guarantee strategic
closure, but the difference will not be significant.

Proof. Start with a descending sequence of conditions (pα, Zα) for α < λ <
γ. We can get a candidate for a lower bound by simply taking unions in
each coordinate, letting p =

⋃

α<λ pα and Z =
⋃

α<λ Zα, but we need to
verify that (p, Z) ≤ (pα, Zα). Consider any ladder z ∈ Zα and look at the
restrictions pα ↾ z and p ↾ z. For each new row in p ↾ z, we can find a β
with α < β < λ such that that row appears already in pβ ↾ z. But because
we assumed that (pβ, Zβ) ≤ (pα, Zα), it must be the case that that row has
unboundedly many 0s and 1s. �

Going forward, we will focus particularly on ladder systems supported on
very sparse sets, meaning those without any stationary initial segments. The
following is essentially [1, Lemma 2]: although they state the result for a very
special ladder system, an inspection of their proof shows that the argument
works in general.

Lemma 19. Let γ be inaccessible and δ an ordinal. Suppose that I ⊆ δ is
nonstationary in its supremum and all of its initial segments are nonstation-

ary in their suprema as well. Let ~X be a ladder system on I. Then there are

(nonempty) final segments yα of each xα ∈ ~X such that the yα are pairwise
disjoint.
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Lemma 20. Suppose γ is inaccessible and δ is an ordinal with cf(δ) ≥ γ.
Suppose that I ⊆ δ and that all of its proper initial segments are nonstation-

ary. Let ~X be a ladder system on I. Then a generic for A(γ, δ, ~X) is a total
function on δ × γ and each of its columns is a new subset of γ.

Proof. The proof follows the outline in [1, Section 4]. We only need to show
that, given a condition (p, Z), we may extend that condition in order to fill
any given empty cell with an arbitrary value. For simplicity, let us assume
that the height of p is ρ and that we are attempting to add a new bit to row
ρ. We start building the stronger Cohen condition by filling in that new cell
in the desired way (and potentially the lower cells in that column as well).
We still need to make this new Cohen condition uniform, and pay attention
to the promises we made regarding the ladders in Z.

Since γ is inaccessible, Z has size less than γ. Since the cofinality of δ is at
least γ, the ladders in Z are bounded below δ. It follows that we can apply
Lemma 19 to Z (seen as a ladder system) in order to find pairwise disjoint
final segments y of each z ∈ Z.

For each α ∈ supp(p), there is at most one such final segment y for which
α ∈ y. If there is no such y, we can set the bit in row ρ and column α
arbitrarily. On the other hand, if such a y exists, we set all the bits in row
ρ and columns in y in an alternating pattern to make sure that there are
unboundedly many 0s and 1s. The key fact is that these specifications do
not contradict each other, since the sets y are pairwise disjoint.

In this way, we extend p to a uniform condition p′ of height ρ + 1, and
supp(p′) contains supp(p) and at most one additional point. It is now clear
that (p′, Z) ≤ (p, Z), since we made sure to honour the promises in Z �

If δ is a regular cardinal and S ⊆ δ is stationary, recall that a ♣δ(S)-
sequence is a ladder system 〈xα ; α ∈ S〉 such that for any unbounded A ⊆ δ
there is some α ∈ S such that xα ⊆ A.3

Lemma 21. Suppose that γ < δ are regular cardinals, with γ inaccessible and
δ<δ = δ. Let S ⊆ δ be a nonreflecting stationary set consisting of points of

countable cofinality, and let ~X be a ♣δ(S)-sequence. Then A(γ, δ, ~X) forces
that γ is not measurable.

Proof. The proof follows the strategy of [1, Lemma 3]. We start with a

condition (p, Z) and a name U̇ for an ultrafilter on γ. For each i < δ, fix a
stronger condition (pi, Zi) ≤ (p, Z) which decides whether the ith column of

the generic is in U̇ or not. Let’s assume without loss of generality that all
these conditions (pi, Zi) force their corresponding columns to be in U̇ and
that all the Cohen parts pi have the same height. We may also assume that
i ∈ supp(pi) for all i. Our cardinal arithmetic assumption now allows us
to use a ∆-system argument to find an unbounded set I ⊆ δ such that the
conditions (pi, Zi) for i ∈ I are pairwise compatible (and the supports of the
pi actually form a ∆-system).

3The principle ♣δ(S) is usually stated in the apparently stronger form where there are
stationarily many α ∈ S for which xα ⊆ A. This formulation is equivalent to the one we
use; see [15, Observation I.7.2].
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We now use the ♣δ(S)-sequence: there is an α ∈ S for which xα ⊆ I.
If we now let p∗ =

⋃

i∈xα
pi and Z∗ =

⋃

i∈xα
Zi, it follows from what we

wrote before that (p∗, Z∗) is a strengthening of each (pi, Zi) for i ∈ xα. Now
consider the (even stronger) condition (p∗, Z∗∪{xα}); it really is a condition
since i was in the support of each pi, so xα ⊆ supp(p∗). This condition forces

that the ith columns of the generic, for i ∈ xα, are in U̇ , but it also forces
that the intersection of these columns is bounded in γ (in fact, bounded by

ρ, where ρ is the height of p∗). It follows that U̇ cannot be a name for a
countably complete nonprincipal ultrafilter on γ, so γ is not measurable in
the forcing extension. �

The following lemma is [1, Lemma 1] (and also [2, Lemma 1]); the reader
may find the proof there. The argument is much like the proof that Add(ω1, 1)
forces ♦.

Lemma 22. Let δ be a regular cardinal satisfying δω = δ. Then Sδ forces
that ♣δ(S) holds, where S is the generic stationary set added.

Since we now know that Sδ adds a ♣δ(S)-sequence, it makes sense to con-

sider the iteration Sδ ∗ A(γ, δ, ~X), where ~X is a ♣δ(S)-sequence added by
the first stage of forcing. Lemma 21 implies that this iteration will definitely
make γ nonmeasurable (assuming we start from GCH or a similar hypoth-
esis). The following lemma is a complement to that result and shows that
the measurability of γ may be resurrected. It corresponds to [2, Lemma 4].

Lemma 23. Let γ < δ be regular cardinals with γ inaccessible and δ satis-

fying δ<δ = δ. Then the iteration Sδ ∗ (A(γ, δ, ~X) × C(Ṡ)), where ~X is an
arbitrary ladder system on S, is equivalent to Add(δ, 1) ×Add(γ, δ).

Proof. We stick closely to the argument from [2]. Lemma 16 already

told us that Sδ ∗ C(Ṡ) is equivalent to Add(δ, 1), so it only remains to

show that, in the resulting extension V [S][C], A(γ, δ, ~X)V [S] is equivalent

to Add(γ, δ)V = Add(γ, δ)V [S][C]. Since in V [S][C], the formerly stationary
set S is no longer stationary, nor does it have any stationary initial segments,

Lemma 19 implies that we can disjointify the ladder system ~X by picking
final segments yα ⊆ xα for each α ∈ S.

The set δ can now be decomposed into the disjoint union of the yα plus the
remainder R = δ\

⋃

α yα. The key realization (as in the proof of Lemma 20) is

that we can honour the promises given by a condition (p, Z) ∈ A(γ, δ, ~X)V [S]

by strengthening p carefully on each yα (and these regions are pairwise dis-
joint and do not interfere with each other), and strengthening p quite freely
on the remainder R. In fact, we can decompose each condition (p, Z) into
the sequence of restrictions (p ↾ yα, {yα}) and (p ↾R, ∅). For each particular
α, the ordering between the the conditions restricted to yα is < γ-closed,
and there are γ many of these restricted conditions. The same result quoted
in the proof of Lemma 16 now implies that the poset of these restrictions
to yα is equivalent to Add(γ, 1). At the same time, the restrictions to R
do not make any reference to the side conditions and therefore behave like

Add(γ,R). In this way we produce an equivalence between A(γ, δ, ~X)V [S]

and Add(γ,R) ×
∏

α∈S Add(γ, 1), where the product at the end is taken
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with < γ-support, and we can conclude that A(γ, δ, ~X)V [S] is equivalent to
Add(γ, δ). �

We conclude this list of facts with the following observation relating to

the directed closure of A(γ, δ, ~X). While this poset is generally not even
countably directed closed, we can recover some amount of directed closure
in cases which will be of interest to us.

Lemma 24. Suppose that j : M → N is an elementary embedding between
inner models with critical point γ, which is inaccessible in M . Suppose ad-

ditionally that g is A(γ, δ, ~X)M -generic over M and that j[g] ∈ N . Then
⋃

j[g] ∈ N is a condition in j(A(γ, δ, ~X)M ) and, moreover, is a lower bound
for the set of conditions j[g].

Proof. First, consider a condition (p, Z) ∈ A(γ, δ, ~X)M and its image j((p, Z)).
Since |p|M < γ and |Z|M < γ (due to the inaccessibility of γ in M), the condi-
tion j((p, Z)) is essentially the same as (p, Z), except that the αth nonempty
column in p moves to the j(α)th column in j(p) and each ladder in z ∈ Z
stretches into j(z) = j[z].

Now consider (p∗, Z∗) =
⋃

j[g] ∈ N . First, let us see that it is really a

condition in j(A(γ, δ, ~X)M ). The Cohen part p∗ is just the union of all the
j-images of the Cohen parts of conditions in g. Since each condition in g
has a uniform Cohen part (and their heights are cofinal in γ), it follows that
p∗ is also a uniform Cohen condition of height γ. Secondly, it is clear that
every ladder in Z∗ arises as the j-image of a ladder in one of the conditions

from g, and since all of those were in ~X, every ladder in Z∗ is in j( ~X). The
same consideration also tells us that every ladder in Z∗ is contained in the
support of the condition p∗. Together, this means that (p∗, Z∗) really is a
condition.

Finally, let us see that (p∗, Z∗) is a lower bound for j[g]. To that end,
take some (p, Z) ∈ g. It is clear that p∗ ≤ j(p) and that Z∗ ⊇ j(Z). We
only need check that the working parts were extended appropriately with
respect to the ladders in j(Z) = j[Z]. So pick a ladder z ∈ Z and consider
the restriction (p∗ \ j(p)) ↾ j(z). Suppose that the ηth row of this restriction
is nonempty; we need to see that there are infinitely many 0s and 1s in this
row. By genericity, some condition in g has a nonempty ηth row, and, since
g is a filter, we may find some (q,W ) ≤ (p, Z) in g with a nonempty ηth row.

By the definition of the ordering in A(γ, δ, ~X)M it follows that the restriction
(q \ p) ↾ z has infinitely many 0s and 1s in the ηth row. By elementarity, the
restriction (j(q) \ j(p)) ↾ j(z) also has infinitely many 0s and 1s in the ηth
row (since η is less than γ, the critical point of j). But since p∗ extends j(q),
our desired conclusion follows. �

3.2. Some additional facts about forcing and elementary embed-

dings. In this subsection we collect some facts about forcing and ultrapow-
ers, some more standard than others, that we will need in throughout our
paper. We indicate at each the parallel result from [3] or [5], where proofs
are also given.

Fact 25 ([5, Proposition 9.1]). Suppose that M and N are transitive models
and j : M → N is an elementary embedding. Let P ∈ M be a poset, let G
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be P-generic over M and let H be j(P)-generic over N . If j[G] ⊆ H then
j can be extended to an elementary embedding j : M [G] → N [H] satisfying
j(G) = H.

Fact 26 ([3, Section 1.2.2, Fact 3]). With the notation of the previous fact,
if j : M → N is a (κ, λ)-extender embedding, then so is the lift j : M [G] →
N [H]. In particular, if i is the ultrapower by a normal measure on κ, then
so is j.

Recall that, if κ is a cardinal, a poset P is called ≤ κ-distributive (or < κ-
distributive) if forcing with P does not add any new sequences of ordinals of
length ≤ κ (or < κ). This is equivalent to saying that the intersection of
≤ κ (or < κ) many open dense subsets of P is dense.

Fact 27 ([3, Section 1.2.2, Fact 2]). With the notation of the previous fact,
suppose that j is a (κ, λ)-extender embedding and that P is ≤ κ-distributive
in M . Then j[G] generates a j(P )-generic filter over N .

Fact 28 ([3, Section 1.2.3, Fact 1]). Let M be an inner model, let P ∈ M
be a poset and let κ be a cardinal. Suppose that P is < κ-closed (in V ) and
that the set of maximal antichains of P in M has cardinality at most κ in
V . Then there is a P -generic filter G over M in V .

Fact 29 ([3, Section 1.2.3, Fact 3]). Let M be an inner model, let P ∈ M be
a poset and let κ be a cardinal. Suppose that κM ⊆ M and that P is κ+-cc
in V . Let G be P-generic over V . Then M [G] is an inner model of V [G]
and κM [G] ⊆ M [G] in V [G].

Recall that if P is a poset and Q̇ is a P-name for a poset, the term forcing
Term(P, Q̇) consists of P-names for elements of Q̇, ordered by letting σ ≤ τ

if P 
 σ ≤ τ . It is easy to see that if G ⊆ P and H ⊆ Term(P, Q̇) are generic

over V , then {σG ; σ ∈ H} ⊆ Q̇G is generic over V [G] (see [3, Section 1.2.5,
Fact 1] for a proof).

Lemma 30 ([3, Section 1.2.5, Fact 2]). Suppose that κ is a cardinal satisfying

κ<κ = κ and let P be a κ-cc forcing of size κ. Let Q̇λ be the P-name for
Add(κ, λ) in the extension. Then Term(P, Q̇λ) is forcing equivalent, in V ,
to Add(κ, λ).

Lemma 31. Let κ be a measurable cardinal satisfying 2κ = κ+ and let
j : V → M be the ultrapower by a normal measure on κ. Given any finite
n ≥ 1, the forcings j(Add(κ, κ+n)) and Add(κ+, κ+n) are equivalent in V .

Cummings gave a proof of this lemma for n = 2 in [3] (attributing the
proof to Woodin), and Gitik and Merimovich proved the generalization to
all n in [8, Lemma 3.2].

Lemma 32. Let κ be a regular cardinal, let P be some < κ-distributive
forcing notion, and let Q be a κ-cc forcing notion. If P forces that Q is κ-cc,
then Q forces that P is < κ-distributive.

Proof. Let G × H be P × Q-generic over V and consider a sequence ~x of
ordinals in V [H][G] of some length less than κ. We wish to see that ~x ∈ V [H].
Since ~x ∈ V [H][G] = V [G][H] and Q is κ-cc in V [G], we can find a nice Q-
name σ for ~x in V [G] that can also be coded by a sequence of ordinals of
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length < κ. Since P is < κ-distributive, this name σ is already in V , and so
~x must appear in V [H], as desired. �

The following key observation was already implicit in Cummings’ proof
of Theorem 3. It shows that, as long as one can arrange the value of 2κ

appropriately, the apparently difficult part of the capturing property tends
to follow for free from the construction.

Lemma 33. Suppose that j : V → M is a (κ, λ)-extender embedding and
2κ ≥ λ. Then j is the ultrapower by a normal measure on κ.

Proof. Let i : V → N be the ultrapower by the normal measure derived from
j and let k : N → M be the factor embedding. Consider some x ∈ M . Since
j is a (κ, λ)-extender embedding, we can write x = j(f)(α) for some α < λ
and some function with domain κ. By Lemma 6 the critical point of k is
above λ and therefore

x = j(f)(α) = k(i(f))(α) = k(i(f)(α)) ,

which shows that k is surjective. It follows that k is an isomorphism of
transitive structures and thus trivial, so we can conclude that j = i. �

3.3. The proof. We are now ready to prove the second main theorem. We
restate it here for convenience.

Theorem 34. If κ is (κ + 2)-strong, then there is a forcing extension in
which CP(κ, κ+) holds, 2κ = κ++, and κ is the least measurable.

This theorem shows that the hypothesis in Proposition 10 is in some sense
optimal: if 2κ > κ+ then LCP(κ, κ+) is not enough to conclude that the
Mitchell rank of κ is large. In fact, even CP(κ, κ+) can hold at the least
measurable cardinal.

Proof. We make some simplifying assumptions to start with. We may assume
that GCH holds and that the (κ + 2)-strongness of κ is witnessed by a
(κ, κ++)-extender embedding j : V → M . We have the usual diagram

V M

N

j

i
k

where i is the induced normal ultrapower map. Using the GCH and Lemma 6,
we can see that the critical point of k is (κ++)N . Using the argument from [4],
we may also assume that, in V , there is an i(Add(κ, κ++))-generic filter over
N .

The following observation will be important, and we include the straight-
forward proof.

Claim. The map k is a ((κ++)N , κ++)-extender embedding. That is,

M = {k(g)(α);α < κ++,dom(g) = (κ++)N} .

Proof. We assumed that we could write M in the form

M = {j(f)(α);α < κ++,dom(f) = κ} .
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Now take an arbitrary element j(f)(α) of M . We can rewrite it as (k(i(f))(α)).
If we now take g = i(f)↾(κ++)N , it is not hard to see that j(f)(α) = k(g)(α),
showing inclusion in one direction.

For the other direction, take an element of the form k(g)(α). The function
g itself is of the form i(F )(κ) for some function F with domain κ, since N
is the ultrapower of V by a normal measure on κ. This means we can write
k(g)(α) = k(i(F )(κ))(α) = (j(F )(κ))(α), since the critical point of k is

above κ. From this point, it is not hard to find a function F̃ and an ordinal
β < κ++ such that (j(F )(κ))(α) = j(F̃ )(β). �

We now specify the forcing we will use. Let Pκ be the Easton support iter-

ation of length κ which forces at inaccessible γ < κ with Sγ++ ∗A(γ, γ++, ~X),

where ~X is some ♣γ++(S)-sequence added by Sγ++ .4 Let Gκ be Pκ-generic
over V . We shall try to lift the embeddings i and j through this forcing.

We can factor j(Pκ) as

j(Pκ) = Pκ ∗ Sκ++ ∗ A(κ, κ++, ~Y ) ∗ Ptail ,

where ~Y is the ♣κ++-sequence used by the forcing at stage κ in M [Gκ] and
Ptail is the remainder of the forcing between κ and j(κ). Similarly, we can
rewrite i(Pκ) as

i(Pκ) = Pκ ∗ (Sκ++ ∗A(κ, κ++, ~Y ′))N
Pκ

∗ P′
tail ,

where ~Y ′ and P′
tail are defined analogously. Since Gκ is generic over all of V ,

it is definitely generic over N and M . The forcing Pκ is below the critical
point of the embedding k, so we can easily lift it to k : N [Gκ] → M [Gκ].
Moreover, since Pκ is κ-cc, N [Gκ] will be closed under κ-sequences in V [Gκ].

We now claim that, in V [Gκ], there is an (Sκ++)N [Gκ]-generic over N [Gκ],
and moreover that this generic amounts to a nonstationary subset of (κ++)N

(which is an ordinal of cofinality κ+ in V ) in V [Gκ]. This follows from

Lemma 16, which tells us that the iteration Sκ++ ∗ C(Ṡ) is equivalent to

Add(κ++, 1). Since V [Gκ] has an Add(κ++, 1)N [Gκ ]-generic over N [Gκ] (as
this forcing is ≤ κ-closed in V [Gκ] and only has κ+ many dense subsets from

N [Gκ]), we can also extract the generic for S
N [Gκ]
κ++ . Furthermore, this generic

stationary set will be nonstationary in V [Gκ], as witnessed by the generic

club added by C(Ṡ).

So let S′ ∈ V [Gκ] be (Sκ++)N [Gκ]-generic over N [Gκ]. This means that
S′ is, in N [Gκ][S

′], a nonreflecting stationary subset of (κ++)N [Gκ]. In par-
ticular, none of its proper initial segments are stationary in their supremum.
This statement is upwards absolute, so V [Gκ] ⊇ N [Gκ][S

′] agrees about the
nonstationarity of the initial segments of S′. But more than this, S′ itself is
nonstationary in its supremum (κ++)N , as we noted in the previous para-
graph. Finally, observe that (κ++)N < κ++; this is because i(κ) > (κ++)N

and i(κ) has size 2κ = κ+ in V , since i is the ultrapower by a normal measure
on κ. Together, these facts imply that S′ is a condition in the real Sκ++. Let
S be some Sκ++-generic over V [Gκ] containing S′. The embedding k lifts

4It does not matter much how we pick these ♣-sequences. One possible way is to fix
in advance a wellordering of some large Hθ and always pick the least appropriate name.
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again to k : N [Gκ][S
′] → M [Gκ][S]; this is because the critical point of k is

(κ++)N , which means that k[S′] = S′ ⊆ S by the choice of S.

Now consider the ♣(κ++)N -sequence ~Y ′ used by i(Pκ) at stage κ. Since the

critical point of k is (κ++)N , the sequence ~Y ′ is simply an initial segment

of the sequence ~Y = k(~Y ′) used by j(Pκ) at stage κ.5 It follows that, if we

look at the forcing A(κ, κ++, ~Y ) in V [Gκ][S], we can write it as a product

(1) A(κ, κ++, ~Y ) ∼= A(κ, (κ++)N , ~Y ′)× A(κ, κ++ \ (κ++)N , ~Y ) .

There is a slight abuse of notation in the second factor: the set κ++\(κ++)N

is not an ordinal, and the ladder system ~Y is defined on a superset of it.
Nevertheless, we trust that our meaning is clear. Observe also that, since
Sκ++ does not add bounded subsets to κ++, we know

A(κ, (κ++)N , ~Y ′)V [Gκ][S] = A(κ, (κ++)N , ~Y ′)V [Gκ] = A(κ, (κ++)N , ~Y ′)N [Gκ][S′] .

Let g′ be A(κ, (κ++)N , ~Y ′)-generic over V [Gκ][S]; in particular, it is also
generic over N [Gκ][S

′]. Since g′ is generic for a forcing that is κ+-cc in V [Gκ],
it follows that N [Gκ][S

′][g′] is still closed under κ-sequences in V [Gκ][g
′].

This, together with the fact that P′
tail is ≤ κ-strategically closed in V [Gκ][g

′]
and has only κ+ many dense subsets from this model, allows us to build,
using Fact 28 in V [Gκ][g

′], a P′
tail-generic G′

tail over N [Gκ][S
′][g′] and lift the

embedding i to

i : V [Gκ] → N [Gκ][S
′][g′][G′

tail] .

We can now force over V [Gκ][S], using the factorization (1), to complete

g′ to g which is fully A(κ, κ++, ~Y )-generic over V [Gκ][S]. In the extension
V [Gκ][S][g] we can finally also lift the map k through the last two stages of
forcing and obtain

k : N [Gκ][S
′][g′][G′

tail] → M [Gκ][S][g][Gtail] ,

where Gtail is the filter generated by the pointwise image of G′
tail. The lift

through g′ is straightforward: the critical point of k is (κ++)N , so k[g′] =
g′ ⊆ g. On the other hand, the forcing P′

tail is at least ≤ (κ++)N -strategically
closed in N [Gκ][S

′][g′], so Fact 27 together with the knowledge that k is a
((κ++)N , κ++)-extender embedding shows that the pointwise image of G′

tail

really does generate a generic filter.
Composing the two lifts of i and k gives us a lift of j. The situation

is summarized in the following diagram; we should keep in mind that the
pictured embeddings exist in V [Gκ][S][g].

V [Gκ] M [Gκ][S][g][Gtail]

N [Gκ][S
′][g′][G′

tail]

j

i k

5We could have arranged matters so that ~Y was also a ♣κ++(S)-sequence in V [Gκ][S],
but this will not be important for the argument.
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As the final act of forcing, let C be C(S)V [Gκ][S]-generic over V [Gκ][S][g].
We claim that V [Gκ][S][g × C] is our desired final extension. Recall that
Lemma 23 tells us that we can also write this extension as V [Gκ][H

0×H2] for
some generic H0 ⊆ Add(κ, κ++)V [Gκ] and H2 ⊆ Add(κ++, 1)V [Gκ]. We will
work from now on in this final model, using this alternative representation,
and try to lift the embedding j.

By Lemma 30 we know that Term(Pκ,Add(κ, κ
++)) is forcing equivalent

to Add(κ, κ++) in V . It follows from this by elementarity that the poset
Term(i(Pκ), i(Add(κ, κ

++))) is equivalent to i(Add(κ, κ++)) in N . Now
we return to an assumption we made at the start of the proof. Since
V has an i(Add(κ, κ++))-generic over N , we can use this equivalence to
also find a Term(i(Pκ), i(Add(κ, κ

++)))-generic over N . Recalling the key
property of term forcing stated just before Fact 30, we can combine this
term forcing generic with the i(Pκ)-generic Gκ ∗ S′ ∗ g′ ∗G′

tail to extract an

i(Add(κ, κ++)V [Gκ])-generic K ′ over N [Gκ][S
′][g′][G′

tail] in V [Gκ][g
′]. Since

the forcing i(Add(κ, κ++)V [Gκ]) is < i(κ)-distributive in N [Gκ][S
′][g′][G′

tail],

Fact 27 again tells us that the pointwise image k[K ′] generates a j(Add(κ, κ++)V [Gκ])-

generic filter K̃0 over M [Gκ][S][g][Gtail]. It is not necessarily the case that

j[H0] ⊆ K̃0, but we can surgically6 alter K̃0 to obtain another j(Add(κ, κ++)V [Gκ])-
generic K0 over M [Gκ][S][g][Gtail] for which this will be the case, and we
are able to lift j to

j : V [Gκ][H
0] → M [Gκ][S][g][Gtail][K

0] .

We can now forget about the maps i and k and focus solely on j. To
complete the lift, observe that Add(κ++, 1)V [Gκ] remains ≤ κ+-distributive
in V [Gκ][H

0] by Easton’s lemma, and so Fact 27 implies that the filter j[H2]
generates a generic K2 over M [Gκ][S][g][Gtail][K

0], which gives us our final
lift

j : V [Gκ][H
0 ×H2] → M [Gκ][S][g][Gtail][K

0 ×K2] .

Since j was originally a (κ, κ++)-extender embedding, the same remains
true for the lifted embedding, by Fact 26. Since we clearly have 2κ = κ++

in the final model, Lemma 33 tells us that the lift j is the ultrapower by a
normal measure.

Claim. The embedding j witnesses CP(κ, κ+) in V [Gκ][H
0][H2].

Proof. Let us write M∗ = M [Gκ][S][g][Gtail][K
0][K2]. We need to show that

every subset x of κ+ in V [Gκ][S][C][g] appears in M∗. To that end, we will
first show that x is already in V [Gκ][S][g]. This follows from Lemma 32: the

forcing to add C is < κ++-distributive in V [Gκ][S], and A(κ, κ++, ~Y )V [Gκ][S]

is κ+-cc in V [Gκ][S][C], since it is equivalent to Add(κ, κ++) in that model,
as we explained in the proof of Lemma 23. Lemma 32 then implies that
forcing to add C to V [Gκ][S][g] could not have added x, and so x is already
in that model.

We next show that x has a name in M [Gκ]. To start with, let σ ∈ V [Gκ][S]

be a nice A(κ, κ++, ~Y )-name for x. Observe that A(κ, κ++, ~Y ) is actually a

6See [5, Theorem 25.1] or [4, Theorem 1, Second step] for fairly detailed examples of
this concrete use of the surgery method
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subset of H
V [Gκ]
κ++ (even though it is not an element of V [Gκ]), so the name

σ is as well. Moreover, since A(κ, κ++, ~Y ) is κ+-cc, σ has size κ+. But as
a κ+-sized subset of V [Gκ], the name σ could not have been added by the

≤ κ+-distributive forcing to add S, and we conclude that σ ∈ H
V [Gκ]
κ++ . Now,

since Pκ is κ-cc and P(P(κ)) ∈ M , we know that H
M [Gκ]
κ++ = H

V [Gκ]
κ++ , so the

name σ also appears in M [Gκ].
It follows that we can interpret the name σ by the generic filter g in

M [Gκ][S][g] to find the set x in that model. Finally, we can conclude that
M [Gκ][S][g] contains all the subsets of κ+ from V [Gκ][S][C][g], and so M∗ ⊇
M [Gκ][S][g] does as well. �

We have shown that CP(κ, κ+) holds in V [Gκ][H
0 × H2]. To finish the

proof we also need to see that κ is the least measurable cardinal in that
model. This follows easily from the way we designed the forcing Pκ. If γ < κ
were measurable in V [Gκ][H

0 ×H2], it must definitely be inaccessible in V .
It follows that we did some nontrivial forcing at stage γ in the iteration Pκ

and Lemma 21 implies that after the stage γ forcing γ is not measurable.
The remaining forcing to get from that model to the model V [Gκ][H

0 ×H2]
is at least ≤ 22

γ
-strategically closed, which means that it could not have

possibly added any measures on γ. We can therefore conclude that γ remains
nonmeasurable in V [Gκ][H

0 ×H2]. �

The iteration we used is essentially the one described in [1, Section 4]. It
follows from the results outlined there that, had we additionally assumed
in Theorem 34 that κ were κ+-supercompact, this would remain true in the
resulting extension.

Corollary 35. If GCH holds and κ is κ+-supercompact, then there is a
forcing extension in which CP(κ, κ+) holds, and κ is κ+-supercompact and
the least measurable.

By starting with a stronger large cardinal hypothesis and modifying the
forcing iteration appropriately, we can push up the value of 2κ beyond just
κ++ and capture even more powersets. In order to state the results as
simply as possible, we make the following definition to add some convenient
stages to the hierarchy of strong cardinals.

Definition 36. If X is a set, a cardinal κ is called X-strong if there is an
elementary embedding j : V → M with critical point κ and M a transitive
inner model with X ∈ M .

Theorem 37. Assume GCH holds and suppose that κ is Hλ-strong for some
regular cardinal λ ≥ κ++. Then there is a forcing extension in which κ is
the least measurable cardinal, 2κ = λ, and CP(κ,< λ) holds (meaning that a
single normal measure on κ captures every P(µ) for µ < λ).

Proof. The argument is much like the proof of Theorem 34, with a handful
of changes: we will modify the forcing used slightly, and, more importantly,
instead of preparing the model as in [4], we use a result of the second author
from [12] and pass to a forcing extension in order to be able to assume that
the following hold in V :
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(1) 2κ = κ+ and 2κ
+

= λ.
(2) κ is Hλ-strong and this is witnessed by a (κ, λ)-extender embedding

j : V → M ; moreover, M is closed under κ-sequences.
(3) There is a function ℓ : κ → κ such that j(ℓ)(κ) = λ.
(4) There is in V an M -generic filter for the poset j(Add(κ, λ)).

Since λ is regular, we may even assume that ℓ(γ) is regular whenever γ
is an inaccessible cardinal. The initial iteration Pκ will now be an Easton-
support iteration which forces at inaccessible cardinals γ < κ with the forcing

Sℓ(γ) ∗A(γ, ℓ(γ), ~X), with ~X being an appropriate ♣-sequence, provided that

γ is inaccessible in V Pγ .
Note that, since Pκ is κ-cc, there will be nontrivial forcing at stage κ of

the iteration j(Pκ) and we can write

j(Pκ) = Pκ ∗ Sλ ∗ A(κ, λ, ~Y ) ∗ Ptail .

The full forcing that will give us the theorem is then

P = Pκ ∗ Sλ ∗ (A(κ, λ, ~Y )× C(Ṡ)) .

The argument now proceeds very much like the proof of Theorem 34, but with
some simplifications due to the difference between the preparations from [3]
and [12]. We sketch the argument here, referring back to the previously given
proof and noting the main differences.

Let Gκ ∗ S ∗ g be Pκ ∗ Sλ ∗ A(κ, λ, ~Y )-generic over V . We wish to lift
the embedding j : V → M to the extension V [Gκ] in the model V [Gκ][S][g].
Given the factorization of j(Pκ) above, we need to find a Ptail-generic over
M [Gκ][S][g]. Previously we worked with the embeddings i and k, but now
we will be able to do without.7

Consider any dense open subset D of Ptail in M [Gκ][S][g]. Since j was a
(κ, λ)-extender embedding, this D has the form D = j(f)(α)Gκ∗S∗g for some
f : κ → Vκ and some α < λ. For each such f , let

Df ⊆ {j(f)(α)Gκ∗S∗g;α < λ} ∈ M [Gκ][S][g]

be the set of dense open subsets of Ptail that can be written in the indicated
form. This set has size (at most) λ in M [Gκ][S][g]. Since the first stage of
forcing in Ptail occurs beyond λ, the forcing Ptail is ≤ λ-strategically closed
in M [Gκ][S][g]. This means that

⋂

Df ∈ M [Gκ][S][g] is a dense subset of
Ptail.

Finally, observe that there are 2κ = κ+ many functions f (counted in V ),
and therefore only κ+ many dense sets

⋂

Df . Since the forcing Pκ ∗ Sλ ∗

A(κ, λ, ~Y ) is composed of a κ+-cc part, a < λ-distributive part, and another
κ+-cc part, applying Fact 29 twice allows us to conclude that M [Gκ][S][g] is
closed under κ-sequences in V [Gκ][S][g]. It follows that Ptail remains ≺ κ+-
strategically closed in V [Gκ][S][g], which will allow us to line up and meet
all the dense sets

⋂

Df in turn, and so build a generic Gtail for Ptail. This
allows us to lift the embedding j to

j : V [Gκ] → M [Gκ][S][g][Gtail]

7In fact, we could have employed the methods of [12] even in the previous theorem,
but we decided to give more details for the specific case 2κ = κ++. The proof we gave
will also serve as a template for our proof of Theorem 40.
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in V [Gκ][S][g].
For the final step of the lift, we use Lemma 23 to see P as the iteration

Pκ∗(Add(κ, λ)×Add(λ, 1)). The lift through the forcing Add(κ, λ) proceeds
as in the proof of Theorem 34, except that we deal directly with the embed-
ding j instead of passing through i and k as before. We apply Lemma 30
to j(Term(Pκ,Add(κ, λ))) in M and use our starting assumption that we
have an M -generic for that poset in V ; a surgery argument like the one we
alluded to before allows us to build a suitable j(Add(κ, λ))-generic K0 over
M [Gκ][S][g][Gtail] and lift j to

j : V [G][H0] → M [Gκ][S][g][Gtail][K
0] .

The lift through the final forcing Add(λ, 1)V [Gκ] is handled exactly as in
the proof of Theorem 34. The proof that this lifted embedding witnesses
CP(κ, λ) in the final model and that κ is the least measurable there mirror
our previous arguments as well. �

Conversely, we can extend Cummings’ argument to show that the large
cardinal hypothesis we used above is optimal.

Theorem 38. Suppose that CP(κ,< λ) holds for some regular cardinal λ ≥
κ++. Then κ is Hλ-strong in an inner model. Moreover, this inner model
satisfies GCH, and so κ is (κ+ α)-strong there, where λ = κ+α.

Proof. This is essentially standard. Suppose that j : V → M is an ultrapower
embedding by a normal measure witnessing CP(κ,< λ); it follows that Hλ ∈
M .8 We assume that there is no inner model with a strong cardinal and let K

be the core model with the (nonoverlapping) extender sequence ~E. It follows

that j ↾K is the result of a normal iteration of ~E and, since the critical point
of j is κ, the first extender applied in this iteration must have index (κ, η)

for some η. Since ~E is coherent, the sequence j( ~E) has no extenders with
indices (κ, β) for β ≥ η. But since M captured all of Hλ, we must have

K ↾ λ = KM ↾ λ, and so ~E and j( ~E) must agree up to λ. It follows that
η ≥ λ and so o(κ) ≥ λ+ 1 (and κ is Hλ-strong) in K.

Since K satisfies GCH, V K
κ+α is a transitive set of size κ+α = λ there. It

follows that the transitive closure of each element of V K
κ+α has size strictly

less than λ, so these elements appear in the codomain of the embedding
witnessing the Hλ-strongness of κ in K. �

The preparation from [12] works even for singular λ of cofinality strictly

above κ (if the cofinality of λ is equal to κ+, we get 2κ
+

= λ+ in (1) above). It
is unclear, however, whether Theorem 37 can allow for this weaker hypothesis
(in particular, Lemma 23 seems to rely crucially on the second parameter in
the Apter–Shelah forcing being regular).

Question 39. Can Theorem 37 be improved to allow for arbitrary λ of co-
finality strictly above κ?

8Recall that CP(κ,< λ) implies 2κ ≥ λ, so Hλ being in M is weaker than Vκ+α being
in M , where λ = κ+α. In particular, κ might not be (κ+ α)-strong in V .
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Another question raised by Theorem 37 is whether CP(κ, λ) can fail for
the first time at some κ+ < λ < 2κ. The following theorem shows that the
answer is yes.

Theorem 40. Suppose GCH holds and κ is Hκ+3-strong. Then there is a
forcing extension in which κ is the least measurable, 2κ = κ+3, and CP(κ, κ+)
holds, while LCP(κ, κ++) fails.

One would expect that it should be possible to force 2κ = κ+3 and
CP(κ, κ+) starting from a large cardinal hypothesis weaker than an Hκ+3-
strong cardinal κ; an Hκ+2-strong and κ+3-tall cardinal κ likely suffices (re-
call that κ is λ-tall if there is an elementary embedding j : V → M with
critical point κ such that M is closed under κ-sequences and j(κ) > λ;
see [11]). However, the proof that we are about to give seems to require
a stronger hypothesis in order to deduce a connection between the forcings
at stage κ over V and over the target model (in particular, the forcings to
add a nonreflecting stationary subset to κ+3 should look sufficiently simi-
lar). It is nevertheless plausible, if unclear, that the required constellation
of properties can be forced using a weaker hypothesis.

The proof of this theorem is similar to the proof of Theorem 34, but with
some further technical complications. The idea should, nevertheless, be clear:
we will attempt to force as in the proof of that theorem, but at the end also
adding, in a product manner, a new subset to κ++. We will be able to show
that this new subset cannot be captured by any normal ultrapower on κ. For
this strategy to work out, we will need to modify the preparatory forcing in
order to accommodate this additional forcing at stage κ (and also to obtain
2κ = κ+3 at the end); in fact, we will fold the preparation of Theorem 34
into the main forcing itself.

Proof. As always, let j : V → M be a (κ, κ+3)-extender embedding witness-
ing Hκ+3-strongness, where M is closed under κ-sequences. We draw the
usual diagram

V M

N

j

i
k

where i is the induced normal ultrapower. Note that the critical point of
k is (κ++)N and that (κ+3)N is an ordinal of size κ+ in V . Let us write
ν = (κ+3)N .

The forcing iteration we will build will be quite similar to the one used
in Theorem 34, with the addition of a Cohen forcing factor at κ+ that will
provide a kind of indestructibility (in Theorem 34, this role was played by
the i(Add(κ, κ++))-generic over N). This insertion of additional forcing will
not do significant damage to our arguments for that previous theorem, but
some care will still be needed. The second point of departure from our
previous arguments is the mismatch between the critical point of k and ν,
the ordinal of interest (in our previous argument, we were only pushing 2κ

up to κ++ and the critical point of k, being (κ++)N matched that). This will
complicate some of our arguments, since k will now nontrivially move some
of the important objects (that is, subsets of ν) we will be working with.
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Let Pκ be an Easton-support iteration which forces at inaccessible car-

dinals γ < κ with the forcing Sγ+3 ∗ (A(γ, γ+3, ~X) × Add(γ+, γ+3)). The
images of this forcing via j and i can be written as

j(Pκ) = Pκ ∗ Sκ+3 ∗ (A(κ, κ+3, ~Y )×Add(κ+, κ+3)) ∗ Ptail

and

i(Pκ) = Pκ ∗
(

Sκ+3 ∗ (A(κ, κ+3, ~Y ′)×Add(κ+, κ+3))
)NPκ

∗ P′
tail .

Let Gκ be Pκ-generic over V . We proceed similarly to the proof of Theo-
rem 34. In V [Gκ] there is an unbounded S′ ⊆ ν which is (Sκ+3)N [Gκ]-generic
over N [Gκ]. Moreover, S′ is nonstationary in ν in V [Gκ] for the same rea-
sons as in the proof of Theorem 34. Together, this means that, in V [Gκ], the
set S′ ⊆ ν is nonstationary, and all of its initial segments are nonstationary
in their suprema as well.

We wish to see that the pointwise image k[S′] has the same property: it
itself and all of its initial segments are nonstationary in their suprema. For
suppose that for some ordinal γ the initial segment k[S′] ∩ γ is stationary
in γ. The inverse of k, defined on its range, is an injective map satisfying
k−1(α) ≤ α for each α. If there were a stationary subset of k[S′] on which the
above inequality were strict, then Fodor’s lemma would imply that k−1 must
be constant on a further stationary subset, which contradicts its injectivity.
On the other hand, if k−1(α) = α for a stationary subset T of k[S′]∩γ, then
T ⊆ S′ is stationary in γ, contradicting the fact that S′ has no stationary
initial segments.

Since k[ν] is bounded in κ+3, as ν has size only κ+, the set k[S′] is a
condition in Sκ+3 . Let S be a generic for this forcing over V [Gκ] such that
k[S′] is an initial segment of S.

Let g′×h′ be generic for A(κ, ν, ~Y ′)×Add(κ+, ν) over V [Gκ][S]. Observe
that 2κ = κ+ still holds in V [Gκ][S][g

′×h′] and the model N [Gκ][S
′][g′×h′]

remains closed under κ-sequences in V [Gκ][S
′][g′×h′], since we obtained this

extension by a combination of κ+-cc forcings, in which case Fact 29 applies,
and of ≤ κ-distributive forcings. It follows that we may build a P′

tail-generic
G′

tail over N [Gκ][S
′][g′ × h′] in V [Gκ][S][g

′ × h′]. This already allows us to
partially lift the embedding i to

i : V [Gκ] → N [Gκ][S
′][g′ × h′][G′

tail]

in the model V [Gκ][S][g
′ × h′].

Before we continue lifting the entire diagram, we make a small digression
which will be useful later in the argument.

Claim. The embedding i can be lifted in the model V [Gκ][S][g
′ × h′] to an

embedding i+ defined on this whole model.

Proof. For the duration of this proof let us write V + = V [Gκ] and N+ =
N [Gκ][S

′][g′×h′][G′
tail]. Until now we have built an embedding i : V + → N+

in V +[S][g′ × h′]. We recall that 2κ = κ+ holds in V +[S][g′ × h′] and that
N+ is closed under κ-sequences in this model. Since the forcing to add S
is < κ+3-distributive, we can apply Fact 27 to transfer the generic S along i
and get a further lift i : V +[S] → N+[i(S)]. Furthermore, N+[i(S)] remains
closed under κ-sequences in V +[S][g′ × h′].
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Consider now the forcing A(κ, ν, ~Y ′) that added g′. Its image i(A(κ, ν, ~Y ′))
is i(κ+)-cc, has size i(κ+) (since ν had size κ+ in V ), and is < i(κ)-closed in
N+[i(S)].

We pause here to give a brief calculation. Recall that ν = (κ+3)N and
that N was closed under κ-sequences in V . We can conclude from this that
the cofinality of ν in V is κ+ (equal to its cardinality). The same is true in
V +[S], since the forcing Pκ was κ-cc and the forcing to add S was < κ+3-
distributive. It follows by elementarity that the cofinality of i(ν) in N+[i(S)]
is i(κ+).

Let us return to the forcing i(A(κ, ν, ~Y ′)). Using the fact that 2κ = κ+ in
V +[S][g′ × h′], we can enumerate all of the maximal antichains of this poset
from N+[i(S)] as Aα for α < κ+. Moreover, each of these antichains only
contains i(κ) many conditions, each of which in turn has support of size less
than i(κ). It follows that the support of each maximal antichain Aα has size
at most i(κ) and, by the cofinality calculation in the previous paragraph,
this support must therefore be bounded in i(ν).

The embedding i arose as a normal ultrapower of V by a measure on κ.
It follows that i, and all of its lifts, are continuous at ν (and all ordinals
of cofinality not equal to κ), which means that i(ν) = supα<ν i(α). This
observation lets us conclude that, since the support of each antichain Aα

is bounded in i(ν), it must be bounded by some ordinal i(βα) for βα <

ν. In other words, Aα is contained in i(A(κ, βα, ~Y
′)).9 By increasing the

bound as necessary, we may even assume that the βα form an increasing
sequence converging to ν. We shall use these maximal antichains to build an
appropriate generic object over N+[i(S)]. The argument we use is similar, if

simpler, to the one used in the construction of the generic H6,0
α0 in [2, Lemma

9], although the general strategy goes back to Magidor [13].

As a notational device, if (p, Z) ∈ A(κ, ν, ~Y ′) is a condition and β < ν is
an ordinal, we will consider the restriction (p, Z)↾β = (p↾(β×κ), Z ∩P(β)).
Similarly, if S is a set of conditions, we write S ↾ β for the set of restrictions
of the conditions in S. It should be clear that (p, Z) ↾ β is a condition in

A(κ, β, ~Y ′).
Let us start with (p0, Z0) being the trivial condition. As N+[i(S)] is

closed under κ-sequences, we have i[g′ ↾ β0] ∈ N+[i(S)]. It follows from

Lemma 24 that
⋃

i[g′ ↾ β0] is actually a condition in i(A(κ, β0, ~Y
′)). Let

(q0,W0) ≤ (p0, Z0) be the union of this condition with (p0, Z0) and then let

(p1, Z1) ≤ (q0,W0) be some condition in i(A(κ, β0, ~Y
′)) deciding the maximal

antichain A0.
The next step works much the same: (r, U) =

⋃

i[g′ ↾ β1] is a condition

in i(A(κ, β1, ~Y
′)). It is easy to see that the Cohen conditions r and p1 are

compatible; this is because r matches q0 up to i(β0) and p1 is an extension
of that restriction. It follows by an argument as in the proof of Lemma 20,
that the full conditions (r, U) and (p1, Z1) are compatible; let (q1,W1) be a

common lower bound in i(A(κ, β1, ~Y
′)). To finish the step, let (p2, Z2) be an

extension of (q1,W1) in this poset that decides the maximal antichain A1.

9There is a small abuse of notation here, since ~Y ′ is not a ladder system on βα but
rather on ν; we trust that this will not cause much confusion.
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We can continue in this way, building a descending sequence of conditions
(pα, Zα) for κ+ many steps. The key point is that we are meeting more and
more of the maximal antichains Aα, while also ensuring that our conditions
conform to i[g]. At limit steps γ we use the ≤ κ-closure of i(A(κ, κ+, ~Y )) in
V +[S][g′ ×h′] to first find a lower bound of the sequence of conditions we’ve
built so far, and then extend that lower bound as in the previous steps in
order to meet the antichain Aγ .

Let g+ be the filter generated by the descending sequence of conditions
(pα, Zα). We ensured that g+ is generic over N+[i(S)], and, since we fed
information about i[g′] into the conditions during the construction, we get
i[g′] ⊆ g+. It follows from Fact 25 that we may lift the embedding i to
i : V +[S][g′] → N+[i(S)][g+].

To finish the proof, we simply observe that the forcing to add h′ over
V +[S][g′] is ≤ κ-distributive, which means that we can use Fact 27 to lift i
again by simply transferring the generic h′. This final lift

i+ : V +[S][g′][h′] → N+[i(S)][g+][i+(h′)]

is the lift we required. �

Let us now complete the generics g′ and h′ to fully fledged generics. First,
observe that, since k[S′] is an initial segment of S, the only ladders appearing

in ~Y below sup k[ν] are the pointwise images of the ladders in ~Y ′, and we

may assume that none of the other ladders in ~Y have points below sup k[ν].

It follows that we may factor the forcing A(κ, κ+3, ~Y ) as

A(κ, κ+3, ~Y ) = A(κ, k[ν], k[~Y ′])× A(κ, κ+3 \ k[ν], ~Y ) .

This factorization is analogous to (1) in the proof of Theorem 34 and abuses
notation in similar ways: neither k[ν] nor κ+3 \ k[ν] are ordinals, nor is
~Y defined exactly on κ+3 \ k[ν], but these details aren’t significant to our
arguments.

The restriction k↾ν is a ν-sequence of ordinals less than k(ν) = (κ+3)M =
κ+3. Since ν has size κ+ in V , the map k ↾ ν appears in Hκ+3, and therefore

also in M . It follows that the poset A(κ, k[ν], k[~Y ′]) appears in both V [Gκ][S]
and M [Gκ][S]. Moreover, this restriction of k induces an isomorphism be-

tween the posets A(κ, ν, ~Y ′) and A(κ, k[ν], k[~Y ′]) by taking a condition (p, Z)

to (k(p), k(Z)). Since g′ was A(κ, ν, ~Y ′)-generic over V [Gκ][S], its isomor-

phic image k[g′] will be A(κ, k[ν], k[~Y ′])-generic over the same model. Notice,
though, that k[g′] ∈ V [Gκ][S][g

′].
If we now let g′′ be V [Gκ][S][g

′ × h′]-generic for the second factor above,

we get a A(κ, κ+3, ~Y )-generic g = k[g′]× g′′ over V [Gκ][S].
In a similar fashion we can use the factorization

Add(κ+, κ+3) = Add(κ+, k[ν])×Add(κ+, κ+3 \ k[ν])

and the isomorphism between Add(κ+, ν) and Add(κ+, k[ν]) induced by k to

force over V [Gκ][S][g×h′] with Add(κ+, κ+3 \k[ν])V [Gκ][S], adding a generic

h′′, and completing k[h′] to an Add(κ+, κ+3)V [Gκ][S]-generic h = k[h′] × h′′

over V [Gκ][S][g].
With all these generics in hand, and using k to transfer the generic G′

tail

to a generic Gtail for Ptail (note that the forcing P′
tail is ≤ ν-distributive
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in N [Gκ][S
′][g′ × h′] and Fact 27 applies), we can lift the entire diagram in

V [Gκ][S][g × h].

V [Gκ] M [Gκ][S][g × h][Gtail]

N [Gκ][S
′][g′ × h′][G′

tail]

j

i k

Now force over the model V [Gκ][S][g×h] to add a C(S)V [Gκ][S]-generic C.
By Lemma 23 we can rewrite the resulting extension V [Gκ][S][g× h×C] as
V [Gκ][H

0×h×H3] where H0 is Add(κ, κ+3)-generic and H3 is Add(κ+3, 1)-
generic.

We first work to find an i(Add(κ, κ+3))-generic over N [Gκ][S
′][g′×h′][G′

tail].
This is where we are going to make use of the additional forcing we folded
into the forcing iteration, and the claim about the embedding i+ we just
proved. Note that the forcing i(Add(κ, κ+3)) is the same as i+(Add(κ, κ+3)).
Fact 26 implies that the embedding i+ arises from a normal ultrapower on κ
(since the original embedding i : V → N was such), after which Lemma 31

tells us that the forcing i+(Add(κ, κ+3)) is equivalent to Add(κ+, κ+3)V [Gκ][S][g′].

What we have available is the Add(κ+, κ+3)V [Gκ][S]-generic h′′, but these
two posets do not quite match up. However, all is not lost. Notice that the

forcing A(κ, ν, ~Y ′) is the same, whether defined in the model V [Gκ][S] or
V [Gκ][S][h

′], since the forcing that adds h′ does not add any sets of ordinals

of size κ. It follows that A(κ, ν, ~Y ′) must therefore be κ+-cc in both of these
models.

Lemma 30 now tells us that the term forcing Term(A(κ, ν, ~Y ′),Add(κ+, κ+3))
in the model V [Gκ][S][h

′] is equivalent to Add(κ+, κ+3) in that model. We

actually already have an Add(κ+, κ+3)V [Gκ][S][h′]-generic over V [Gκ][S][h
′]

available in V [Gκ][S][h]: it is exactly h′′ (since the forcing to add h′ does not
change the poset Add(κ+, κ+3)). Using the mentioned forcing equivalence,

we can find, in V [Gκ][S][h], a Term(A(κ, ν, ~Y ′),Add(κ+, κ+3))V [Gκ][S][h′]-
generic over V [Gκ][S][h

′]. Moreover, using the basic property of term forcing
mentioned just before Lemma 30, we can interpret this term-forcing generic
via the generic g′ to produce, in V [Gκ][S][g×h], an Add(κ+, κ+3)V [Gκ][S][g′×h′]-
generic over V [Gκ][S][g

′ × h′].
Again, the poset Add(κ+, κ+3) is the same, whether defined in V [Gκ][S][g

′]

or V [Gκ][S][g
′×h′], so we have actually produced an Add(κ+, κ+3)V [Gκ][S][g′]-

generic over V [Gκ][S][g
′ × h′]. Thinking back to the start of this journey,

we originally wanted an i(Add(κ, κ+3))-generic over N [Gκ][S
′][g′ × h′]. But

since we explained how this forcing is equivalent to Add(κ+, κ+3)V [Gκ][S][g′],
and we know that N [Gκ][S

′][g′×h′] is a submodel of V [Gκ][S][g
′×h′], we’ve

achieved our goal.
This i(Add(κ, κ+3))-generic over N [Gκ][S

′][g′ × h′][G′
tail] we’ve just built

can be transferred along k (using Fact 27, since the forcing is < i(κ)-
distributive) to give a j(Add(κ, κ+3))-generic over M [Gκ][S][g × h][Gtail].
Let K0 be the result of a surgical modification to this generic to ensure that
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j[H0] ⊆ K0. This allows us to lift j to

j : V [Gκ][H
0] → M [Gκ][S][g × h][Gtail][K

0] .

At this point we can argue much like in the conclusion of the proof of
Theorem 34. The forcing to add h × H3 was ≤ κ-distributive, so Fact 27
implies that the generic can simply be transferred along j to yield K1 ×K3

and a final lift

j : V [Gκ][H
0 × h×H3] → M [Gκ][S][g × h][Gtail][K

0 ×K1 ×K3] .

The iteration Pκ destroyed the measurability of all γ < κ, so κ is now the
least measurable cardinal. Furthermore, since we clearly have 2κ = κ+3 in
this final extension, the lifted j is a normal ultrapower by Lemma 33.

The embedding j witnesses CP(κ, κ++), which can be seen using Lemma 32,
just as in the final claim of the proof of Theorem 34. Just like in that argu-
ment we can show that any subset x ⊆ κ++ in the model V [Gκ][S][C×g×h]

has a name σ ∈ H
V [Gκ]
κ+3 such that x = σg×h. But since V [Gκ] and M [Gκ]

agree on Hκ+3, the name σ must appear in M [Gκ] as well and therefore
the set x = σg×h appears in M [Gκ][S][g × h], and also in M [Gκ][S][g ×
h][Gtail][K

0 × K1 × K3]. In other words, the embedding j (or rather, its
codomain) captures x.

Finally, let H2 be Add(κ++, 1)V [Gκ]-generic over this final model. This
forcing remains ≤ κ-distributive in V [Gκ][H

0 × h ×H3], so we can apply
Fact 27 yet again and transfer H2 along j to obtain another generic K2 and
lift j again to

j : V [Gκ][H
0 × h×H2 ×H3] → M [Gκ][S][g × h][Gtail][K

0 ×K1 ×K2 ×K3]

Adding H2 did not add any new subsets to κ+, so κ is still the least mea-
surable cardinal. For the same reason, the target model M [Gκ][S][g ×
h][Gtail][K

0 × K1 × K2 × K3] still captures all the subsets of κ+. Since j
was the ultrapower by a normal measure on κ before this final lift, Fact 26
implies that the lifted j is such an ultrapower as well, and we can conclude
that the lifted j still witnesses CP(κ, κ+).

Claim. LCP(κ, κ++) fails in the model V [Gκ][H
0 × h×H2 ×H3].

Proof. Let us write H = H0×h×H2×H3 and let P be the entire forcing to
add Gκ∗H over V . Assume that LCP(κ, κ++) holds. Then there is a normal
ultrapower j∗ : V [Gκ][H] → M∗[G∗][H∗] on κ, with G∗ being j∗(Pκ)-generic
over M∗ and H∗ being generic over M∗[G∗] for the forcing at stage j∗(κ),
and this ultrapower embedding captures H2 and P(κ+)V . In particular, this
implies that M∗[G∗][H∗] computes κ++ correctly.

Let us write G∗ = Gκ ∗ (S∗ ∗ (g∗ × h∗)) ∗ G∗
tail; note that Gκ really is

an initial segment of G∗, since we necessarily have j∗(Gκ) = G∗ and thus
p = j∗(p) ∈ G∗ for any p ∈ Gκ. Let γ0 be the least inaccessible cardinal in
V . First, observe that we can factor P as P = Q0∗Q

0 where Q0 is nontrivial
of size less than γ+5

0 and Q0 is ≤ γ+5
0 -strategically closed (for example, we

may take Q0 to be the first step of the iteration taking place at γ0, and Q0 to
be the tail of the iteration, which starts at the next inaccessible after γ0 and
is therefore clearly ≤ γ+5

0 -strategically closed). It follows from Hamkins’ gap
forcing theorem [10] that j∗ restricts to an elementary embedding j∗ : V →
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M∗ and that M∗ = V ∩M∗[G∗][H∗] (which also means that M∗ is an inner
model of V ). Since we assumed that P(κ+)V ∈ M∗[G∗][H∗], and this power
set is clearly in V , this implies that P(κ+)V ∈ M∗ as well. It also follows
that P(κ+)V [Gκ] ∈ M∗[Gκ]; this is because the forcing Pκ is κ-cc and has
size κ, so each subset of κ+ in V [Gκ] has a nice name of size κ+ which may
be coded by an element of P(κ+)V , and all of these codes appear in M∗ as
we noted. Moreover, it means that H2 /∈ M∗[Gκ], since H2 is generic over
V [Gκ] ⊇ M∗[Gκ]. Additionally, the further extension M∗[Gκ][S

∗] does not
add any new subsets of κ++, so H2 does not appear there either.

Since we assumed that GCH holds in V , the existence of the restricted
elementary embedding j∗ : V → M∗ tells us that GCH holds in M∗ as well.
From this, it is clear that GCH holds in M∗[Gκ][S

∗] at κ and above. Working

in M∗[Gκ][S
∗], Lemma 17 tells us that A(κ, κ+3, ~X) is κ++-Knaster. Since

Add(κ+, κ+3) is also κ++-Knaster, their product must be as well. It fol-

lows from this that the square of the product A(κ, κ+3, ~X)×Add(κ+, κ+3),
computed in M∗[Gκ][S

∗], is κ++-cc.
Unger [17, Lemma 2.4] showed that any poset whose square was λ-cc for

some regular λ has the λ-approximation property, which states that any set
of ordinals in the extension, all of whose pieces of size less than λ are in the
ground model, must itself be in the ground model. As a special case, such
forcings cannot add fresh subsets of λ (recall that a set of ordinals is fresh
over a model if it is not in that model but all of its initial segments are).
Applying this to our situation, we can conclude that passing from M∗[Gκ][S

∗]
to M∗[Gκ][S

∗][g∗×h∗] does not add any new fresh subsets of κ++. Of course,
H2 is a fresh subset of κ++ over V [Gκ], and since V [Gκ] and M∗[Gκ][S

∗]
have the same bounded subsets of κ++, it is also fresh over M∗[Gκ][S

∗].
Therefore H2 does not appear in M∗[Gκ][S

∗][g∗×h∗]. To conclude the proof,
notice that the remainder of the forcing to go from M∗[Gκ][S

∗][g∗ × h∗] to
M∗[G∗][H∗] does not add any subsets of κ++, so it definitely cannot add H2.
But this contradicts our assumption that M∗[G∗][H∗] captured H2. �

To summarize, the model V [Gκ][H
0×h×H2×H3] satisfies 2κ = κ+3 and

the lifted embedding j witnesses CP(κ, κ+), but, as the last claim shows,
LCP(κ, κ++) fails. This finishes the proof of the theorem. �

At the end of the paper, let us give another example of the power of
Lemma 33 in showing that CP(κ, κ+) holds in known forcing extensions. As
we have seen, CP(κ, κ+) does not have any implications for the outright size
of κ, since it may consistently hold at the least measurable cardinal κ. But
one might try to measure its effects slightly differently. While the capturing
property says that there is a normal measure on κ which is quite “fat”, in
the sense that it captures all subsets of κ+, perhaps κ must inevitably also
carry some, or many, “thin” measures which do not capture much at all. In
other words, perhaps CP(κ, κ+) has some implications about the number
of normal measures on κ. A combination of Lemma 33 and a theorem of
Friedman and Magidor will show us that this is not the case.

Theorem 41. If V is the minimal extender model with a (κ + 2)-strong
cardinal κ and λ ≤ κ++ is a cardinal, then there is a forcing extension in
which κ carries exactly λ many normal measures and each of them witnesses
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CP(κ, κ+). In particular, it is consistent that κ has a unique normal measure
and CP(κ, κ+) holds.

Proof. The hard part of the proof was done by Friedman and Magidor [6,
Theorem 19], who showed that, starting from the listed hypotheses, there
is a forcing extension V [G] satisfying 2κ = κ++ in which κ carries exactly λ
many normal measures. They also show that each of these normal measures
is derived from a lift of the ground model extender embedding j : V → M
witnessing the (κ + 2)-strongness of κ. However, Lemma 33 implies that
these lifts are themselves already ultrapowers by a normal measure on κ.
Finally, an analysis of their proof shows that the forcing used to obtain the
model V [G] can be written as P∗Q̇ where P ⊆ Hκ++ is a κ++-cc poset which

is regularly embedded in j(P), and Q̇ is forced to be ≤ κ+-distributive. It
follows that every subset of κ+ in V [G] has a nice name in HV

κ++ ∈ M and
therefore appears in M [j(G)]. �

It is unclear whether one can obtain similar results at the least measurable
cardinal κ. It seems likely that, to do so, it would be necessary to adapt
the Apter–Shelah forcing to incorporate the Sacks forcing machinery that
Friedman and Magidor used in their arguments.

Question 42. Is it consistent that the least measurable cardinal κ carries a
unique normal measure and CP(κ, κ+) holds?
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