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Abstract The equiconsistency of a measurable cardinal with
Mitchell order o(k) = k™" with a measurable cardinal such that
2% = g1 follows from the results by W. Mitchell [13] and M. Gi-
tik [7]. These results were later generalized to measurable cardi-
nals with 2% larger than k™ (see [8]).

In [5], we formulated and proved Easton’s theorem [4] in a large
cardinal setting, using slightly stronger hypotheses than the lower
bounds identified by Mitchell and Gitik (we used the assumption
that the relevant target model contains H (u), for a suitable p,
instead of the cardinals with the appropriate Mitchell order).

In this paper, we use a new idea which allows us to carry out
the constructions in [5] from the optimal hypotheses. It follows
that the lower bounds identified by Mitchell and Gitik are opti-
mal also with regard to the general behaviour of the continuum
function on regulars in the context of measurable cardinals.
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1 Introduction

In the early 1970’s, W. Mitchell introduced a new classification of large
cardinals based on the notion of measurability. For normal k-complete ul-
trafilters U and W over k, he defined what is now called Mitchell order
U<« W iff U is an element of the ultrapower of the universe V' by the ul-
trafilter W. The order « is irreflexive and well-founded. It follows that



one can assign to each normal x-complete ultrafilter over k its <-rank by
o(U) = sup{o(W) + 1|W « U}, and to each cardinal k its Mitchell order
o(k) =sup{o(U)+1|U is a normal k-complete ultrafilter over x}. One can
further show that if 2% = k™, then o(x) < k.

The hypothesis that there exists a measurable cardinal k£ such that o(k) =
k*t was shown to have the optimal consistency strength for a variety of
propositions. In particular, it is the optimal large cardinal hypothesis for
the failure of GCH at a measurable cardinal and the failure of SCH. The
failure of GCH at a measurable was first forced in the mid 1970’s by J. Silver
(unpublished; see [3] for an account), assuming the existence of a xk*+-
supercompact cardinal k. In the early 1980’s, Mitchell developed a core
model for sequences of measures, see [13], and showed that if there is a
measurable cardinal where GCH fails, then there exists an inner model with
o(k) = k*T for some k. Thus, Silver’s result provided an upper bound and
Mitchell’s result a lower bound for the consistency strength for the failure
of GCH at a measurable.

In the late 1980’s (unpublished; see [3] for an account), H. Woodin made a
substantial improvement with regard to the strength of the large cardinal
hypothesis needed to construct a model where GCH fails. Assuming GCH,
he started with the existence of an elementary embedding j : V' — M with
critical point x such that

(1.1) "M C M, and for some f:k — k,j(f)(k) = TT.1

The consistency strength of the existence of such j is far weaker than that
of the existence of a k™ T-supercompact cardinal x and seemed promisingly
close to the lower bound o(k) = k't as identified by Mitchell. It was
M. Gitik who finally showed in [7] that these two notions — (1.1) and the
existence of £ with o(k) = k™" — are in fact equiconsistent. Gitik’s idea
was to transform by forcing the chain of normal x-complete ultrafilters un-
der the Mitchell order into a commuting chain of (non-normal) k-complete
ultrafilters under the Rudin-Keisler order; such a commutative system of ul-
trafilters generates via the direct limit the elementary embedding j used by
Woodin. Thus, when all these results are combined, it was shown that the
failure of GCH at a measurable, and also the failure of SCH (by subsequent
singularization by means of the Prikry forcing), are both equiconsistent with
the existence of a measurable cardinal x of Mitchell order k™ in a model
satisfying GCH.

Woodin’s assumption (1.1) is a weakening of the properties holding for
an embedding witnessing that  is an H(xk*™)-strong cardinal (also called
P5(k)-hypermeasurable or 2-strong cardinal); see Definition 2.1. The dif-

'n fact, such f can be forced to exist by Woodin’s fast function forcing (see [9] for an
argument); thus it suffices to assume "M C M and j(k) > xT" in (1.1) above.



ference between (1.1) and an H (x*")-strong embedding is quite substantial:
under GCH, the condition that H(x*1) of V is included in M for instance
implies that there are many measurable cardinals below x. On the other
hand, it is implicit in Gitik’s construction in [7] that a cardinal x as in (1.1)
can be the least measurable cardinal.

Let us briefly explain why the difference between (1.1) and an H(x)-
strong embedding is immaterial for Woodin’s argument while it matters for
more general arguments, as the one in [5]. This paragraph also serves as
a quick review of the lifting method, see [3] for more details. Woodin’s
construction uses Silver’s original idea of “lifting” an embedding j : V — M
to a generic extension for some forcing notion P, where j* is a lifting of
j with respect to a P-generic filter G if j* : V[G] — M[H] is elementary,
j* extends j, and H is j(IP)-generic over M. A sufficient condition for the
existence of such a lift, identified by Silver, see Fact 2.4, is to find H as above
which satisfies j[G] C H, i.e. the point-wise image of G is included in H.
If j* is definable in V'[G], then j* witnesses the measurability of s in V[G].
Fix an embedding j as in (1.1) but assume for simplicity that f : K — &
is particularly simple, i.e. f(a) = a™* for each regular a < k which by
elementarity implies (kt+)M = k**. A natural way to force the failure of
GCH, starting with GCH and this j, is to iterate in reverse Easton fashion
the Cohen forcing Add(a,a™) which adds a*t-many Cohen subsets to
each inaccessible cardinal o < k; this is the forcing PP both Silver, and
Woodin used.? If one looks at j(P), one notices that j(IP) is equal to P up
to k, and is trivial in the interval (k,u), where p is the least inaccessible
cardinal in M above k, and then again is non-trivial in the interval [u, j(k)].
Woodin’s argument was a major improvement on Silver’s method because he
devised a way of finding a generic for the stage j(x) of j(IP) without assuming
the supercompactness of k. With regard to the difference between (1.1) and
H (k™ T)-strength, notice that since u must be greater than ™+ of M, which
is the real k™1, j(P) is trivial in the interval (k,x"T]. Consequently, the
requirement for H(x™") being in M does not play a role in building the
j(P)-generic H over M, and for this particular argument, both hypotheses
are equally good.

Let us now turn to the present paper. In [5], we generalized the original
argument of W. Easton [4] concerning the continuum function on regular
cardinals to a large cardinal context, focusing mainly on measurable cardi-
nals. In this setting, it became necessary to control the powers of not only
the inaccessible cardinals o below a given large cardinal x, but also of the
successor cardinals. For this reason we used the slightly stronger assump-
tion of H(F(k))-strength. For instance, the construction in [5] does not

2We are sweeping some details under the rug here; Woodin actually needed to add
some extra forcing to resolve certain technical difficulties with the lifting, so he worked
with a forcing more complicated than just P above.



work with the weaker hypothesis of (1.1) if we aim to force 2* = o™ for
every regular cardinal a@ < k. The reason is that now j(P) is non-trivial at
both k™ and k™ of M, and H(x"") belonging to M seemed essential to
procure the desired generic filter for the Cohen forcing at ™ in the sense of
M (see the paragraph just before Claim 3.3 and Observation 3.5 for a more
precise statement of the problems involved; these problems do not apply to
kT because M is closed under s-sequences in V').3

A natural question arises whether the results in [5] can be proved from the
optimal assumptions along the lines of (1.1) (see Section 5 where the optimal
assumptions are generalized to Mitchell order on extenders to account for
cases where 2% > x*1). In this paper we show that this indeed is possible.

This does not seem all that surprising — after all, the set of successor cardi-
nals is small in any normal ultrafilter and so controlling the behaviour of the
continuum function at successors should not have implications for the opti-
mal large-cardinal strength needed. However, an intuition is not the same
as a proof. The principal method of the proof — the lifting argument — does
seem to require some degree of correspondence between H(xk*1) of M and
the real H(k') (to stay with our typical example of k™). This presents
a technical challenge with surprising connections to general forcing-related
problems (see the discussion following Question 2 in the last section). In-
spired by U. Abraham’s paper [1], we have solved this problem by artificially
adding a sufficient degree of correspondence between H (k7)™ and H (k)
by means of forcing, which allows us to lift the original embedding.

The paper is organized as follows. In Section 2 we define notions we are
going to use and state some useful propositions. Section 3 contains the
main results of the paper, formulated for the special (but typical) case of
forcing 2% = a1 for every regular cardinal o < x, while preserving the
measurability of k. In Section 4, we generalize the technique of Section 3
to a larger class of Easton functions. In Section 5, we use the notion of
Mitchell order on extenders to generalize the results still more to situations
where 2% = kT for n € w,n > 2. In the last Section 6, we state some open
problems.

(I€++)JM is strictly less than ™ for an embedding as

H++)M

3There is a technical point here; if
in (1.1), which can easily happen, then one can hope that the generic for j(P) at (
can be obtained more easily. This may be true, but in any case, the real k™ is a regular
cardinal in M, and so the forcing j(P) is non-trivial in the interval [(x™ ) k"], and we
face the same kind of problem as described above.



2 Preliminaries

Our forcing conventions are standard, following for instance [10]. We use
the terms “k-closed” and “rk-distributive” to mean “< k-closed” and “< k-
distributive”, in keeping with the convention regarding chain conditions.

Let us give precise definitions of the notions which we have mentioned in
Section 1.

Definition 2.1 We say that  is an H(6)-strong cardinal, where k < 6
and 0 is a cardinal, if there exists an elementary embedding j from V into
some transitive class M with critical point k such that j(k) > 6, and H(0)
is included in M.

At the suggestion of a referee, we explicitly include “H(6)” in the name of
the large cardinal concept in Definition 2.1 in order to distinguish it from
the related concept of an a-strong cardinal as defined for instance in [12]
or [10].2 We prefer the H-hierarchy because it is less dependent on the
continuum function which is closely tied to V-hierarchy.

If GCH is assumed, and 6 is regular (this is sufficient for our purposes here),
then the elementary embedding witnessing the H(6)-strength of x can be
taken to have the additional property that M = {j(f)(a)|f:r 2>V Aa <
0}, 0 < j(k) < 0T, and M is closed under r-sequences in V (such a j is
called an extender ultrapower embedding).

If we omit the condition that H () is included in M, we obtain a weaker
notion: if M is closed under k-sequences and j(k) > 6, we get a large
cardinal concept called 6-tallness in [9]. For our purposes, we find it useful
to work with nicer embeddings than the tall ones.”

Definition 2.2 Assume GCH. We say that j : V. — M with critical point
k is a k1T T-correct embedding if j satisfies:

(i) M is closed under k-sequences in V,
(i) kTt = (ktT)M,

Note that (ii) implies k™ < j(k), and so a kT F-correct cardinal is ™ "-tall.
If j is kT T-correct, one can use the usual extender ultrapower construction
to get an even better embedding.

“Here, & is called a-strong if Vi is included in the target model.

°To our knowledge, an embedding as in Definition 2.2 does not yet have a specific
name; we propose one here. Note that we give the definition just for § = ™ but a
generalization to larger cardinals is straightforward.



Definition 2.3 We call j a kT T-correct extender embedding if j satisfies
conditions (i)—(ii) in Definition 2.2, and moreover:

(iii) M ={j(f)(a)|f:xk =V Aa<rTT}

We say that x is k" -correct if there is a k™ T-correct embedding with critical
point k.

It is shown in [7] that if V' satisfies GCH and j : V' — M with critical point
k is as in (1.1), then there is a generic extension V* satisfying GCH such
that x is kT T-correct in V*. Hence, we can use the assumption of x*T-
correctness in our arguments because it has the same consistency strength
as the existence of x with o(k) = k*T.

We now provide a quick review of the results relevant to lifting of embed-
dings.

Fact 2.4 Let P be a forcing notion and j : V. — M an embedding with
critical point k. Then the following hold (for proofs, see [3]):

(i) (Silver) Assume G is P-generic over V. and H is j(P)-generic over
M such that j|G] C H. Then there exists an elementary embedding
Jj* : V[G] — M[H] such that 7* [V = j, and H = 7*(G). We say that
j lifts to V.

(ii) If j is moreover an extender ultrapower embedding, P is a k™ -distributive
forcing notion and G is P-generic over V, then the filter G* in j(P)
defined as

G*={q|IPp G, jlp) < q}
is j(P)-generic over M.
(i1i) If j: V. — M is an extender ultrapower embedding, so is j* : V|G| —

3 The crucial step: ™"

Theorem 3.1 captures the main idea of this paper. Theorem 4.1 and Corol-
lary 4.2 are direct applications of Theorem 3.1 based on results in [6] and

[5].

Theorem 3.1 Assume GCH and let j: V — M be a k1 -correct extender
embedding with critical point k. Then there exists a cofinality-preserving
forcing notion P such that if G is P-generic, the following hold in V[G]:

(i) 2% = o™t for every regular cardinal o < K which is the double succes-
sor of an inaccessible cardinal B < k (where « is the double successor

of B if a=p"T).



(ii) The embedding j lifts to j* : V|G] — M[j*(G)], and j* is a kT -correct
extender embedding in V[G].

Proof. The proof of the theorem will follow from Lemmas 3.2 and 3.4, with
Claims 3.3 and 3.6 providing the key ingredients.

For a regular cardinal o and an ordinal 8 > 0 we write Add(«, ) to denote
the usual Cohen forcing which adds S-many Cohen subsets of a:: a condition
p belongs to Add(a, ) if and only if p is a function from a subset of « x
B to 2 of size less than a. Wherever we need, we use other equivalent
representations (for instance we can view Add(e, §) as adding S-many new
Cohen functions from « to «).

Let us now define the forcing P. P will be a two stage iteration PO « P,
where P! is a P’-name in M:

(1) PV is an iteration of length x with Easton support, PV = <(IP’2, Qe) | € <

k), where Q¢ is a name for the trivial forcing unless £ is an inaccessible
cardinal < k, in which case

(3.2) Pg I+ “Qg is the forcing Add(¢T,67H) « Add(¢tT,eH),”

where Add(£T,£61T) is viewed as a product forcing which adds £17+-
many Cohen functions from £ to &+, and Add(¢T+, &) is viewed as
(a name for) a forcing adding ¢ *-many Cohen subsets of £+,

(2) Notice that P? is an element of M. P! is defined in M to be a PY-name
which satisfies:

(3.3) M [=P° I “Pl is the forcing Add(k™, x*T) x Add(s*,1),”

where Add(x™,x™) is viewed as a product forcing which adds x*-
many Cohen functions from % to kT, and Add(k1,1) is viewed as (a
name for) a forcing adding a single Cohen subset of k.

Lemma 3.2 (GCH) P is a cofinality-preserving forcing notion over V.

Proof. The forcing PV is cofinality-preserving by standard arguments. Let
G, be a PV-generic filter over V; then G, is also P’-generic over M. In order
to verify that P is cofinality-preserving, it suffices to check that the forcing
(P1)C+ defined in M[G,] preserves cofinalities when forced over V[G,]. No-
tice first that Add(x™, k1) of M|[G,] is the same as Add(k, kT 1) of V[G,]:
this is because P? has the k-cc, and hence by standard arguments M[G,] is
still closed under s-sequences in V[G,]. Let g be Add(xt, k+1)VICx]_generic
over V[G,]. Then by the previous sentence, g is also Add(k*, xt+)MICxl
generic over M[G.]. Work in M[Gy x g] and let Q* denote the forcing



Add(kT1,1) of M[G x g]. In the key Claim 3.3 we show that Q* behaves
properly over V|G, x g] and this is enough to finish the proof of Lemma 3.2.

Note that Claim 3.3 in non-trivial: if the original M misses some subsets
of kT from V, then Q* is a proper subset of Add(xt*,1)V[¢+*9] and hence
cannot be kT -closed over V|G *g]. Incidentally, there is a good reason why
we attempt to force with Q* over V|G, * g]: if M misses some subset of ™
from V, then no Add(k*+,1)VIE*)_generic filter can ever be Q*-generic as
by density this missing subset occurs as a segment in the Add(x™ ™, 1)V[G”*g]—
generic. We are left with the option of forcing directly with Q* if we wish
to lift the embedding; see Lemma 3.4.

Claim 3.3 The forcing Q* is kT -distributive over V|G, * g].

Proof. We will argue that the preparatory forcing Add(x™,x*™) ensures
that Q*, which is ktt-closed over M |G, * g], is still x™-distributive over
VI[Gy * g].

Let us work in V|G * g]. Assume that p € Q* is a condition and fisa
name for a function from 1 to the ordinals:

(3.4) plF f:x* — ORD.

We will show that there exists ¢ < p which decides all values of f .

Write H(k™T) of M[Gy x g] as L,++[B] for some subset B of k**, B in
MIG,; % g]. This is possible because by GCH in M and the chain condition
of the forcing, H(k™1) of M[G, * g] has size s+ in M[Gy * g]. Fix an
elementary submodel N of some large enough H (H)V[G“*g] which has size
kT, is transitive below xTT, is closed under s-sequences and contains as
elements B, Q*, p and f . We will show that p has an extension ¢ < p which
hits all dense subsets of Q* which belong to IV; this will imply that ¢ decides
all values of f as required.

Let 3 be the ordinal NNk and let 7 be the transitive collapse of N to N.
Then m(Q*), which is equal to @* N N, belongs to M |G, * g] because Q* is
definable in L,++[B], and so by 7 being an isomorphism, 7(Q*) is definable
in Ly(e++)[m(B)] = Lg[B N B]. It suffices to extend 7(p) = p to a condition

g which hits all dense subsets of 7(Q*) which belong to N.

For v < k%, let g | v denote {q¢ € g|lq |~ = q}. Pick some v < x*
such that N is in V|G, * g | 7], and 7(Q*) as well as some enumeration
(P& < kT) of T(Q*) are in M[G, * g [7]. Such a v exists by the k™" -cc
of the forcing Add(x*,x**) and the fact that N is a transitive set of size
kT. Let h be the generic function k™ — kT at the coordinate v in g. So h
is Add(k™,1)-generic over V|G * g [v]. Note that h belongs to M[Gy * g].



Define inductively in MG, * g] a decreasing sequence of conditions (p¢ | £ <
k) with pg = p, py = Ug< pe for A a limit ordinal < kT, and:

B { pZ(g) if pZ(g) extends pe,
be+1 = .
De otherwise.

Since all the parameters used in this construction, i.e. the sequence <pz 1€ <
kT, and h, m(Q*), p, are in M[G, *g], so is the whole sequence (p¢ | £ < KkT).
Let g be the greatest lower bound of this sequence, ¢ = U£ <t Pg. Since
(pe|€ < k) isin M[Gyx x g], ¢ € Q.

We will show in VG g [ 7][h] that the sequence (p¢ | € < 7T) is (N, 7(Q*))-
generic. This already implies that ¢ decides all the values of f: For each
¢ < kT, the set

Dg = {p € (Q") | p decides 7(f)(£)}

is a dense open set in 7(Q™*), which is an element of ]\7 . If p¢ for some ¢ < k™
meets Dg, then p; = w71 (p¢) decides the value of f(«), and so does ¢ < p¢.

The (N, 7(Q*))-genericity is proved by using the generic h. Let D be a dense
open set in 7(Q*) which is an element of N. We will show in V|G, * g [ 7][h]
that there is some p¢ which meets D. To this end, it suffices to show that

D={qlqlF “IE <Kk pe €D’}

is dense in Add(k™,1) in V[G, % g|7]. Given a condition ¢, extend ¢ first
to some ¢’ such that dom(q’) = ¢ for some § < x™; then ¢ decides the
construction of (pg|§ < k1) up to § (because it decides h up to §): for
some p' € 7(Q*), ¢ I+ ps = p/. Pick p” < p/ in D. In the enumeration
(P& < ), p” is some condition p;. Set ¢" = ¢’ U {(d,n)}. Then ¢" IF
“ps+1 extends ps and meets D7, and so ¢” < ¢ is in D. It follows that D is
dense and the proof of Claim 3.3 is finished. O

This shows that P is cofinality-preserving over V and ends the proof of
Lemma 3.2. 0

We now show that the embedding j can be lifted to V.
Lemma 3.4 The embedding j lifts to V.

Proof. Let G = G, * g * ¢’ be a P-generic over V, where G, is P'-generic,
g is Add(k™T, k)Ml _generic over V]G], and ¢ is Add(xt™,1)MICr*gl
generic over V[Gy, * g]. We need to find a j(P)-generic H over M such that
JlG)C H.

As H(k) is included in M, j(P°), = P°, and so we start building H by
plugging in G, as the j(PP?),-generic over M.



The next forcing in j(PP) above & is @ = Add(kt, s*1) x Add(sT, k) as
defined in M[Gy]. We need to find in V[G] a Q-generic over M[G]. By
the definition of P, g is Add(xt, sT+)MCxl_generic over V[G,] (and hence
over M[Gy]). To complete the construction of a )-generic, it remains to
find some h which will be Add(k*+, kT4)MIC*9)_generic over MG, * g].

When we look at the generics at our disposal, the natural candidate for h is
the generic filter ¢’. Clearly, ¢’ will need to be modified because it is only
Add(kTt, 1)MIC*9]_generic over V|G * g], but not Add(xt, x4)MGrgl
generic over V[Gy * g]. Note that there is a good reason for this apparent
deficiency of ¢”: While Claim 3.3 shows that Add(sk*+,1)M[Cx*d] is suffi-
ciently distributive over V[Gj * g], the forcing Add(xtT, kT4)MIGr*9l pever
is, in fact it collapses T T:

Observation 3.5 Let v be an ordinal < j(k) which has V-cofinality k™,
and whose cofinality in M is > k+. Then the forcing Add(k*+,~)MI[Gr]
collapses k™ to k™ if forced over V|G, * g].

Proof. First notice that every M-regular cardinal in the interval (1, j(k)]
has V-cofinality £*: if p is such a cardinal, then the set {sup(j(f)[xTT] N
w)| f ik — K in V} is cofinal in p and has size kT by the GCH in V. Tt
follows that v = (kT4)M obeys the hypothesis of the observation.

Fix X to be a cofinal subset of v of order type k™. Now, for each ( € kT
and every p € Add(kT+,y)MG+9] one can find ¢ < p and € € X such that ¢
at the coordinate £ codes ( in the sense that it contains (-many 1’s followed
by 0. Hence it is dense that every ¢ € k™ is coded at some element & € X.

O

We now state a general claim which concerns s -correct extender ultra-
power embeddings under GCH. Assume k : V — M is a kT "-correct ex-
tender ultrapower embedding and 7 is an ordinal in the closed interval
[T, 5(kT)]. We say that a bijection m : v — s* is locally M-correct
if for every X C ~ which is in M and has in M size < k17, the restriction
m X is also in M.

Claim 3.6 Assume GCH and let k : V. — M be a k™1 -correct extender
ultrapower embedding. Let~y be an ordinal in the closed interval [k, j(k1)].
Then:

(i) There exists in 'V a locally M-correct bijection 7 : v — k1.
(ii) Furthermore, if R is a forcing notion in M and R has the k™3-cc in
M, then the bijection  in (i) is M®-locally correct.

Proof. (i). We can assume that « is at least (k73)™ because otherwise
has size k™" in M, and so there exists a bijection in M between v and ™.

10



In M, choose some regular cardinal § greater than k(x") and consider the
structure H = (H(#),<), where < is some wellorder of H(f). List all
fik = [K5FinV as (fili < k7). For B < kT define Sz to consist
of those ordinals less than v which are definable in H(6) from elements of
{k(fi)|i <BYURTT.

If X in M is a subset of « of size k™" in M, then X is contained in some Sg
by the following argument: We can choose i so that X = k(f;)(a) for some
a < kT and therefore X is definable in H(6) from k(f;) and «; then the <-
least s T-enumeration of X is also definable in H(6) from those parameters
and each element of X is definable from k(f;) together with parameters
< kTT, as it is the d-th element of that enumeration for some § < k¥ .

Now thin out if necessary the sequence (Sg |8 < k™) to a sequence (T3 |8 <
k) so that

Ty =Ts\Uics Ti
has size k™ in M for each 5. This is possible because we assumed that

was at least k12 of M. For each 3 let mg denote a bijection in M between
Tj and £7F and define a bijection 7' between v and £ x £* by:

™' (0) = (B, 75(9)),

where § belongs to Té (there is a unique 3 satisfying this). Finally, compose
this 7’ with any bijection 7 in M between k™ x k™" and k™. Then 7 = Toxn’
is as required.

(ii). Let F' be R-generic over M. If X is a subset of v in M[F| which has
size < kTt in M[F], then by the x*3-cc of R there is some X’ O X in M
which has size < k™ in M. Then the desired result follows by application
of (i).

This ends the proof of Claim 3.6. U

Note that the inverse function 7~ may not be “locally M-correct” in the
sense of Claim 3.6 even for subsets X C k™ of size k™ in M. Indeed, if
(ce | € < kT) is cofinal in (k7)) then for X = {c¢ |€ < kT}, the set 7[X]
may be in M (for instance when x is H (k™ ")-strong), while 77 [r[X]] = X
is certainly not in M.

We now show that Claim 3.6 can be used to stretch the Add(x" ™, 1)-generic
g over V[Gy  g] to an Add(kT+, kT*)MICx*9]_generic over M[G, * g].

Let Q* = Add(kT+, 1)MICs*9] and Q = Add(kT, kH4)MIGr*d],
Claim 3.7 There exists in V[Gx * g * ¢'] a Q-generic h over M[G,  g|.

Proof. Let 7* : kT+ x (k)M — kT be a bijection obtained by composing
the bijection 7 from Claim 3.6 with any bijection in M between x™T x
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(kM and (k**)M. Then 7* is locally M[G, * g]-correct in the sense of
Lemma 3.6(ii), applied to subsets of K™+ x (k14)M of size < k™ in M. For
p € Q, write p* to denote the image of p under 7*: dom(p*) = 7*[dom(p)],
and for each (&,¢) in the domain of p, p*(7*(&,¢)) = p(&,{). By the local
MGy, * g]-correctness of 7%, each p* is in M[Gy, * g], and hence is a condition
in Q*:
{p"lpe@icQ.

Note that the inclusion is proper because Q* is k™ T-distributive over V|G, *
g], while @Q is not (see Observation 3.5).

Let us set
h={plp* €g'}.

We show that h is as required. First note that h is a filter: if p* and ¢* are
in ¢, then p*Uq* = (pUq)*, and so pUq is in h. Upward closure is obvious.

To finish the proof, we show that h meets every relevant maximal antichain.
Assume A lies in M[G,*g] and is a maximal antichain in @, and so in partic-
ular A has size < k™1 in M[G,xg]. Let us denote dom(A) = | J{dom(p) |p €
A}. Let us write A* = {p*|p € A} and dom(A*) = (J{dom(p*) | p* € A*};
then A* is an antichain in @* and 7* [dom(A) is in M[G, * g] by the local
MG, * g]-correctness of m*. To show that h is as required, it suffices to show
that A* is a maximal antichain in Q*. Let ¢ be any condition in Q*; since
q is in M[Gy, * g], the intersection dom(q) Ndom(A*) is in M[G, * g]. Since
7* | dom(A) is in M[G, * g], the set (7* | dom(A))~![dom(q) N dom(A*)]
is also in M[Gy * g]. If ¢ denotes the condition in @ with the domain
(7" I dom(4))~1[dom(q) N dom(A7)] defined by ¢(€, ) = q(x*(€,<)), then
there exists by the maximality of A some p € A compatible with ¢'. It
follows that p* € A* is compatible with ¢ because it is compatible with ¢ on
dom(p*) N dom(g). Thus A* indeed maximal, and h meets A as required.
This ends the proof of Claim 3.7. U

By Claim 3.7, we can conclude that G, * g * h is j(P"),.41-generic over
M. The iteration j(P°) in the interval (k + 1,5(k)) is T+ -distributive in
MGy, = g % h], and so all the relevant dense open sets in M[G * g * h] can
be met in k*-many steps, using the extender representation of M (see [5]
for details). Let the resulting generic be denoted as h. Then G, * g *x hx h
is j(PY)-generic over M, and we can partially lift to

§: VIGi] = MGy % g % h* h).
It remains to lift j/ to P! = Add(k™,x*+) % Add(k*+,1) of M[G, * g]. By
Claim 3.3, P! is x*-distributive over V[Gy], and therefore by Fact 2.4(ii), the
filter h generated by the j' image of gx¢’ is j'(P')-generic over M[G *g*hxh):

h={q|3pecgxd,i'(p) <q}.
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If we define H = G, x g x h * h * l:z, then H is as required:
7*:VIGe*g*g'] — M[H].

This ends the proof of Lemma 3.4. (]
Theorem 3.1 now follows from Lemma 3.2, Lemma 3.4, and Fact 2.4(iii). O

Claim 3.3 implies that if the GCH holds and j is a s T-correct extender
embedding, then in a cofinality-preserving extension this j lifts to a k-
correct extender embedding with the Cohen forcing at ™" in the target
model well-behaved over the universe; this is stated in Corollary 3.8 below.

Corollary 3.8 (GCH) Letj : V. — M be a k™" -correct extender embedding
with critical point k. Let R be an iteration of length k+1 with Easton support
which adds £ -many Cohen subsets to each £+, where £ is an inaccessible
cardinal less or equal k. If G is R-generic, then the following hold:

(i) GCH holds in V[G];
(i1) j lifts to j* : V]G] — M[*(G)];
(iii) Add(kT, 1)MU(O)] s g+ _distributive over V[G].

Proof. (i) is obvious.

(ii) follows be an easy lifting argument: j*(G) is of the form G, * g * h * h,
where G = G * g (G, is the generic filter for R below x and g is the generic
filter for Add(x*, sTH)VIE) b is j(R)-generic over M[G, * g in the interval
(k*,j(k)T), and h is obtained from g by application of Fact 2.4(ii).

(iii) follows by application of Claim 3.3 to Add(x*+, 1)MI] in V[G], while
noticing that Add(s*,1)M4 is the same forcing as Add(x++,1)MU"(&)]
by kT T-distributivity of j(R) above x*. O

The idea behind the proof of Corollary 3.8 is that the generic filter g for
Add(kt, k™) of V[G,] adds to M[G,] just the right subsets of x*, which
then become conditions in Add(k*+,1) of M[G, * g], to make sure that
Add(kT1,1) of M[G, * g] is still distributive over V[G]. We do not know
whether this step of adding new conditions is in fact necessary; it may be,
although we do not credit it with high probability, that whenever j : V — M
is a kT F-correct extender ultrapower embedding, then Add(s++, 1)M is k-
distributive over V. See the last section for some open questions regarding
this topic.
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4 FEaston’s theorem and large cardinals from the
optimal hypothesis

Theorem 4.1 Assume GCH and let j:V — M be a k+1-correct extender
embedding with critical point k. Then there exists a cofinality-preserving
forcing notion R such that if G is R-generic, the following holds:

(i) 2% = o™t for every regular cardinal o < k.
(ii) The embedding j lifts to j* : V|G] — M[j*(G)], and j* is a kT -correct
extender embedding in V[G]. In particular, k is still measurable.

Proof. Let I(k) denote the set of all inaccessible cardinals < x, and R(k)
the set of all regular cardinals < . Set B = {a € R(k) |38 € I(k),a =

Bora=pBTU{k},and A= R(k)\ B. Then AU B is the set of all regular
cardinals < k.

We define R as a two-stage iteration R4 RB. R4 will be a cofinality-
preserving forcing which will force the failure of GCH at every element in A.
In VR4, Rp will be a cofinality-preserving forcing which will violate GCH
at the remaining regular cardinals < k, i.e. at the elements in B.

The definition of R4 is a modification of P, as defined in Theorem 3.1. Ry
is a two stage iteration R% * R}L‘, where:

(1) RY is an iteration of length & with Easton support, RY = ((R})¢, Q¢) | € <
k), where Qg is a name for a trivial forcing unless £ is a limit cardinal
< K, in which case there are two possibilities:

(a) If € is regular (and hence inaccessible), then

(4.5) (R%)e IF “Qp is the forcing
[AA(EY, €5F) s AdA(ET, €))% TTers oo i Add(, 7+,

where Add (£, £1T) is viewed as a product forcing which adds £+ -
many Cohen functions from &1 to &1, Add(6T+,&14) is viewed as
(a name for) a forcing adding ¢*4-many Cohen subsets of £+F, and
[Le++ < <o Add(y,7*7) is the standard product, which adds -
many Cohen subsets to each regular cardinal v such that {7+ < v <
£1Y (where €% is the least limit cardinal above &).

(b) If £ is singular, then

(4.6) (R%)e I “Qy is the forcing [T cerw Add(y,7F7),”

where [[ir e+ Add(y, 1) is the standard product.

(2) Notice that RY is an element of M. RY is defined in M to be an RY-
name which satisfies:

(4.7) M = RY IF “RY is the forcing Add(x, k*+) « Add(k*F,1),”

14



where Add(k™t,x*T) is viewed as a product forcing which adds x*-
many Cohen functions from x* to T, and Add(k*™,1) is viewed as (a
name for) a forcing adding a single Cohen subset of k™.

By standard arguments, see [5], and Claim 3.3 applied in the present con-
text, the forcing R4 is cofinality-preserving. By [5], and an easy modifi-
cation of Theorem 3.1, j lifts to a k' T-correct extender embedding j' in
VRA4: in the proof generalizing the proof of Theorem 3.1, one just needs to
take into account the product [T, ++ o Add(v,yTT) at st.age k of the
iteration j(RY). However, since in MI®2)x Add(k*, sT1) x Add(st, k1)
has the x™3-cc and the product | | " Add(y,yT) is kT3-closed, it
follows by Easton’s lemma that the generics for these two forcings are mu-
tually generic. Accordingly, an Add(x™, x**) x Add(k* T, k**)-generic over
MI®2)x is obtained as in Theorem 3.1, while a | | PR Add(y,y+T)-
generic is obtained by a standard construction using the x13-distributivity
of the forcing.

If G4 denotes an R 4-generic, then the following holds in V[G 4]:

(i) GCH holds in V[G 4] at every inaccessible cardinal o@ < k and at the
successors of these inaccessible cardinals.
(i) 2% = ot for every regular cardinal o < x other than those specified
in (i).
(iii) There exists in V[G 4] a kT T-correct extender embedding j' : V[G 4] —
M]j'(G 4)] which is a lifting of the original j.
In V]G 4], we define Rp as follows.

Rp is an iteration of length x+1 with Easton support, R = (Rp)e, Q¢) | € <
k + 1), where ()¢ is a name for a trivial forcing unless ¢ is an inaccessible
cardinal < k, in which case there are two cases:

(a) If £ < K, then
(4.8)  (Rp)e IF “Qg is the forcing Sacks(&, £77) x Add(¢T,£73),”

where Sacks(£T, £11) is the generalized Sacks product forcing at & which
adds ¢TT-many new subsets of £ (see [11], and [6] for details), and
Add(et,€17F) is viewed as adding ¢3-many Cohen subsets of £7.

(b) If € = k, then

(4.9) (Rp)e IF “Qg is the forcing Sacks(§,§++) X Add(§+,£++).”

By standard results, see [5], Rp is cofinality-preserving over V[G 4] (here, it
is important that Add(¢+,£13) is still £*-distributive over Sacks(¢, £T)).

Let G be Rp-generic over V|G 4]. Using the “tuning-fork” argument in the
original paper [6], together with [5], one can show that j' lifts to V[G 4][G g].
Notice here that it is sufficient to add just x™"-many Cohen subset of k™,
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cf. (4.9), in order to lift, and so GCH holds in V[G4][Gg| above k (if so
desired).

If we set G = G4 * G, then V[G] is as required. O

We can achieve even more generality, along the lines [4] and [5]. We say that
a proper-class function F' from regular cardinals into cardinals is an Faston
function, if for all regular cardinals &, A:

(i) k< A= F(k) < F(N),
(ii) cf(F(k)) > k.

A cardinal p is said to be a closure point of F' if F(v) < u for every regular
cardinal v < p.

We say that F' is realised in some cofinality-preserving extension V¥ if F' is
the continuum function in V® on regular cardinals.

Corollary 4.2 Assume GCH and let j : V — M be a k+-correct embed-
ding with critical point k. If an Easton function F satisfies:

(i) K is a closure point of F, F(k) = k™1, and
(ii) the set {a < k|« is a regular cardinal and F(«) > a1} contains all
regulars in a closed unbounded set,

then there exists a cofinality-preserving forcing R such that the Easton func-
tion F is realised in VR, and j lifts to VR; in particular & is still measurable
in VR,

Proof. This is just like the relevant part of [5], with the arguments in
Theorems 3.1 and 4.1 added to be able to prove this result from the optimal
hypothesis of a k™ T-correct embedding. O

Let us note that the condition (ii) implies that j(F)(k) > Tt for any
kT T-correct embedding, which is actually all that is needed from (ii) in the
proof.

5 Mitchell order on extenders

It is known that Woodin’s construction for k™% from the assumption (1.1)
naturally generalizes to xT"-tall cardinals for n < w (see [9] for an argu-
ment).

Similarly, the technique in this paper generalizes to all n < w.

By results in [8], the existence of a measurable cardinal xk with 2% = x*"
is equiconsistent with the existence of a measurable cardinal £ with o(k) =
k™. Note that for n > 2, the Mitchell order of x is counted in terms of
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extenders, not measures. Thus for n > 2, the assumption o(k) = k™" means
that there is a coherent sequence of length £ of H (k" !)-strong extenders
at x (where an extender at  is H(x1"~!)-strong if the associated extender
ultrapower embedding is H (k™ !)-strong). Generalizing the construction
in [7], the assumption o(k) = k™™ for n < w implies that there exists a
generic extension V* satisfying GCH and an elementary embedding j : V* —
M such that:

(i) M is closed under k-sequences in V*,
(i) H(k*""1) of V* is included in M,
(iii) (kt")M =kt

Without giving the details, we just mention that the construction in this
paper can be used to show that if j : V. — M is as in (i)—(iii) and GCH
holds in V, then Corollary 4.2 holds for F(x) = k™.

In fact, one can attempt to generalize Corollary 4.2 to o(k) = ™ for infinite
(B’s. The situation with § > w is a little bit more involved than with n < w
(see [8]), but we believe that the technique in this paper should be useful.
See the next section for open questions.

6 Open questions

Question 1. For which 8 > w can we obtain the analogue of Corollary 4.2
with F(k) = k57

Question 2. Is there a k™ T-correct embedding j : V' — M such that
Add(xkT+,1)M is not x+*-distributive over V?

An obvious strategy of attack to answer Question 2 in the affirmative is to
devise a forcing R, lift j to j* : V[G] — M[j*(G)], where G is R-generic, and
show that Add(x™+,1) of M[j*(G)] collapses k™t when forced over V[G]
(so in particular, it cannot be x*t-distributive). This reminds one of an
argument which dates back to Baumgartner and his forcing for specializing
an wi-Aronszajn tree: one can find two proper forcings P and @ living in a
ground model V*, with P being the forcing Add(wi, 1), and @ a three-stage
iteration featuring a “specialization” forcing, such that P collapses wi when
forced over V*@ (see for instance [14], p. 827). The analogy here is that if
j:V — M is an embedding, then we can equate V with V*?, and M with
V* in the example above. However, such “specialization” forcings are often
hard to generalize to larger cardinals (see for instance [2, 15]).

Lastly, there is nothing special about the Cohen forcing Add(x**, 1) and
the assumption of K™ T-correctness in Question 2, except that we needed this
in our present proof. In general, one can ask the analogue of Questions 2
for some other forcing P € M and an elementary embedding j : V' — M.
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