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Abstract This article gives a uniform characterization of gener-
ics which are used in the context of liftings of elementary embed-
dings for the generalized Sacks forcing, and variations thereof. It
applies to majority of arguments using such forcings providing
that the trees are required to be singular-splitting, i.e. no split-
ting at regular levels. The use of singular-splitting trees elimi-
nates the necessity to choose a generic branch from the “tuning
fork” object, defined in [5].
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1 Introduction

The purpose of this note is to give a simple uniform characterization of the
generic filters which are used in the context of lifting arguments for Sacks-like
forcings (both product-style and iteration-style). Examples of such forcings
are given in [5] (this is the paper where the technique first appeared), [4], [6],
[2], and [3]. The characterization in this paper applies to all these papers,
providing that the trees are required to have singular-splitting (see below).

An important exception is [4], where the number of liftings is of crucial
importance (the characterization describes a uniform way of lifting, and is
thus not suitable for situations where we need to tweak the liftings in a
special way).

We should also state that the results obtained using the Sacks-like forcings
are completely new because they allow for the lifting of iteration-style forc-
ings. Before this technique was discovered in [5], the only way to achieve
the failure of GCH at a measurable from the assumption of a κ++-strong
cardinal (or H(κ++)-strong cardinal, depending on the notation) was the
“surgery argument” due to H. Woodin (see [1] for some details). Woodin’s
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argument is however very fragile and applies only in very special circum-
stances (such as a product-style Cohen forcing).

2 Singular splitting κ-Sacks forcing

For simplicity, we focus here only on the single κ-Sacks forcing. Other
application are straightforward generalizations.

In [8], A. Kanamori generalizes the Sacks forcing at ω for a regular cardinal
κ. Although κ can be any regular cardinal, we will deal here only with the
case when κ is a (strongly) inaccessible cardinal. There are two new non-
trivial requirements which need to be added so that the forcing is κ-closed.
If p ⊆ 2<κ is a κ-tree with unbounded splitting, then we also demand:

(2.1)
(i) If s0 ⊆ s1 ⊆ . . . is a sequence of nodes in p indexed by α < λ for some

limit λ < κ, then
⋃

α<λ sα is a node in p;
(ii) If s is a node in p, length(s) is a limit ordinal < κ, and splitting nodes

t ⊆ s are unbounded in s, then s splits (“continuous splitting”).

In general, we say that p is a κ-perfect tree for an inaccessible κ, if p ⊆ 2<κ

is a tree of height κ, for each s ∈ p there is t ⊇ s in p which splits, and p
satisfies the conditions (i) and (ii) in (2.1). We write p ≤ q to denote that p
is a stronger condition, where p ≤ q ↔ p ⊆ q. The forcing notion consisting
of all perfect κ-trees together with the inclusion relation will be denoted
Sacks′(κ), and called the generalized Sacks forcing.

We define some notation which we find useful. Let us write for p ∈ Sacks′(κ),
Splitα(p) = {s ∈ p | s is the α-th splitting node in p}. We write p ≤α q if
p ≤ q and Splitα(p) = Splitα(q).

Recall that 〈pi | i < κ〉 is a fusion sequence if pi+1 ≤i pi for each i < κ (and
intersections are taken at limits). We say that the forcing satisfies κ-fusion
if every fusion sequence has the greatest lower bound. One can show (see
[8]) that Sacks′(κ) is κ-closed1 and satisfies κ-fusion (and hence preserves
cardinals up κ+). Under GCH, the forcing is κ++-cc, and so preserves all
cardinals.

In order to obtain a nice definition of lifting (see below in Lemma 4.3), we
wish to restrict the splitting levels in p at regular levels λ < κ.

Definition 2.1 We say that p is a singular-splitting-Sacks tree if p is a tree
as above, but the condition (ii) is modified as follows: the tree p only splits
if lenght(s) for s ∈ p has countable cofinality.

1A forcing is κ-closed if all decreasing sequences of length less than κ have a lower
bound.
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The collection of all singular-splitting Sacks trees will be denoted as Sacks(κ).

Lemma 2.2 Singular-splitting-Sacks forcing Sacks(κ) is still κ-closed and
satisfies κ-fusion.

Proof. This is a routine argument using the fact that the set of all ordinals
below κ which are not regular cardinals (and so where splitting is allowed)
is a stationary set. Since κ-perfect trees have continuous splitting (see (ii)
in (2.1)) and are closed under increasing sequences of length < κ (see (i) in
(2.1), the argument follows. �

3 A lifting primer

We will assume GCH throughout. For a review of lifting arguments and
related large cardinal concepts, please see [FRIEDMAN, in this journal].

In what follows, j will denote a non-trivial elementary extender ultrapower
embedding with a critical point κ as detailed below, unless stated otherwise.

We say (for the purposes of this paper) that an elementary embedding j :
V → M with λ < j(κ) is an extender ultrapower embedding if

(3.2) M = {j(f)(α) | f : κ → V, α < λ},

for some cardinal λ > κ with cofinality at least κ+ (this implies that M
is closed under κ-sequences in V ). In what follows not much is lost if you
substitute κ++ for λ. We say that κ is λ-strong, if moreover H(λ) ⊆ M .

The basic context is as follows: Suppose we want to force some property ϕ
(such as failure of GCH) at a regular cardinal κ (which is a standard task),
but in addition preserve some degree of largeness of κ. In order to achieve
this goal, we will typically need to do more than in the standard setting
when the preservation of largeness of κ is not an issue.

Common to all such argument (with the important exception of Prikry-
type iterations, see [7]) is the way how the largeness of κ is verified in a P-
generic extension V [G]: we will define P in such a way so that an embedding
j : V → M existing in V lifts to an embedding j∗ : V [G] → M∗ existing in
V [G]. This technique hinges on the following simple fact:

Fact 3.1 (Lifting lemma, Silver) Let j : V → M be elementary and P
a forcing notion. If G is P-generic and H is j(P)-generic over M and
j[G] ⊆ H, then j lifts to an elementary j∗ : V [G] → M [H] such that
j∗ � V = j and j∗(G) = H. If moreover j was an extender ultrapower
embedding, so is j∗.
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Proof. Define j∗(ẋG) = (j(ẋ))H for every ẋ in V . To show that j∗ is
well-defined, elementary, and j∗(G) = H is a standard argument using the
Forcing Theorem and the fact that j[G] ⊆ H. As regards the ultrapower
representation, for f : κ → V which takes its range in P-names, define
f∗ : κ → V [G] by f∗(α) = (f(α))G. Then M [H] = {j∗(f∗)(α) | f : κ →
V, α < λ}. �

Let X be a subset of a forcing notion P. We write G (X) for the upper
closure of X, i.e.

G (X) = {q ∈ P | (∃p ∈ X) p ≤ q}.

If P does not add new κ-sequences, the lifting argument can be carried out
in a uniform way using the following fact:

Fact 3.2 Let j : V → M be an extender ultrapower embedding for some
λ > κ as in (3.2) and P a κ+-distributive forcing notion in V and let G be
P-generic. Then G (j[G]) is j(P)-generic over M . By Lifting lemma, j lifts
to V [G] → M [G (j[G])].

Proof. Each dense open set D ∈ M can be represented as j(f)(α) for some
α < λ and some f which has its range included in dense open sets in P. On
the V -side, the intersection D̄ =

⋂
α<κ f(α) is a dense set in P and hence

there is some p ∈ D̄ ∩G. By elementarity, j(p) is in j(f)(α) = D. �

We wish to formulate an “as good as possible” variation of Fact 3.2 for
forcings P which add new subsets of κ. Typically, P would be κ-closed
and satisfy some sort of κ-fusion. The paradigmatic example is the forcing
Sacks(κ) defined above.

4 Characterization

In this section, we assume for simplicity that our forcing P is a complete
Boolean algebra. In particular all subsets of the domain have supremum
and infimum. Also recall that the ordering on P is then always separative.

Definition 4.1 Let P be a α+-closed forcing notion for some regular car-
dinal α. For a non-empty X ⊆ P, we denote by Gα(X) the collection of all
conditions p in P such that there exists a ≤-decreasing α-sequence 〈pi | i < α〉
of elements in X satisfying

∧
i<α pi ≤ p. We say that Gα(X) is α-generated

by X.

Example. Let G be P-generic for an α+-closed forcing P. Then (in V [G])
Gα(G) = G.
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Proof. Note first that since P is α+-closed, it does not add new α-sequences
and hence the meaning of Gα(G) is unambiguous for V and V [G].

We will show by induction that if 〈pi | i < ᾱ〉 for some limit ᾱ ≤ α is
a decreasing sequence of conditions in G, then

∧
i<ᾱ pi is in G. To this

end, notice that D = {p | p ≤
∧

i<ᾱ pi} ∪ {p | (∃j < ᾱ)p ⊥ pj} is (using
separativity) dense, which implies the claim. �

Let us assume that κ is a critical point of an embedding j : V → M . Let
P = (Pα, Q̇α)α≤κ be a forcing iteration on inaccessibles α ≤ κ (typically
with Easton support), where each Q̇α is forced by Pα to be α-closed. Let
G∗g be Pκ ∗ Q̇κ generic, and let us write Q = (Q̇κ)G. Assume we have lifted
j : V → M in V [G ∗ g] to

(4.3) j∗ : V [G] → M [G ∗ g ∗H],

where H is the “middle generic” for the forcing j(P) in the interval (κ, j(κ)).
Assume further that

(4.4) V [G ∗ g] ∩ κM [G ∗ g ∗H] ⊆ M [G ∗ g ∗H].

Note that this is a typical situation in forcing arguments preserving largeness
of cardinals, and one which is relatively easy to get; this applies for instance
when Q is a κ+-cc forcing, or Q satisfies κ-fusion (κ-fusion basically ensures
the same thing as κ+-cc in this context: namely that a set of size at most κ
in the generic extension is included in a set of size at most κ in the ground
model).

Lemma 4.2 (Filter lemma) Assume the situation in (4.3) above. Then
Gκ(j∗[g]) is a filter on j∗(Q) which contains j∗[g].

In particular, if Gκ(j∗[g]) happens to hit all dense open sets in j∗(Q) in
M [G ∗ g ∗H], then j∗ lifts (in V [G ∗ g]) to j∗∗ : V [G ∗ g] → M [G ∗ g ∗H ∗
Gκ(j∗[g])].

Proof. Since Q is κ-closed, j∗(Q) is κ+-closed in M [G ∗ g ∗H] and by (4.4)
also in V [G ∗ g]. It suffices to show that if 〈pi | i < κ〉 and 〈qi | i < κ〉
are decreasing sequences of elements in j∗[g], then we can find a decreasing
sequence of elements in j∗[g] 〈ri | i < κ〉 such that

∧
i<κ ri ≤

∧
i<κ pi and∧

i<κ ri ≤
∧

i<κ qi. We define the sequence 〈ri | i < κ〉 by induction. Set
r0 = 1j∗(Q). If ri is constructed, choose ri+1 in j∗[g] below pi+1, qi+1, ri.
This is possible because pi+1 = j∗(p̄), qi+1 = j∗(q̄), and ri = j∗(r̄) for some
p̄, q̄, r̄ in g, and if we choose any s ≤ p̄, q̄, r̄ in g, then clearly ri+1 = j∗(s) is as
required. If k < κ is a limit ordinal, set r̃k =

∧
i<k ri. By the construction at

the successor step, it holds that r̃k is below
∧

i<k pi and
∧

i<k qi. It also holds
that r̃k is in j∗[g]: let 〈r̄i | i < k〉 be the decreasing sequence of elements in
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g such that j∗(r̄i) = ri for each i < k. The set {p ∈ Q | p ≤
∧

i<k r̄i} ∪ {p ∈
Q | (∃i < k) p ⊥ r̄i} is dense (we take Q to be a separative order), and any
element in g must intersect this set in {p ∈ Q | p ≤

∧
i<k r̄i}. It follows

that
∧

i<k r̄i is in g. By elementarity, j∗(
∧

i<k r̄i) = r̃k is in j∗[g]. As in the
successor step, choose rk to be any condition in j∗[g] below pk, qk, r̃k.

The sequence 〈ri | i < κ〉 consists of elements in j∗[g] and by the construction
it is obvious that

∧
i<κ ri is a lower bound of {pi | i < κ} and {qi | i < κ},

that is
∧

i<κ ri ≤
∧

i<κ pi and
∧

i<κ ri ≤
∧

i<κ qi as required. �

The filter Gκ(j∗[g]) is the least possible:

Lemma 4.3 (Characterization lemma) Assume the situation in (4.3)
above. Let h be any M [G ∗ g ∗ H]-generic filter for j∗(Q) which exists in
V [G ∗ g] and contains j∗[g]. Then Gκ(j∗[g]) ⊆ h.

It follows that if Gκ(j∗[g]) is generic, then it is the unique generic in V [G∗g]
which contains j∗[g].

Proof. Let us denote M∗ = M [G ∗ g ∗H ∗ h]. Since h is a generic filter for
a j∗(κ)-closed forcing in M [G ∗ g ∗ H], by the above Example (just below
Definition 4.1), (Gj∗(κ)(h))M∗

(let us denote it as h∗) is included in h. Since
M∗ contains as elements all κ-sequences of its elements which are available
in V [G ∗ g], Gκ(j∗[g]) (which is the same whether taken in V [G ∗ g] or in
M∗) is included in h∗, and so in h. �

5 Application

Let us assume that Q in (4.3) is just the forcing Sacks(κ) defined in Defini-
tion 2.1. In practice, at least the product of κ++-many of these forcings is
relevant, but for illustration the single Sacks(κ) will need to suffice.

By an observation first stated in [5], the intersection of j∗-images of all the
clubs in κ which exist in V [G] is very thin: it contains just one element,
namely κ (this requires the extender ultrapower representation of M [G ∗ g ∗
H]):

(5.5)
⋂
{j∗(C) |C ⊆ κ a club, C ∈ V [G]} = {κ}.

We argue that Gκ(j∗[g]) is a generic filter as follows. Given D a dense open
set in j∗(Q), we can represent it as j∗(f)(α) for some α < λ and some f
which has its range included in dense open sets in Q. Using the κ-fusion in
Q we can find p ∈ g so that:

(*) For each ξ < κ there is ξ̄ < κ such that whenever q ≤ p and the stem of
q has length at least ξ̄, then q meets the dense open set f(ξ).
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Using (5.5), find C ⊆ κ in V [G] so that j∗(C)(κ + 1), the κ + 1-th element
of j∗(C), is greater or equal to ᾱ, where ᾱ is obtained from α using the
elementarity of j∗ and (*). Back in V [G], find by fusion q ≤ p, q ∈ g so
that:

(**) q does not split between C(ξ) and C(ξ + 1) for every ξ < κ.

In M [G∗g ∗H], the tree j∗(q) does not split in the interval (κ, α]. Crucially,
j∗(q) cannot split at κ either, because the definition of singular-splitting trees
was specifically designed to avoid splitting at regulars (and κ is regular in
M [G ∗ g ∗H]). That is j∗(q) does not split in the interval [κ, ᾱ].

However, j∗(q) obviously does split below κ because j∗(q) restricted to Vκ of
M [G∗g∗H] is just q. Here is the place where the κ-closure of j∗[g] comes in:
for each ξ < κ there is by density p ∈ g such that the stem of p has length at
least ξ. It follows that there is r ∈ Gκ(j∗[g]) which has its stem of length at
least κ. Since Gκ(j∗[g]) is always a filter by Lemma 4.2, there is a condition
r̄ in Gκ(j∗[g]) below r and j∗(q). It follows that r̄ has the stem of length at
least ᾱ, and by (*) (and elementarity) this means that r̄ ∈ j∗(f)(α) = D.

It follows that Gκ(j∗[g]) is a filter which meets every dense open set, and so
is a generic filter. By Lemma 4.3, it is also the unique generic to which Q
lifts in V [G ∗ g].

Remark 5.1 This characterization helps to treat uniformly certain techni-
cal issues occurring in liftings of Sacks-like forcings (which are not apparent
here, but occur in more complex settings). For instance in [5], a separate
argument was needed to show that the object defined is also a filter (note
that it is not difficult to hit all dense open sets; it is difficult to hit them
compatibly, i.e. with a filter).

Remark 5.2 Note that the κ-closure Gκ(j∗[g]) can only give non-trivial
information for forcings Q where the conditions q ∈ Q are of size at least
κ. For instance if Q is just the single κ-Cohen forcing, then the κ-closure
Gκ(j∗[g]) is equal to g.
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