
GENERALIZED CARDINAL INVARIANTS FOR AN
INACCESSIBLE κ WITH COMPACTNESS AT κ++

RADEK HONZIK AND ŠÁRKA STEJSKALOVÁ

Abstract. We study the relationship between non-trivial values of gen-
eralized cardinal invariants at an inaccessible cardinal κ and compactness
principles at κ++. Let TP(λ), ¬wKH(λ) and SR(λ) denote the tree prop-
erty, the negation of the weak Kurepa Hypothesis and stationary reflection,
respectively, at a regular cardinal λ.

We show that if the existence of a supercompact cardinal κ with a
weakly compact cardinal λ above κ is consistent, then the following are
consistent as well (where t(κ) and u(κ) are the tower number and the
ultrafilter number, respectively):

(i) There is an inaccessible cardinal κ such that κ+ < t(κ) = u(κ) < 2κ

and SR(κ++) holds, and
(ii) There is an inaccessible cardinal κ such that κ+ = t(κ) < u(κ) < 2κ

and SR(κ++),TP(κ++) and ¬wKH(κ+) hold.
The cardinals u(κ) and 2κ can have any reasonable values in these

models. We obtain these results by combining the forcing construction
from [4] due to Brooke-Taylor, Fischer, Friedman and Montoya with the
Mitchell forcing and with (new and old) indestructibility results related to
SR(λ), TP(λ) and ¬wKH(λ). Apart from u(κ) and t(κ) we also compute
the values of b(κ), d(κ), s(κ), r(κ), a(κ), cov(Mκ), add(Mκ), non(Mκ),
cof(Mκ) which will all be equal to u(κ).

In (ii), we compute p(κ) = t(κ) = κ+ by observing that the κ+-
distributive quotient of the Mitchell forcing adds a tower of size κ+.

Finally, as a corollary of the construction, we observe that items (i) and
(ii) hold also for the traditional invariants on κ = ω, using Mitchell forcing
up to a weakly compact cardinal; in this case we also obtain the disjoint
stationary sequence property DSS(ω2), which implies the negation of the
approachability property ¬AP(ω2).

1. Introduction

There has been an extensive research recently in the area of compactness
principles at successor cardinals, and one of the questions is to what extent,
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if at all, these principles restrict the continuum function in the proximity of
these cardinals. See for instance [5], [17], or [21] for some examples. Extending
this question, we can ask whether there are some restrictions for other cardinal
invariants besides the continuum function. This has been done for instance in
[16] and [14], where the focus is on the cardinal invariants on singular strong
limit cardinals.

In this paper we investigate cardinal invariants on an inaccessible κ with the
focus on the ultrafilter number u(κ) and the tower number t(κ). See Section 2
for the definitions of compactness principles SR(κ++) (stationary reflection),
TP(κ++) (the tree property), ¬wKH(κ+) (the negation of the weak Kurepa
Hypothesis), and DSS(κ++) (the disjoint stationary sequence property) we use
in this paper. We show in Theorems 4.1 and 4.2 that for any reasonable choice
of cardinals u(κ) and 2κ, κ+ ≤ t(κ) = u(κ) < 2κ and κ+ = t(κ) < u(κ) < 2κ

are both consistent with SR(κ++), and κ+ = t(κ) < u(κ) < 2κ is consistent
with TP(κ++) and ¬wKH(κ+). The consistency of κ+ < t(κ) = u(κ) < 2κ with
TP(κ++) and/or ¬wKH(κ+) seems to be open at the moment (see Section 5
with open questions). In addition to u(κ) and t(κ) we also compute the values
of cardinal invariants b(κ), d(κ), s(κ), r(κ) and a(κ), and also the invariants of
the meager ideal Mκ. See [3] for details regarding cardinal invariants at a
regular uncountable κ > ω. In Theorem 5.1 we observe that our result also
applies to the traditional cardinal invariants at ω, where we in addition obtain
the principle DSS(ω2), and hence ¬AP(ω2) (the negation of the approachability
property).

We use indestructibility results available for the above-mentioned compact-
ness principles to argue that they hold in the final models: If κ is regular with
κ<κ = κ and λ > κ is a large cardinal, it is known that the Mitchell forcing
M(κ, λ) forces many compactness principles at λ with λ = κ++ in V [M(κ, λ)].
Many of these compactness principles can be preserved in a further forcing
extension via some P ∈ V [M(κ, λ)], provided P has certain nice properties,
such as being κ+-cc. If all is set up correctly, the model V [M(κ, λ) ∗ Ṗ] can
satisfy both the compactness principles at κ++ and some additional properties
ensured by Ṗ.

In the present paper, we show how to apply this strategy with the κ+-
Knaster and κ-directed closed forcing notion denoted Pδ ↓ pU̇ , introduced in
Brooke-Taylor, Fischer, Friedman and Montoya [4], which is a simplified ver-
sion of the original argument of Džamonja and Shelah in [6], and which yields
a model where κ is inaccessible and u(κ) < 2κ (among other things). In both
papers, κ is assumed to be a supercompact cardinal and can retain its super-
compactness in the final model. The ordinal δ in Pδ ↓ pU̇ is the length of the
iteration and has the prescribed cofinality which is equal to u(κ) in the generic
extension.
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We show that it is possible to use Pδ ↓ pU̇ in two different ways, obtaining
two different forcing notions P1 and P2, and in effect two different patterns of
cardinal invariants:

(1.1) P1 := M(κ, λ) ∗ Ṗδ ↓ pU̇ ,

where Ṗδ ↓ pU̇ is defined in V [M(κ, λ)], and

(1.2) P2 := Add(κ, λ) ∗ (Ṗδ ↓ pU̇ × Ṙ),

where we use thatM(κ, λ) is equivalent to Add(κ, λ)∗Ṙ for some κ+-distributive
quotient, and define Ṗδ ↓ pU̇ in the smaller model V [Add(κ, λ)].

It is straightforward to observe that P1 forces stationary reflection at κ++

by invoking indestructibility results reviewed in Fact 2.8, together with the
pattern of cardinal invariants computed in [4] (see Theorem 4.1).

The forcing P2 forces in addition the tree property at κ++ by Fact 2.9 and
the negation of the weak Kurepa Hypothesis at κ+ by Theorem 2.13, and in
contrast to P1, it forces p(κ) = t(κ) = κ+ due to the fact that Ṙ introduces a
tower of size κ+. See Theorem 4.2 for details.

The paper is structured as follows: in Section 2 we review basic notions and
facts related to compactness principles and prove an indestructibility Theorem
2.13 for the negation of the weak Kurepa Hypothesis. In Section 3 we briefly
review the forcing construction from [4] in order to make the paper (relatively)
self-contained, and also to clarify some unclear points from [4]. In Section 4 we
prove our main Theorems 4.1 and 4.2. In Section 5 we state some open ques-
tions and formulate a corollary of our construction which gives the consistency
of an analogous configuration at ω using a forcing from [2]: ω1 = t < u < 2ω

plus SR(ω2),TP(ω2),¬wKH(ω1). In contrast to the situation for an inacces-
sible cardinal κ, we additionally obtain DSS(ω2) here (see Theorem 5.1 with
forcing P3).

Remark 1.1. There are other compactness principles for which a similar re-
sult can be attempted (see Question 4 in Section 5). Let us provide a few
comments on the negation of the approachability and the disjoint stationary
sequence property. Let λ be a regular cardinal and let AP(λ) denote the
approachability property (Definition 2.5) and DSS(λ) the disjoint stationary
sequence property (Definition 2.6). Recall that DSS(λ) implies ¬AP(λ) (see
[15, Corollary 3.7.]). Since DSS(κ++) is easy to preserve (see Theorem 2.15)
it is natural to attempt to show the consistency of ¬AP(κ++) with cardinal
invariants in Theorems 4.1 and 4.2 by means of DSS(κ++). However, it is not
known whether DSS(κ++) holds in the usual Mitchell extension which does not
add new reals. See Remark 2.7 for more comments regarding this point. Since
a sufficiently strong indestructibility result for ¬AP(κ++) is missing, the only
remaining strategy to show ¬AP(κ++) in Theorems 4.1 and 4.2 is through a
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direct lifting argument. We haven’t tried this in this paper, but it is plausible
that it can be done (see Question 3 in Section 5). Note that the situation at
κ = ω is different since it is known (see [15]) that Mitchell forcing M(ω, λ)
forces DSS(ω2) for a sufficiently large λ. See Theorem 5.1 in this paper.

2. Preliminaries

Let us define the compactness properties we are going to study in this paper.
In this section, let λ− be an uncountable regular cardinal and λ = (λ−)+ (this
case is sufficient for our purposes).

Definition 2.1. We say that the tree property holds at λ, and we write TP(λ),
if every λ-tree has a cofinal branch.

Definition 2.2. We say that the negation of the weak Kurepa Hypothesis hold
at λ, and we write ¬wKH(λ), if there are no trees of height and width λ which
have at least λ+-many cofinal branches.

Note that we will use these two principles with TP(κ++) and ¬wKH(κ+)
for a regular κ. Although ¬wKH(κ+) lives on κ+, it prohibits trees with κ++

many cofinal branches, so TP(κ++) and ¬wKH(κ+) typically hold together (for
instance after Mitchell forcing).

Definition 2.3. We say that stationary reflection holds at λ, and write SR(λ),
if every stationary subset S ⊆ λ ∩ cof(< λ−) reflects at a point of cofinality
λ−; i.e. there is α < λ of cofinality λ− such that α ∩ S is stationary in α.

As we discussed in Remark 1.1, the following two principles do not appear
in Theorems 4.1 and 4.2, but they appear in Theorem 5.1.

For a cardinal λ and sequence ā = 〈aα |α < λ〉 of bounded subsets of λ,
we say that an ordinal γ < λ is approachable with respect to ā if there is an
unbounded subset A ⊆ γ of order type cf(γ) and for all β < γ there is α < γ
such that A ∩ β = aα.

Let us define the ideal I[λ] of approachable subsets of λ:

Definition 2.4. S ∈ I[λ] if and only if there are a sequence ā = 〈aα |α < λ〉
of bounded subsets of λ and a club C ⊆ λ such that every γ ∈ S ∩ C is
approachable with respect to ā.

Definition 2.5. We say that the approachability property holds at λ if λ ∈ I[λ]
(or equivalently, there is a club subset of λ in I[λ]), and we write AP(λ).

For cardinals κ ≤ λ, we denote by Pκ(λ) the set of all subsets of λ of size
< κ. The following property DSS(λ) was introduced in [15]:

Definition 2.6. We say that λ has the disjoint stationary sequence property,
DSS(λ), if there are a stationary set S ⊆ λ∩cof(λ−) and a sequence 〈sα |α ∈ S〉
such that:
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(i) For all α ∈ S, sα is a stationary subset of Pλ−(α);
(ii) For all α < β in S, sα ∩ sβ = ∅.

By [15, Corollary 3.7.], DSS(λ) implies ¬AP(λ).

Remark 2.7. At the moment, the only known method for obtaining DSS(κ++)
for κ > ω is to modify the Mitchell forcing to add κ++ many new subsets of
ω (see [15, Theorem 9.1]). This modification is not suitable for us because
we need to preserve κ<κ = κ in Theorems 4.1 and 4.2. Not much is known
about this question: it may well be possible that the usual Mitchell forcing
(with a sufficiently large cardinal), which preserves κ<κ = κ, forces DSS(κ++)
because no counterexamples are known. The difficulty of the problem comes
in part from fact that it is related to another open question dealing with
possible generalizations of Gitik’s theorem that adding a real makes (Pκλ)V

(for relevant κ, λ) co-stationary in the generic extension (see [10] and comments
in [15, Section 7]).

2.1. Indestructibility of some compactness principles

The strongest form of indestructibility is known for stationary reflection. It
works over any model and requires just an appropriate chain condition (we
formulate it to fit our present purposes):

Fact 2.8 (Indestructibility of stationary reflection, [14]). Suppose SR(κ++)
holds and Q is κ+-cc. Then Q forces SR(κ++).

The indestructibility of the tree property is known only for a specific model,
i.e. the Mitchel extension V [M(κ, λ). Let us restate it here for reference, start-
ing with a brief review of the Mitchell forcing M(κ, λ). Suppose κ = κ<κ and
λ > κ is inaccessible; the Mitchell forcing (or the Mitchell collapse) M(κ, λ)
collapses cardinals in the interval (κ+, λ), forces 2κ = λ, and also forces some
compactness principles depending on the largeness of λ. It can be decomposed
as the Cohen forcing Add(κ, λ) followed by a κ+-distributive quotient forcing
Ṙ so that M(κ, λ) is equivalent to Add(κ, λ) ∗ Ṙ. Also, there is a κ+-closed
forcing T (the term forcing) such that Add(κ, λ) × T projects onto M(κ, λ).
See [19] for the original definition, [1] for a modern presentation, and Footnote
10 in Lemma 4.10 for specific details relevant for us.

The following is the strongest known indestructibility of the tree property
related to the chain condition:

Fact 2.9 (Indestructibility of the tree property, [13]). Suppose κ = κ<κ and
λ > κ is weakly compact. Suppose Add(κ, λ) forces that Q̇ is a forcing notion
which is κ+-cc. Then M(κ, λ) ∗ Q̇ forces TP(λ).

Let us now extend Fact 2.9 to the negation of the weak Kurepa Hypothesis.

Definition 2.10. Suppose κ is a regular cardinal. We say that a forcing P is
productively κ-cc iff P× P is κ-cc.
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Notice that every κ-Knaster forcing is productively κ-cc, and every produc-
tively κ-cc forcing is κ-cc.

The following is well known and will be useful for us:

Fact 2.11. Suppose κ is a regular cardinal and T is a tree of height κ. If Q is
productively κ-cc, then Q does not add new cofinal branches to T .

The productive chain condition is not so well-behaved with regard to preser-
vation under iteration as the regular chain condition or the Knaster condition,
but there is a weaker characterization. To formulate it, let us introduce the
following notation: Suppose Q̇ is a P-name. We can view it artificially as a
P×P-name by modifying it to depend only on the first coordinate or the second
coordinate of P× P, obtaining Q̇1 and Q̇2, respectively.1

Recall the following characterization which holds for the regular chain con-
dition:

(2.3) P ∗ Q̇ is κ-cc⇔ P is κ-cc and P 
 Q̇ is κ-cc.

Lemma 2.12. Let P ∗ Q̇ be a forcing notion and κ a regular cardinal. Then
the following hold:
(i) If P ∗ Q̇ is productively κ-cc, then P is productively κ-cc and forces that

Q̇ is productively κ-cc.
(ii) If P is productively κ-cc and P×P forces that Q̇1× Q̇2 is κ-cc, then P ∗ Q̇

is productively κ-cc.

Proof. (i). P is productively κ-cc because there is a natural regular embedding
from P×P into (P∗ Q̇)× (P∗ Q̇). We use (2.3) repeatedly for the second claim:
If P ∗ Q̇ is productively κ-cc, then P ∗ Q̇ 
 P ∗ Q̇ is κ-cc. This is equivalent to
P 
 Q̇ 
 P ∗ Q̇ is κ-cc, which is in turn equivalent to P 
 Q̇ ∗ P ∗ Q̇ is κ-cc,
which readily implies P 
 Q̇× Q̇ is κ-cc.2

(ii). Assume for contradiction that A = {[(pα, q̇α), (p′α, q̇
′
α)] |α < κ} is an

antichain in (P ∗ Q̇) × (P ∗ Q̇). We shall need the following observation: if
(pα, q̇α), (p′α, q̇

′
α) and (pβ, q̇β), (p′β, q̇

′
β), α < β, are in A, and there are conditions

p, p′ in P such that p ≤ pα, pβ and p′ ≤ p′α, p
′
β , then either p 
 q̇α ⊥ q̇β or

p′ 
 q̇′α ⊥ q̇′β , which can be reformulated for the forcing (P×P) ∗ (Q̇1× Q̇2) as:

(2.4) (p, p′) 
 (q̇α, q̇
′
α) ⊥ (q̇β, q̇

′
β),

by replacing the names q̇α, q̇′α, etc., as explained in Footnote 1.

1 Define recursively a function ∗ from P-names to P × P-names so that σ∗ =
{[(p, 1), τ∗] | (p, τ) ∈ σ} for Q̇1 and {[(1, p), τ∗] | (p, τ) ∈ σ} for Q̇2.

2We can continue to obtain a partial converse to the implication in (ii): P 
 Q̇ ∗ P ∗ Q̇ is
κ-cc implies P 
 P 
 Q̇1 × Q̇1 is κ-cc, equivalently P× P 
 Q̇1 × Q̇1 is κ-cc, and by mutual
genericity of generic filters for P× P, P× P 
 Q̇2 × Q̇2 is κ-cc. But this is still weaker than
the condition which implies P ∗ Q̇ is productively κ-cc in (ii).
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DefineA∗ = {[(pα, p′α), pair(q̇α, q̇
′
α)] |α < κ}, where pair(q̇α, q̇

′
α) is the canon-

ical name for the ordered pair (q̇α, q̇
′
α). A∗ is a P × P-name for a subset of

Q̇1 × Q̇2. Since P is productively κ-cc, there is a generic filter G such that
for some I ⊆ κ of size κ, {(pα, p′α) |α ∈ I} ⊆ G. Let us write q1α and q′α

2

for q̇G1

α and q̇′αG
2 , α < κ, respectively (where G1 and G2 are projections of G

to the coordinates). We claim that {(q1α, q′α2) |α ∈ I} is an antichain, which
gives a contradiction: For any α < β ∈ I, (pα, p

′
α) and (pβ, p

′
β) are compati-

ble because they are in G, and their lower bound (p, p′) ∈ G forces by (2.4)
(q̇α, q̇

′
α) ⊥ (q̇β, q̇

′
β). �

Theorem 2.13 is slightly weaker than Fact 2.9 because it requires the pro-
ductive κ+-cc condition and not just κ+-cc. The reasons are technical: the tree
property deals with κ++-trees, and we used in [13] the fact that a κ+-cc forcing
cannot add a new cofinal branch to a κ++-tree; this is not true in general for
trees of height κ+ which appear in ¬wKH(κ+). So we use Fact 2.11 instead.

Theorem 2.13 (Indestructibility of the negation of the weak Kurepa Hypoth-
esis). Assume ω ≤ κ < λ are cardinals, κ<κ = κ and λ is weakly compact.
Suppose Add(κ, λ) ∗ Q̇ is productively κ+-cc. Then

V [M(κ, λ) ∗ Q̇] |= ¬wKH(κ+).

Proof. Notice that we require that Add(κ, λ)∗Q̇ is productively κ+-cc, and not
the potentially weaker condition that Add(κ, λ) forces that Q̇ is productively
κ+-cc (see Lemma 2.12(ii)). However, in many situations this is easy to ensure:
for instance if Q̇ is forced to be κ+-Knaster, then Add(κ, λ)∗ Q̇ is κ+-Knaster,
and in particular productively κ+-cc.

The proof closely follows the proof of [13, Theorem 3.2]. The heart of the
argument is [13, Claim 3.5] which must be modified as follows (see [13, Claim
3.5] for notation):

Claim 2.14. (i) R1
λ is κ+-closed in N [G].

(ii) j(R0 ∗ Q̇)/G0 ∗ h is productively κ+-cc over N [G][h].
(iii) Q̇G0 ∗j(R0∗Q̇)/G0∗ḣ is κ+-cc over N [G], where j(R0∗Q̇)/G0∗ḣ denotes

a Q̇G0-name for the quotient.

In (i), the forcing R1
λ is the κ+-closed term forcing related to the Mitchell

forcing, and this stays true in our case.
For (ii), follow the proof of [13, Claim 3.5]: (3.23) in that proof now reads

“...is productively κ+-cc over N ”, (3.24) reads “...is productively κ+-cc over
N [G1] (by Easton’s lemma), and the argument in the paragraph below (3.25)
follows by Lemma 2.12(i).

With (ii) modified as described, Fact 2.11 is applied to j(R0 ∗Q̇)/G0 ∗h over
N [G][h] to argue that no new cofinal branches are added by the productively
κ+-cc forcing j(R0 ∗ Q̇)/G0 ∗ h to a tree T of height and size κ+ (view T is a
possible counterexample to ¬wKH(κ+) in V [G][h]).
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Item (iii) still works with the κ+-cc condition. It uses the fact that a κ+-
closed forcing in a model with 2κ = κ++ cannot add a new cofinal branch
to a tree of height and size κ+ which is added by a κ+-cc forcing notion (see
[13, Fact 2.11] and [22, Lemma 6]).3 Thus (iii) is applied with the κ+-cc
forcing Q̇G0 ∗ j(R0 ∗ Q̇)/G0 ∗ h and the κ+-closed forcing R1

λ to conclude that
R1
λ × j(R0 ∗ Q̇)/G0 ∗ h cannot add new cofinal branches to T . The rest of the

argument is as in [13, Theorem 3.2]. �

As we discussed in Remarks 1.1 and 2.7, we don’t know whether DSS(κ++)
holds in the Mitchell extension we use in Theorems 4.1 and 4.2. However, we
know that DSS(ω2) holds in the model of Theorem 5.1. This is because the
principle DSS(λ) is easy to preserve:

Theorem 2.15 (Indestructibility of the disjoint stationary sequence property,
essentially [15]). Let λ be as fixed above and let 〈sα |α ∈ S〉 be a disjoint
stationary sequence on λ, with S ⊆ λ∩cof(λ−) stationary. Suppose P preserves
stationary subsets of both λ− and λ. Then P forces that 〈sα |α ∈ S〉 is a disjoint
stationary sequence on λ with S stationary.

Proof. Since P preserves stationary subsets of λ, S is still stationary. It suffices
to check that if P preserves stationary subsets of λ−, it preserves stationary
subsets of Pλ−(α) for α ∈ S. Let 〈xi | i < ν〉 in Pλ−(α) be an increasing and
continuous sequence of subsets of α of size < λ− whose union is α; then it is
easy to verify that s is stationary in Pλ−(α) iff {i < λ− |xi ∈ s} is stationary
in λ−. It follows that if P preserves stationary subsets of λ−, it also preserves
stationary subsets of Pλ−(α). �

Note that [11, Corollary 2.2] gives an indestructibility result for ¬AP(κ++),
κ regular, but it holds only for κ-centered forcings,4 and thus is not sufficient
for our purposes.

3. A review of the argument which makes u(κ) small

3.1. The original forcing

Let us briefly review the definition of the forcing P introduced in [4] by Brooke-
Taylor, Fischer, Friedman and Montoya. Let κ be a Laver-indestructible super-
compact cardinal, and µ ≥ κ++ a cardinal of cofinality > κ with µκ = µ. Let
us start by assuming that the ordinals below µ+ are divided into three disjoint
cofinal subsets which are reserved for three different tasks: the first subset I0

3The referenced [22, Lemma 6] essentially deals with κ++-trees and proceeds by a recursive
construction of size κ in a version of Silver’s argument to show that if a new cofinal branch
is added, then there must be a level of the tree of size 2κ = κ++: this gives a contradiction
for our tree of size and height κ+ as well.

4A forcing is κ-centered if it can be written at the union of κ-many filters, in particular
it has the κ+-cc.
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is reserved for the Mathias forcing which controls the ultrafilter number u(κ),
the second subset I1 is used to control the minimal size of a κ-mad family a(κ),
and the third subset I2 is used to control the pseudo-intersection number p(κ).
For concreteness we may take I0 to be the set of limit ordinals below µ+ and
I1 and I2 to be some sets of odd ordinals such that both I1 and I2 are cofinal
in every limit ordinal.

The iteration on the segments I1 and I2 is defined in the usual way with < κ
support, but I0 is more complicated because it uses a lottery among forcings
and two types of support to control u(κ). In what follows we will suppress the
details for iterands on I1 ∪ I2 and focus on I0.

Definition 3.1. The forcing P has the following structure:

• P = 〈(Pα, Q̇α) |α < µ+〉 is an iteration of length µ+ with < κ-support
on I1 ∪ I2 such that for each α ∈ I0, Q̇α is the lottery over Mathias
forcings Mathias(U̇) defined with respect to normal ultrafilters U̇ on
κ existing in V [Pα]. Since we start with a Laver-indestructible super-
compact κ, there will always be some normal ultrafilters available.
• For a condition p ∈ P, the support of the lottery (on I0) is called

Lottery(p) and it is an initial segment of I0; for ease of notation we
will identify it with an ordinal below µ+, i.e. we write Lottery(p) = γ
to mean that Lottery(p) = γ ∩ I0: if α ∈ Lottery(p), then the lottery
has chosen at stage α ∈ I0 a normal ultrafilter (denoted U̇pα).
• Only at most < κ-many coordinates in Lottery(p) are allowed to be
non-trivial in the sense that they are not equal to the weakest condition
in Mathias(U̇pα): we call this set the Mathias support and denote it
Mathias(p).
• If Mathias(p) = ∅ and Lottery(p) = γ, we write p→γ to indicate that
p has made its choice regarding the normal ultrafilters below γ, but
has not chosen any (non-trivial) conditions in the respective Mathias
forcings.

We will work with restrictions of the form Pδ ↓ p→δ (the conditions in Pδ
which extend p→δ) which always have a dense subset of size at most µ and are
κ+-Knaster (unlike Pδ which has antichains of size 22

κ due to the lottery over
all normal ultrafilters on κ).5

The key idea in [4] is to identify a suitable name U̇ for a normal ultrafilter on
κ in V [P], and truncate P at some ordinal δ ∈ (µ, µ+) of the required cofinality
such that for a certain condition pU̇ (which is of the form p→δ), the forcing

5The paper [4] only states that Pδ ↓ p→δ is κ+-cc, but it is easy to see that it is κ+-Knaster:
This forcing has < κ-support, and all iterands are κ-directed closed and are κ-centered: their
compatibility is determined by stems s ∈ κ<κ (the Mathias forcing on I0∪ I2 and an almost-
disjointness forcing on I1). To argue that Pδ ↓ p→δ is κ+-Knaster, first use a ∆-system lemma
on the supports and then use the κ-centeredness of the iterands on the root of the system
(the stems s can be without the loss of generality represented by checked names).
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Pδ ↓ pU̇ forces κ+ < u(κ) < 2κ = µ. The ultrafilter number u(κ) will be equal
to the cofinality of δ.

The main tool in the proof is to argue that any normal ultrafilter on κ in
V [P] reflects sufficiently often below µ+. Lemma 3.2 below is implicit in [4,
Lemma 10]:

We say that S ⊆ µ+ is a cof(>κ)-club if S is unbounded in µ+ and closed
at limit points of cofinality >κ.

Lemma 3.2. Assume κ, µ and P are is in Definition 3.1. Assume that

(3.5) 1P 
 U̇ is a normal ultrafilter on κ.

Then there is a cof(>κ)-club SU̇ ⊆ µ
+ where U̇ reflects. More precisely, there

is a decreasing sequence 〈p→α |α ∈ SU̇ 〉 continuous at points of cofinality >κ
which chooses in the lottery the restrictions of the ultrafilter U̇ at the relevant
stages:
(i) For every α ∈ SU̇ ,

(3.6) p→α 
 U̇ ∩ V [Pα] ∈ V [Pα].

(ii) For all α < α∗ ∈ SU̇
(3.7) p→α

∗

 U̇α = U̇ ∩ V [Pα] ∈ V [Pα],

where U̇α is a name of the ultrafilter selected by the lottery at stage α by
p→α

∗.
(iii) The sequence is continuous at ordinals of cofinality >κ: for any limit δ

in SU̇ of cofinality >κ, p→δ is the infimum of 〈p→β |β < δ〉 such that
(3.7) holds for all α < α∗ < δ.

3.2. Obtaining the right normal ultrafilter for our proof

The existence of normal ultrafilters in V [P] follows by assuming that κ is Laver-
indestructibly supercompact. In order to find a suitable name U̇ for which the
iteration on I0 – below some well-chosen condition pU̇ – generates a base of a
uniform ultrafilter and ensures the desired value of u(κ), we need to go into
the details of the Laver preparation. We follow the structure of the argument
in [4] while including the forcings M(κ, λ) and Add(κ, λ) in the preparation
(we also provide a clarification of certain points in the proof; see Footnote 6).

In preparation for Theorems 4.1 and 4.2, we need to consider not just the
forcing P, but forcings of the form

(3.8) M(κ, λ) ∗ Ṗ
and

(3.9) Add(κ, λ) ∗ Ṗ.
The argument is the same in both cases, so let us write this forcing as

(3.10) P ∗ Ṗ,
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with the understanding that P is either Add(κ, λ) or M(κ, λ).
Suppose κ is supercompact in V ′, and L is the Laver preparation for κ

which makes κ in V [L] indestructible under all κ-directed closed forcings. Let
H ∗ F ∗G be an L ∗ P ∗ P-generic over V ′.

Fix a suitable supercompact embedding

(3.11) j : V ′ →M

with critical point κ such that the iteration j(L) chooses at stage κ in M the
forcing P ∗ Ṗ.

Using a standard master condition argument we can lift in V ′[H][F ][G]
further to j′

(3.12) j′ : V ′[H][F ]→M [H][F ][G][H∗][F ∗],

where H∗ is any generic over M [H][F ][G] for the tail of j(L) and F ∗ is any
generic over M [H][F ][G][H∗] containing a master condition for F .

For the lifting of j′ to j∗, we need a specific master condition p∗ extending
the pointwise image of j′[G], the properties of which are detailed in Remark
3.3 below. Since p∗ is a master condition, j′ lifts to j∗:

(3.13) j∗ : V ′[H][F ][G]→M [H][F ][G][H∗][F ∗][G∗],

where G∗ contains p∗.
In V ′[H][F ], let U̇ be a P-name forced by 1P to be a normal ultrafilter on κ

generated by j∗. This name U̇ is the one to which Lemma 3.2 is applied, and
which determines the ordinal δ ∈ SU̇ , the condition pU̇ = p→δ, and finally the
forcing Pδ ↓ pU̇ .

6

Remark 3.3. Let us briefly review the definition of p∗. We work in the
generic extension V ′[H][F ][G], but all we say can be translated into P-forcing
statements dealing with names for j′ and G over V ′[H][F ]. Let p∗0 be some
master condition for j′[G]; we extend p∗0 by some p∗ ≤ p∗0 which in addition
has the following property (*):

(*) Whenever α < µ+ has the property that for every A ∈ (U̇α)G (where
U̇α is a name for the normal ultrafilter selected by the lottery at stage
α by a condition in G) there is some name Ȧ for A and a condition
pA ∈ Gα with j′(pA) 
 κ ∈ j′(Ȧ), then p∗(j(α)) is obtained from

6 The argument in [4, Theorem 12] seems to suggest that one can start with an arbitrary
name U̇ and apply [4, Lemma 10] with it, and control the interpretation of U̇ by choosing
the right master condition to lift j′ to j∗ in (3.13). But U̇ is a P-name and the lifting from
j′ to j∗ does not effect its interpretation which is fixed by the P-generic filter G (and so U̇G

may not contain the Mathias generic subsets of κ which ensure a base of size κ∗). Instead,
we should argue that 1P forces over V ′[H][F ] that there is a normal ultrafilter U̇ with the
required properties (*) reviewed in Remark 3.3, apply Lemma 3.2 with this name U̇ to secure
a condition pU̇ of the form p→δ, and only then choose a generic filter G for Pδ which contains
the condition pU̇ .
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p∗0(j(α)) by adding {κ} into the stem of the Mathias forcing at stage
j(α).

Let j∗ be the lifting of j′ with any G∗ which contains p∗, and let U̇ be a
name for the normal ultrafilter generated by j∗. Let us apply Lemma 3.2 with
this name U̇ , obtaining the appropriate SU̇ , δ and p→δ = pU̇ . Let G be any
Pδ ↓ pU̇ -generic filter. The Mathias-generic subsets of κ, denoted xα, at all
stages α ∈ SU̇ are in U̇G because pU̇ ∈ G and p∗(j(α)) was defined to contain
the stem xα ∪ {κ} (and κ ∈ j∗(xα) is equivalent to xα being in U̇G).

4. Compactness and generalized cardinal invariants

Using the indestructibility result for SR(λ) reviewed in Section 2 and the
properties of the forcing Pδ ↓ pU̇ reviewed earlier, one can immediately observe
the following:

Theorem 4.1. Suppose κ is a supercompact cardinal, λ > κ is a weakly com-
pact cardinal, µ ≥ λ is a cardinal with cofinality > κ with µκ = µ, and κ∗ is
a regular cardinal with κ < κ∗ < µ. Then there is a generic extension V [G]
which satisfies the following:
(i) Exactly the cardinals in the open interval (κ, λ) are collapsed, with λ =

(κ++)V [G],
(ii) 2κ = µ,
(iii) SR(κ++).

And the following identities hold:

(4.14) κ∗ = p(κ) = t(κ) = b(κ) = d(κ) = s(κ) = r(κ) = a(κ) = u(κ) =

= cov(Mκ) = add(Mκ) = non(Mκ) = cof(Mκ).

Proof. Let us define
P1 := M(κ, λ) ∗ Ṗδ ↓ pU̇ ,

where Ṗδ ↓ pU̇ is defined in V [M(κ, λ)] following the review in Section 3.1 with
the condition pU̇ determined by Lemma 3.2 with respect to the name U̇ ob-
tained through the Laver preparation (3.8) and the construction described in
Remark 3.3. In particular δ ∈ (µ, µ+) is such that SU̇ ∩ δ has cofinality κ

∗ and
pU̇ is equal to p→δ in the construction in Lemma 3.2 applied with U̇ .

Let G = F ∗Gδ be an M(κ, λ) ∗ Ṗδ ↓ pU̇ -generic filter.
Using standard arguments, SR(κ++) holds in V [F ], and by Fact 2.8 contin-

ues to hold in V [G] because (Ṗδ ↓ pU̇ )F is κ+-cc in V [F ].
The desired pattern of the cardinal invariants follows exactly as in [4]. �

We may obtain SR(κ++) in a different way, and in addition have also
TP(κ++) and ¬wKH(κ+), if we modify the forcing P1. This modification re-
sults in a different pattern of cardinal invariants:
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Theorem 4.2. Suppose κ is a supercompact cardinal, λ > κ is a weakly com-
pact cardinal, µ ≥ λ is a cardinal with cofinality > κ with µκ = µ, and κ∗ is
a regular cardinal with κ < κ∗ < µ. Then there is a generic extension V [G]
which satisfies the following:
(i) Exactly the cardinals in the open interval (κ, λ) are collapsed, with λ =

(κ++)V [G],
(ii) 2κ = µ,
(iii) SR(κ++), TP(κ++) and ¬wKH(κ+).

And the following hold:

(4.15) κ+ = p(κ) = t(κ) ≤
≤ κ∗ = b(κ) = d(κ) = s(κ) = r(κ) = a(κ) = u(κ) = r(κ) =

= cov(Mκ) = add(Mκ) = non(Mκ) = cof(Mκ).

Proof. Let us define

(4.16) P2 := Add(κ, λ) ∗ (Ṗδ ↓ pU̇ × Ṙ),

where Ṗδ ↓ pU̇ is defined in V [Add(κ, λ)] following the review in Section 3.1
with the condition pU̇ determined by Lemma 3.2 with respect to the name U̇
obtained through the Laver preparation (3.9) and the construction described
in Remark 3.3. In particular δ ∈ (µ, µ+) is such that SU̇ ∩ δ has cofinality
κ∗ and pU̇ is equal to p→δ in the construction in Lemma 3.2 applied with the
name U̇ . The forcing Ṙ is forced by Add(κ, λ) to be κ+-distributive, with
Add(κ, λ) ∗ Ṙ being forcing equivalent to M(κ, λ).

Let F = F0∗F1 be Add(κ, λ)∗Ṙ-generic and letGδ be Pδ ↓ pU̇ := (Ṗδ ↓ pU̇ )F0-
generic over V [F0]. By Lemma 4.3(ii), F0 ∗ (Gδ×F1) is P2-generic and satisfies
the following:

Lemma 4.3. The following hold:
(i) M(κ, λ) forces Ṗδ ↓ pU̇ is productively κ+-cc.
(ii) Suppose F1 is R = ṘF0-generic over V [F0] and Gδ is Pδ ↓ pU̇ = (Ṗδ ↓ pU̇ )F0-

generic over V [F0]. Then F1 and Gδ are mutually generic over V [F0].
(iii) F1 does not add new κ-sequences over V [F0][Gδ].

Proof. (i). It suffices to show that Add(κ, λ)×T forces Ṗδ ↓ pU̇ is productively
κ+-cc, because there is a projection from Add(κ, λ)× T onto M(κ, λ) (see the
paragraph before Fact 2.9). Add(κ, λ) ∗ Ṗδ ↓ pU̇ is productively κ+-cc because
it is κ+-Knaster, and by the Easton’s lemma the κ+-closed T forces Add(κ, λ)∗
Ṗδ ↓ pU̇ is still productively κ+-cc, and hence T × Add(κ, λ) forces Ṗδ ↓ pU̇ is
productively κ+-cc (compare with Lemma 2.12(i)).

(ii). Suppose F1 is V [F0]-generic for R, and Gδ is Pδ ↓ pU̇ -generic over V [F0].
It suffices to show that Gδ is generic over the model V [F0][F1] because then
F1 × Gδ is a generic filter over V [F0] for the product Pδ ↓ pU̇ × R, and hence
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V [F0][F1][Gδ] = V [F0][Gδ][F1]. By (i), Pδ ↓ pU̇ is still κ+-cc over V [F0][F1],
and since R does not add new κ-sequences of elements over the model V [F0],
it follows that Pδ ↓ pU̇ has the same maximal antichains in V [F0] as it has in
V [F0][F1], and so Gδ is generic over the larger model V [F0][F1] as well.

(iii). Suppose for contradiction that x is a κ-sequence in V [F0][Gδ][F1] which
is not in V [F0][Gδ]. This means that there is a Pδ ↓ pU̇ -name ẋ in V [F0][F1]

such that ẋGδ = x in V [F0][Gδ][F1] = V [F0][F1][Gδ] and ẋ is not in V [F0].
However, this name is itself a κ-sequence of elements in V [F0] because Pδ ↓ pU̇
is κ+-cc. This is a contradiction because F1 does not add new κ-sequences
over V [F0]. �

Remark 4.4. The argument in Lemma 4.3(iii) actually shows the following
more general claim: Suppose P and Q are forcing notions with P being κ+-cc
and Q being κ+-distributive. Then if Q forces that P is κ+-cc, then P forces
that Q is κ+-distributive.

Let us denote the filter F0∗(Gδ×F1) by G. Lemma 4.3(i) together with Facts
2.8, Fact 2.9 and Theorem 2.13 immediately imply that SR(κ++), TP(κ++) and
¬wKH(κ+), respectively, hold in V [G].

It remains to check that the required pattern of cardinal invariants holds in
V [G]. By the same observation as in the proof of Theorem 4.1, the equalities
(4.14) hold in V [F0][Gδ]. By Lemma 4.3(iii), the quotient forcing R does not
add new sequences of length κ, so the space κκ is the same in V [F0][Gδ] and
V [G]. However, R may add new subsets of κκ and consequently change the
values of some cardinal invariants. We will argue that this happens only for
p(κ) and t(κ) which will be equal to κ+ in V [G] disregarding the value of κ∗
(see Lemma 4.10).

Let us start by showing that all cardinal invariants in our list except for
p(κ) and t(κ) (if κ∗ > κ+) continue to have value κ∗ in V [G]:

Lemma 4.5. The following identities hold in V [G]:

(4.17) κ∗ = b(κ) = d(κ) = s(κ) = r(κ) = a(κ) = u(κ) =

cov(Mκ) = add(Mκ) = non(Mκ) = cof(Mκ).

Proof. Let us first focus on the invariants b(κ), d(κ), s(κ), r(κ), a(κ), u(κ). We
know that they are all equal to κ∗ in V [F0][Gδ], and this fact is witnessed
for each invariant by an appropriate subset of (κκ)V [F0][Gδ] of size κ∗. Since
(κκ)V [F0][Gδ] = (κκ)V [G], these witnesses are still relevant and imply

b(κ), d(κ), s(κ), r(κ), a(κ), u(κ) ≤ κ∗ in V [G].

It thus suffices to show κ∗ ≤ b(κ), d(κ), s(κ), r(κ), a(κ), u(κ).
As the Mathias generic subsets of κ are added cofinally often below δ, we

have
κ∗ ≤ b(κ) and κ∗ ≤ s(κ)
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in V [G]: If an unbounded or a splitting family B of size < κ∗ were added by
R, then because δ has cofinality κ∗ in V [G], it would follow

(4.18) V [G] |= B ⊆ (κκ)V [F0][Gα]

for some α < δ – but this is impossible because a Mathias generic subset of κ
added at any stage after α dominates all functions in V [F0][Gα] and is unsplit
by any subset of κ in V [F0][Gα].

Since b(κ) = κ∗, the remaining inequalities κ∗ ≤ d(κ), r(κ), u(κ), a(κ) follow
by ZFC inequalities (4.19)–(4.21) which were proved in [4]:

(4.19) κ+ ≤ b(κ) ≤ a(κ),

(4.20) b(κ) ≤ r(κ) ≤ u(κ),

(4.21) b(κ) ≤ d(κ).

Let us now turn to the invariants related to the meager idealMκ. We first
observe that Pδ ↓ pU̇ adds a sequence of Cohen generic subsets of κ of order-
type κ∗, 〈cβ |β < κ∗〉, which are cofinal in δ. By standard arguments, for every
nowhere dense set A in κκ in V [F0][Gδ], there is some α < κ∗ such that for every
β > α, cβ 6∈ A. This implies cov(Mκ) ≥ κ∗ and also non(Mκ) ≤ κ∗ (because
{cβ |β < κ∗} is seen to be non-meager) in V [F0][Gδ]. For the proof, see for
instance [3, Proposition 47] which works in our case with obvious modifications.
We need to argue that both inequalities still hold in V [G]. By [3, Proposition
47], one can work with (closed) nowhere dense sets Af determined by certain
functions f : 2<κ → 2<κ (because for every nowhere dense set D there is f
such that D ⊆ Af ).7 Since R does not add new κ-sequences, these functions
f and the associated nowhere dense sets Af are the same in V [F0][Gδ] and
V [G]. Now we use a similar argument which we used to show that κ∗ is less or
equal to b(κ) in (4.18): If B is a collection of < κ∗-many nowhere dense sets
Af in V [G], then B is contained as a subset in V [F0][Gα] for some α < δ, and
consequently there is some α′ < κ∗ such that for every β > α′, cβ 6∈

⋃
B. This

implies that
⋃
B does not cover the whole space and that {cβ |β < κ∗} is still

non-meager, and so cov(Mκ) ≥ κ∗ in V [G] and non(Mκ) ≤ κ∗ in V [G].
To finish the argument, we use the following inequalities which are provable

in ZFC (see [4] and [3] for details):

(4.22) add(Mκ) = min{b(κ), cov(Mκ)}, cof(Mκ) = max{d(κ),non(Mκ)},

7To avoid a possible confusion: In [3, Proposition 47], {cβ |β < κ+} is shown to be non-
meager. This is because in that paper only the Cohen forcing at κ is used, and any κ-many
Af ’s have a name which uses only < κ+-many Cohen coordinates, which leaves some cβ ,
β < κ+, outside of these Af ’s. For our iteration, this product-type argument is not possible
(all we can say is that every Af appears in the iteration by some stage α < δ), so only
{cβ |β < κ∗} is seen to be non-meager.
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(4.23) b(κ) ≤ non(Mκ), cov(Mκ) ≤ d(κ).

Then κ∗ = cov(Mκ) = add(Mκ) = non(Mκ) = cof(Mκ) holds in V [G] by
(4.22), (4.23), and b(κ) = d(κ) = κ∗. �

Let us now discuss the values of p(κ) and t(κ). Since p(κ) ≤ t(κ) follows
easily, we will show p(κ) = t(κ) = κ+ by arguing that R adds a tower of size
κ+ (if κ∗ > κ+).

Let us review the definition of the tower number t(κ). Recall that we write
A ⊆∗ B for A,B ∈ [κ]κ if |A \B| < κ.

Definition 4.6. We say that T ⊆ [κ]κ is a tower if T is reversely well-ordered
by ⊆∗,8 for every X ⊆ T of size < κ, |

⋂
X| = κ (we say that T satisfies the

strong intersection property, SIP), and T has no pseudo-intersection, i.e. there
is no A ∈ [κ]κ such that A ⊆∗ T for all T ∈ T .

We will use the following special case of [20, Main Lemma 2.1]:

Fact 4.7. Suppose κ = κ<κ, κ > iω, and t(κ) > κ+. Then there is an injective
map ϕ : 2<κ

+ → [κ]κ such that for each α < κ+ and f ∈ 2α, {ϕ(f �β) |β < α}
is reversely well-ordered by ⊆∗, satisfies SIP, and

(4.24) ϕ(fa0) ∩ ϕ(fa1) = ∅.

Fact 4.7 gives a sufficient condition for a κ+-distributive forcing to add a
tower of size κ+.

Lemma 4.8. Suppose κ<κ = κ, κ > iω and t(κ) > κ+. Suppose P is a
κ+-distributive forcing which adds a new cofinal branch to the tree (2<κ

+
,⊆).9

Then P adds a tower of size κ+ and thus forces t(κ) = κ+.

Proof. In V , let ϕ be the mapping from Fact 4.7. Suppose b ∈ 2κ
+ is a

new cofinal branch through (2<κ
+
,⊆)V in V [P]. Since P is κ+-distributive,

([κ]κ)V = ([κ]κ)V [P]. Let Tb = {ϕ(b�α) |α < κ+}. By the properties of ϕ, Tb is
reversely well-ordered by ⊆∗ and satisfies SIP. Moreover, Tb is a tower because
it cannot have a pseudo-intersection in V [P]: If A is a pseudo-intersection of
Tb, then {ϕ−1(B) |A ⊆∗ B,B ∈ rng(ϕ)} defines the cofinal branch b in the
ground model due to (4.24). This is a contradiction, and so such an A cannot
exist. �

Note that the assumption κ > iω for an uncountable κ in Fact 4.7 can
be replaced by weaker conditions (see [20, Main Lemma 2.1]), and that the
argument in Fact 4.7 and Lemma 4.8 also works for ω = κ without additional
assumptions.

8I.e. T can be enumerated as a ⊆∗-decreasing sequence 〈Tα |α < γ〉 for some ordinal γ.
9This is the same as saying that P adds a fresh subset of κ+, or that it fails to have the

κ+-approximation property.
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Remark 4.9. Lemma 4.8 provides a way of showing t(κ) = κ+ in V [P ] for
a variety of forcing notions related to trees of height κ+: the tree (2<κ

+
,⊆)

embeds many trees of height κ+, and adding a new cofinal branch to any of
them by a κ+-distributive forcing results in t(κ) = κ+. An example of this
argument is in Lemma 4.10 below.

We use Lemma 4.8 to argue that R adds a tower of size κ+ over V [F0][Gδ]
(if κ∗ > κ+):

Lemma 4.10. R adds a tower of size κ+ over V [F0][Gδ] if κ∗ > κ+. It follows
V [G] satisfies:

(4.25) κ+ = p(κ) = t(κ).

Proof. Since p(κ) ≤ t(κ) is always true, it suffices to prove t(κ) = κ+. For
α < λ, let F0|α denote the restriction of F0 to Add(κ, α). By the definition of
M(κ, λ),10 there is a complete embedding iα:

iα : Add(κ, α) ∗Add(κ+, 1)→M(κ, λ)

for every successor cardinal α < λ. Fix any such α. Let T denote the tree
(2<κ

+
,⊆) in V [F0|α] of height κ+. Since the tail iteration Add(κ, λ\α)∗Ṗδ ↓ pU̇

is forced to be κ+-Knaster, T has the same cofinal branches in V [F0|α] as it
has in V [F0][Gδ].

Let us now work in V [F0][Gδ]. If κ∗ = κ+, then t(κ) = κ+, and there
is nothing to prove because V [G] will still satisfy t(κ) = κ+. So assume
t(κ) = κ∗ > κ+. Let ϕ be the mapping from Fact 4.7 from T̃ = (2<κ

+
)V [F0][Gδ]

to ([κ]κ)V [F0][Gδ]. Note that T is a subtree of T̃ .
Due to the existence of iα, the generic filter F1 for the κ+-distributive quo-

tient forcing R adds over V [F0][Gδ] a new cofinal branch through T determined
by the generic filter for the forcing Add(κ+, 1)V [F0|α] (which is induced by F1

and which adds a new cofinal branch to T ). Now the result follows by Lemma
4.8 applied in V [F0][Gδ] with R = P , using the fact that a new cofinal branch
through T is a new cofinal branch through T̃ as well. �

This ends the proof of Theorem 4.2. �

10 See [1] for the details regarding the properties of M(κ, λ). Briefly, conditions in M(κ, λ)
have the form (p, q) where p is a condition in Add(κ, λ) and q is a function on λ with domain
of size ≤ κ containing only successor cardinals such that for every α ∈ dom(q), q(α) is
a condition in Add(κ+, 1)V [Add(κ,α)]. The ordering is defined by (p′, q′) ≤ (p, q) ⇔ p′ ≤
p, dom(q) ⊆ dom(q′) and for all α ∈ dom(q), p′|Add(κ, α) 
 q′(α) ≤ q(α). It is easy to
check that the mapping which sends (p, q) ∈ Add(κ, α) ∗ Add(κ+, 1) to (p, q′) where q′ is a
function with domain {α} and q′(α) = q is a complete embedding.
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5. Open questions and further results

We end the paper with some open questions and further results.

Question 1. The indestructibility of the tree property at κ++ in Fact 2.9
and of the negation of the weak Kurepa Hypothesis at κ+ in Theorem 2.13
only work for the iteration P2 in Theorem 4.2. At the moment we do not know
whether it is consistent for an inaccessible κ to have:

(5.26) κ+ < t(κ) ≤ u(κ) < 2κ with TP(κ++) and/or ¬wKH(κ+).

A similar limitation of the indestructibility method appears in [14] where it
is left open whether it is consistent to have a strong limit ℵω with

(5.27) 2ℵω > ℵω+1, u(ℵω) = ℵω+1 and TP(ℵω+2).

Sometimes an ad hoc argument can be found in these contexts (as in [7]
where (5.27) is obtained without u(κ) = ℵω+1), but technical difficulties are
usually substantial and increase with the complexity of the forcing (in our case
Pδ ↓ pU̇ ).

An underlying open question – and arguably more interesting – is therefore
whether Fact 2.9 and/or Theorem 2.13 can be extended to include all κ+-cc
or at least κ+-Knaster forcings in V [M(κ, λ)].

Question 2. (The situation at ω.) Let us briefly sketch an argument
that our results also apply to ω: By [2], one can obtain the consistency of
ω1 ≤ u = ν < d = δ = 2ω for any regular uncountable cardinals ν < δ in
the ground model with GCH. The forcing is of the form Add(ω, δ) ∗ Q̇(ν),
where Q̇(ν) is an iteration of the Mathias forcing of length ν. This forcing
is ω1-Knaster, so mimicking the argument in Theorem 4.2, using Lemma 4.8
with κ = ω, we obtain:

Theorem 5.1. Suppose GCH holds, λ is a weakly compact cardinal and µ ≥ λ
and ω1 ≤ κ∗ < µ are regular cardinals. Then

P3 := Add(κ, λ) ∗ [(Add(κ, µ) ∗ Q̇(κ∗))× Ṙ]

forces
ω1 = t ≤ u = κ∗ < 2ω = µ

and the compactness principles

SR(ω2),TP(ω2),¬wKH(ω1) and DSS(ω2).

Notice that for ω = κ we obtain also the principle DSS(ω2) and hence
¬AP(ω2) in the final model: it is known that M(ω, λ) forces the principle
DSS(ω2) (see [15]), which is then preserved by the rest of the forcing P3 by
Theorem 2.15. See Question 3 which is related to the principle DSS(κ++) for
κ > ω.
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It is possible to compute the values of other cardinal invariants in this model
as well. As in Question 1, we do not know how to construct a model in which
all these compactness principles hold and yet ω1 < t = u < 2ω holds as well.

Question 3. We do not know whether Theorems 4.1 or 4.2 can be proved
with DSS(κ++) (and hence with ¬AP(κ++)). See Remarks 1.1 and 2.7 for
more context.

Question 4. There are other compactness principles which may hold at
κ++ with suitably modified Theorems 4.1 and 4.2.

(a) The club stationary reflection at ν+ for a regular ν, CSR(ν+), states
that for every stationary set S in ν+ which contains only ordinals of cofinality
< ν, there is a club C in ν+ such that C intersected with ordinals of cofinality
ν is contained in the set of reflection points of S. CSR(ν+) can be obtained
by an iteration which shoots clubs through the sets of reflection points of all
stationary sets with ordinals of cofinality < ν, see [18] for more details. Honzik
and Stejskalova showed in [14] a limited indestructibility result for CSR: if κ is
regular, then Cohen forcing at κ of arbitrary length preserves CSR(κ++), and
so does the simple Prikry forcing at κ if κ is measurable. Recently, this has
been extended to κ+-linked forcings in [9] by Gilton and Stejskalova, but this
is still not good enough for the application in this paper.
Remark. CSR(λ) does not hold in V [M(κ, λ)], so in order to have CSR(λ) a

(variant) of the iteration from [18] should be considered. Also note that CSR(λ)
is compatible with 2κ = κ+, and this is the setup of [18]. A generalization of
the method in [18] for the Mitchell forcing and 2κ = κ++ = λ appeared in [8].

(b) The Guessing model principle at κ++, GMP(κ++) is a strong principle
which implies ¬wKH(κ+) and TP(κ++). GMP(ω2) is a consequence of PFA, and
GMP(κ++) holds in the Mitchell collapse V [M(κ, λ)] if λ is supercompact in
the ground model. Honzik, Lambie-Hanson, and Stejskalova proved in [12] that
GMP(κ++) is preserved over any model of GMP(κ++) by adding any number of
Cohen subsets of κ, and its consequence ¬wKH(κ+) is preserved over any model
of GMP(κ++) by any κ-centered forcing. Preservation uder the κ-centered
forcing notions is still not good enough for the present applications, but may
be the indestructibility result from [12] can be strengthened accordingly to
have GMP(κ++) in Theorems 4.1 or 4.2 (with λ now being supercompact in
the ground model).
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