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Abstract. We show that the tree property, stationary reflection and
the failure of approachability at κ++ are consistent with u(κ) = κ+ <
2κ, where κ is a singular strong limit cardinal with the countable or
uncountable cofinality. As a by-product, we show that if λ is a regular
cardinal, then stationary reflection at λ+ is indestructible under all λ-cc
forcings (out of general interest, we also state a related result for the
preservation of club stationary reflection).
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1. Introduction

Compactness properties at successor cardinals have been recently exten-
sively studied, with the focus on the tree property, stationary reflection and
the failure of approachability (see Section 2.1 for definitions). The under-
lying goal is to find out whether these principles can hold at the successor
or the double successor of a singular cardinal, a long interval of cardinals,
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or whether they determine the continuum function in some non-trivial way.
In our paper we investigate these properties from yet another direction and
study their compatibility with a small ultrafilter number u(κ) (where “small”
means smaller than 2κ).

Recall that u(κ) is the least cardinal α such that there exists a base B
of a uniform ultrafilter U on κ of size α (U is uniform if every X ∈ U has
size κ and B is a base of a uniform ultrafilter U if for every X ∈ U there is
Y ∈ B with Y ⊆ X). For all infinite κ, u(κ) is always at least κ+ by [8]. It
is of interest to study whether u(κ) < 2κ is consistent for various κ. By [11],
the consistency of ZFC is sufficient for u(ω) = ω1 with 2ω = ω2 as it can be
obtained by the iteration (and also a product) of the Sacks forcing up to ω2.
For inaccessible κ, it is not clear whether a small u(κ) has any large cardinal
strength, but supercompact cardinals are used in the known constructions
(see for instance [7, 2]). For a strong limit singular κ, more information is
known: by a recent result in [6], at a strong limit ℵω the consistency strength
of u(ℵω) < 2ℵω is exactly that of ℵω+1 < 2ℵω (it is hard to speculate what it
says about a small u(κ) regarding a lower bound for a regular κ). By a recent
result in [19], it is consistent that u(κ) is small for a weakly inaccessible κ (in
fact for κ = 2ω) and for a successor of a singular cardinal (more specifically,
ℵω+1). It is open whether u(κ) < 2κ is consistent for a successor of a regular
cardinal.

The ultrafilter number u(κ) is one of the generalized cardinal invariants
which study the combinatorial properties of the spaces κκ or 2κ for topologi-
cal, purely combinatorial, or forcing-related reasons. Since the tree property
and the failure of approachability at κ++ both imply 2κ > κ+, they make
the structure of the generalized cardinal invariants at κ possibly non-trivial.
It is natural to ask to what extent the invariants can be manipulated while
ensuring compactness at κ++.

For κ = ω, this problem is easier to grasp because the cardinal invariants
at ω have been studied for some time, as have been the forcings to force the
tree property and other principles at ω2.1 Let us list just a few examples,
focusing only on the tree property and stationary reflection for brevity. The
iteration of the Sacks forcing at ω up to a weakly compact cardinal λ forces
2ω = ω2 = λ, the tree property and stationary reflection at ω2, and keeps
most of the cardinal invariants at ω1 (in particular u(ω) = ω1 by [11]). The
Mitchell forcing iterated up to a weakly compact λ forces 2ω = ω2 = λ,
the tree property and stationary reflection at ω2 and u(ω) = ω2. A proper
forcing iteration from [5] iterated up to a weakly compact and reflecting λ
forces BPFA with 2ω = ω2 = λ, the tree property and stationary reflection
at ω2, with the majority of the cardinal invariants at ω2 (including u(ω)).

For a regular κ > ω, the situation is less studied. It is open how to
generalize the method from [5] because it is based on the notion of proper
forcing. The Mitchell forcing and the Sacks forcings can still be used to
obtain the tree property and stationary reflection at κ++, but the invariants
in these generic extensions are not automatically the same as in the case of
κ = ω – for instance it is not known whether the generalized Sacks iteration

1However, to our knowledge there is no publication which surveys which cardinal in-
variants patterns at ω can be realized with compactness at ω2.
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Sacks(κ, λ) forces a small u(κ) (the argument from [11] fails because the
perfect trees now have limit levels). In our paper under preparation [4] we
use a variant of the Mathias forcing iteration based on [2] to obtain a model
where κ > ω is regular (in fact supercompact), 2κ is arbitrarily large, u(κ)
is small and the compactness principles hold at κ++.

In this paper, we focus on κ which is a strong limit singular cardinal. The
possibility of having κ singular is even more interesting from the point of
compactness at κ++: it combines three intriguing properties – the necessary
failure of SCH at κ, compactness at κ++ and non-trivial cardinal invariants
at κ.

The paper is structured as follows. In Section 2 we review some basic
definitions and facts a provide a very brief introduction to pcf notions which
appear in the proof.

In Section 3, we review the original argument of Garti and Shelah from
[7, 8] which yields a model with a singular strong limit κ which violates SCH
and u(κ) = κ+.

In Section 4, we use the forcing from Garti and Shelah to define a variant
of the Mitchell forcing followed by the Prikry forcing which in addition to
u(κ) = κ+ forces also the tree property, stationary reflection and the failure
of approachability at κ++. All three arguments use a form of indestruc-
tibility of the relevant compactness property by certain κ+-cc forcings. The
argument for the tree property in Section 4.3 is based on the fact that over a
certain type of models (such as the one we consider here), the tree property
is indestructible under a wide class of κ+-cc forcings, in particular under the
Prikry forcing; the argument is based on the indestructibility result which
appears in [13]. The arguments for stationary reflection and the failure of
approachability in Sections 4.4 and 4.5, respectively, use stronger forms of
indestructibility which hold over any model. We show that for a regular
λ, stationary reflection at λ+ is indestructible under all λ-cc forcings (this
improves the existing results; see Theorem 4.11). As a matter of general
interest, we also show that a stronger form of stationary reflection (club sta-
tionary reflection) is preserved by Cohen forcings (and some other forcings);
see Theorem 4.12. For the failure of approachability, we use a result from
[10] that ¬AP(κ++) is preserved under all κ-centered forcings.

All three arguments have the advantage of offering a direct generalization
to other Prikry-like forcings such as Magidor forcing: in Section 5 we show
that u(κ) = κ+ can also be obtained with compactness at κ++ for a strong
limit singular κ of uncountable cofinality.

In Section 6 we discuss some open questions.

2. Preliminaries

Let us review some definitions and facts which will be used in the proofs.

2.1. Compactness properties

Definition 2.1. Let λ be a regular cardinal. We say that the tree property
holds at λ, and we write TP(λ), if every λ-tree has a cofinal branch.

Definition 2.2. Let λ be a cardinal of the form λ = ν+ for some regular
cardinal ν. We say that the stationary reflection holds at λ, and write SR(λ),
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if every stationary subset S ⊆ λ∩ cof(< ν) reflects at a point of cofinality ν;
i.e. there is α < λ of cofinality ν such that α ∩ S is stationary in α.

For a cardinal λ and sequence ā = 〈aα |α < λ〉 of bounded subsets of λ,
we say that an ordinal γ < λ is approachable with respect to ā if there is
an unbounded subset A ⊆ γ of order type cf(γ) and for all β < γ there is
α < γ such that A ∩ β = aα.

Let us define the ideal I[λ] of approachable subsets of λ:

Definition 2.3. S ∈ I[λ] if and only if there are a sequence ā = 〈aα |α < λ〉
and a club C ⊆ λ such that every γ ∈ S ∩C is approachable with respect to
ā.

Definition 2.4. We say that the approachability property holds at λ if λ ∈
I[λ], and we write AP(λ). If ¬AP(λ), we say that approachability fails at λ.

It is known that ¬AP(λ), for λ = ν+, implies the failure of �∗ν , and in this
sense ¬AP(λ) can be considered a compactness principle. Note that AP(λ)
does not imply �∗ν , so ¬AP(λ) is strictly stronger than the fact that there
are no special λ-Aronszajn trees.

2.2. Branch lemmas

The so called “branch lemma” are used to argue that certain forcings do not
add cofinal branches to trees.

The first fact is sometimes attributed to Kurepa and is stated in Kunen’s
book [16], Exercise V.4.21. Recall that a κ+-tree T is called well-pruned if
it has a single root and for every node t ∈ T and level α above the level of
t, there is a node t′ ∈ T on level α which is above t in the ordering of T .

Fact 2.5. The following hold:
(i) Suppose T is well-pruned κ+-Aronszajn tree. Then for every t ∈ T ,

there is a level of the tree T above t which has size κ.
(ii) It follows that if P is κ-cc, then it does not add a cofinal branch to T .

Proof. (i) For contradiction assume that all levels above t have size < κ, and
using Fodor’s lemma, find a stationary set on which the nodes of the tree
form a cofinal branch.

(ii) If ḃ is a name for a cofinal branch through T , it can be used to build
back in V a subtree S of T of height κ+ with levels of size < κ. By (i),
S must have a cofinal branch, and it is a cofinal branch through T as well.
Contradiction. �

Fact 2.5 is useful for showing the indestructibility result in [13], which we
apply in this paper in a different setting.

We shall further use the following lemma due to Unger (see [20, Lemma
6]), which generalizes an analogous result in [15] which is formulated for
κ = ω:

Fact 2.6. Let κ, λ be cardinals with λ regular and κ < λ ≤ 2κ. Let P be
κ+-cc and Q be κ+-closed. Let Ṫ be a P -name for a λ-tree. Then in V [P ],
forcing with Q cannot add a cofinal branch through T .
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2.3. Some pcf notions

Let us briefly review pcf concepts which appear in the arguments below.
Suppose A is a set of cardinals, typically with |A| < min(A), and J is an
ideal on A. We denote by

∏
A the collection of all functions f : A →

⋃
A

such that for every α ∈ A, f(α) ∈ α. For f, g ∈
∏
A, we write

(2.1) f <J g ↔ {α ∈ A | f(α) ≥ g(α)} ∈ J.
The relation ≤J and =J is defined similarly (i.e. the set of counterexamples
is in J). Notice that

(2.2) (f <J g ∨ f =J g)→ f ≤J g,
but the converse is in general true only if J is a prime ideal (it may happen
that f ≤J g and the sets B1 = {α ∈ A | f(α) = g(α)} and B2 = {α ∈
A | f(α) 6= g(α)} are both J-positive and disjoint). Some weaker relation-
ships between <J and ≤J are useful, in particular this one:

(2.3) (f <J g & g ≤J h)→ f <J h.

Definition 2.7. We say that the ordered set (
∏
A,<J) has cofinality κ,

and write cf(
∏
A,<J) = κ, if κ is the least cardinal such that there exists

X ⊆
∏
A of size κ which is cofinal in

∏
A under <J , i.e. for every f ∈

∏
A

there is g ∈ X with f <J g or f = g.2

Notice that it is not required that the members of the cofinal set X are
themselves ordered by <J (this will lead to the notion of true cofinality
introduced below).

We say that (
∏
A,<J) is κ-directed (closed) if every subset X of

∏
A of

size < κ has a <J -upper bound.

Definition 2.8. We say that (
∏
A,<J) has true cofinality κ, and write

tcf(
∏
A,<J) = κ, if there is a <J -increasing sequence 〈fi | i < κ〉 such that

for every g ∈
∏
A there is some i with g <J fi, and κ is least such cardinal.

It is clear that any 〈fi | i < κ〉 which is a witness for the true cofinality is
also a cofinal subset of (

∏
A,<J) and therefore cf(

∏
A,<J) ≤ tcf(

∏
A,<J).

It also holds that if tcf(
∏
A,<J) = κ, then (

∏
A,<J) is κ-directed closed.

2.4. Prikry and Magidor forcing

For completeness, let us review the definitions and basic properties of forcings
which singularize a large cardinal κ by adding a cofinal sequence of order
type α < κ.

Recall that Q is κ-centered for a regular κ if Q can be written as the
union of the family {Qα ⊆ Q |α < κ} such that for every α < κ and every
p, q ∈ Qα there exists r ∈ Qα with r ≤ p, q.

Definition 2.9. Let κ be a measurable cardinal and U a normal ultrafilter
on κ. Prikry forcing QU is composed of pairs (s,A), where s is a finite set
of ordinals below κ, A is in U and max(s) + 1 ∩ A = ∅. (t, B) ≤ (s,A) iff t
is an end-extension of s (which we write s v t), B ⊆ A, and t \ s is included
in A. We call s a stem.

2This is strictly stronger than requiring ≤J by (2.2). Note that if
∏
A has no maximal

elements, then the clause f = g can be omitted.
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QU adds an ω-sequence which is cofinal in κ without collapsing any cardi-
nals. It is easy to see that all conditions with the same stem are compatible.
This implies that QU is κ+-cc, in fact κ-centered.

Magidor [17] formulated a generalization of the Prikry forcing which adds
a cofinal sequence to κ of cofinality ω < µ < κ without collapsing any
cardinals. The idea is to use µ-many normal measures ~U = 〈Uγ | γ < µ〉 on κ
to add µ-many ω-Prikry sequences which together make a cofinal subset of κ
of ordertype µ; to avoid unwanted interference between the Prikry sequences,
the sequence ~U is coherent in a certain sense, more precisely, for each γ < µ,
〈Uβ |β < γ〉 is an element of the ultrapower of V via Uγ , denoted Ult(V,Uγ).
We say that ~U is a Mitchell sequence of length µ. The following easy lemma
will be useful for us.

Lemma 2.10. Assume ~U is a Mitchell sequence on κ of length µ < κ and
Q is a κ+-distributive forcing notion. Then ~U is a Mitchell sequence on κ
of length µ in V [Q].

Proof. Notice that by the κ+-distributivity of Q, every normal measure U
on κ stays a normal measure in V [Q]. Moreover, if (jU )V : V → Ult(V,U)

and (jU )V [Q] : V [Q] → Ult(V [Q], U) are the canonical elementary embed-
dings to the respective ultrapowers, then (jU )V (κ) = (jU )V [Q](κ) = ν and
Ult(V,U)ν = Ult(V [Q], U)ν , i.e. the ultrapowers agree on the sets in the V -
hierarchy up to ν. This follows from the fact that all sets of rank less than
ν are expressible as (the transitive collapse) of an equivalence class of some
f : κ→ Vκ, and Q does not add such functions. This implies that for every
γ < µ, 〈Uβ |β < γ〉 – a set of rank less than (jUγ )V [Q](κ) – is an element of
Ult(V [Q], Uγ), and hence ~U is a Mitchell sequence in V [Q]. �

Magidor forcing, which we denote QMag
~U

, has a more complicated definition
(see [17] for details), so let us just review the basic points which are relevant
for us.

Conditions in QMag
~U

are pairs (g,G) where g is an increasing function from
a finite subset of µ to κ whose range concentrates on (specially chosen) inac-
cessible cardinals (we call g a stem). G is a set of measure-one constraints.
An extension (g′, G′) of (g,G) is allowed to have new elements in dom(g′)
which lie in-between the elements in dom(g); for this reason, the constraints
in G refer not only to normal measures on κ, but also to normal measures
on cardinals below κ (defined using the coherence of ~U). Conditions with
the same stems are compatible which implies that QMag

~U
is κ+-cc, in fact

κ-centered.

3. A review of the arguments for a small u(κ)

We will use the arguments in papers [7, 8] to get a small u(κ), and modify
the relevant forcings to yield a model with compactness at κ++. In [7],
Theorem 1, and Claim 3.3, a forcing is constructed which yields the following
model V ∗ (we are changing the original notation to fit our notation):

Theorem 3.1 ([7]). Assume there is a supercompact cardinal κ in the ground
model and δ ≥ κ++ is cardinal such that κ < cf(δ) ≤ δ. Then in a forcing
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extension V ∗, 2κ = δ and κ is a singular strong limit cardinal with countable
cofinality which is a limit of measurables 〈κi | i < ω〉 such that 2κi = κ+

i for
every i < ω and both products

(3.4)
∏
i<ω

κi/J
bd
ω and

∏
i<ω

κ+
i /J

bd
ω

are cf(δ)-directed closed, where Jbd
µ is the ideal of bounded subsets of a regular

cardinal µ.

Let us review, and at times attempt to clarify, the basic steps of the proof
(we will also state a stronger formulation of the result using true cofinalities
which is implicit in [7]).

Let V = V ′[PL] be a model where a supercompact cardinal κ is made
indestructible by a suitable Laver-like preparation PL over V ′. We require
that

(3.5) PL applies to the forcing Pδ introduced below,

so that κ is still supercompact in V [Pδ] (see [7, Claim 2.2] for more details).
Note that we can assume that 2κ = κ+ in V (by collapsing 2κ to κ+ over
V ′[PL] by a κ-directed closed forcing if necessary) so that by reflection there
is an increasing cofinal sequence of measurables κ̄ = 〈κα |α < κ〉 converging
to κ, with 2κα = κ+

α for each α < κ (see [7, Claim 3.3] for more details).
Let us work in this V . A θ̄-dominating forcing is defined in [7, Definition

2.3], which is denoted Qθ̄. Given a supercompact cardinal κ and a sequence
(with some closure properties) θ̄ of length κ of regular cardinals converging
to κ, Qθ̄ has the following properties:

(i) Qθ̄ is κ-2-linked (by definition this implies κ+-Knaster).
(ii) Qθ̄ is < κ-strategically closed.
(iii) In V [Qθ̄], (

∏
α<κ θα/J

bd
κ )V is dominated by the generic function gθ̄.

In order to secure the claim in [7, Lemma 2.11] which requires cofinality with
respect to <Jbd

κ
, (iii) should mean that for every f ∈

∏
α<κ θα, f <Jbd

κ
gθ̄ in

V [Qθ̄]. This is not stated clearly in [7, Lemma 2.11] (the ordering ≤Jbd
κ

is
mentioned instead), so let us state it explicitly here:

Lemma 3.2. For every f ∈ (
∏
α<κ θα)V , f <Jbd

κ
gθ̄ in V [Qθ̄], where gθ̄ is

the generic function added by Qθ̄.

Proof. For each f ∈ (
∏
α<κ θα)V , let

(3.6) Df = {(η, f ′) ∈ Qθ̄ | (∀ε ∈ [lh(η), κ)) f(ε) < f ′(ε)},

where the notation is as in [7]. It is easy to see that Df is dense. It follows
gθ̄ is strictly greater on an end segment of κ, and so f <Jbd

κ
gθ̄ in V [Qθ̄]. �

In [7, Definition 2.6], Qθ̄ is iterated for length δ with < κ-support; the
iteration is denoted Pδ. Some bookkeeping mechanism (or lottery) is used
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to choose the θ̄’s so that each possible θ̄ appears at some stage of the iter-
ation.3 [7, Lemma 2.9] shows that Pδ is κ-2-linked, and consequently κ+-
Knaster. The key Lemma 2.11 claims that for a fixed θ̄, the cofinality of
(
∏
α<κ θα, <Jbd

κ
)V [Pδ] is cf(δ) in V [Pδ]; this claim is proved by showing that

the generic functions 〈gθ̄α |α ∈ I〉 for some cofinal set I in δ of order-type
cf(δ) are ≤Jbd

κ
-increasing and bound functions added previously.4 This can

be stated more strongly as follows:

Lemma 3.3. The sequence 〈gθ̄α |α ∈ I〉 witnesses in V [Pδ] the following:

(3.7) tcf(
∏
α<κ

θα, <Jbd
κ

)V [Pδ] = cf(δ).

Proof. By Lemma 3.2, the family 〈gθ̄α |α ∈ I〉 is actually<Jbd
κ
-increasing and

for every f ∈ (
∏
α<κ θα)V [Pδ] in V [Pδ] there is some α with f <Jbd

κ
gθ̄α . �

[7, Lemma 3.1 and Main Claim 3.3] argue that this configuration is pre-
served under Prikry forcing QU . Let us give more details:

Lemma 3.4. Suppose κ̄ = 〈κα |α < κ〉 is a sequence of measurable cardinals
converging to κ such that GCH holds at the κα’s. Let κ̄+ denote the sequence
of the successors of the κα’s. Then:
(i) In V [Pδ],

(3.8) tcf(
∏
α<κ

κα, <Jbd
κ

) = tcf(
∏
α<κ

κ+
α , <Jbd

κ
) = cf(δ).

(ii) In V [Pδ], let QU denote the Prikry forcing defined with respect to some
normal measure U and let 〈αn |n < ω〉 denote a Prikry sequence which
is included in κ̄. Then the following hold:

(3.9) cf(δ) = tcf(
∏
α<κ

κα, <Jbd
κ

)V [Pδ] = tcf(
∏
α<κ

κ+
α , <Jbd

κ
)V [Pδ] =

tcf(
∏
α<κ

κα, <U∗)
V [Pδ] = tcf(

∏
α<κ

κ+
α , <U∗)

V [Pδ] =

tcf(
∏
n<ω

αn, <E∗)
V [Pδ∗QU ] = tcf(

∏
n<ω

α+
n , <E∗)

V [Pδ∗QU ],

where E is an ultrafilter extending Jbd
ω , and E∗ its dual (and U∗ is the

dual of U).

Proof. (i) follows directly from Lemma 3.3 in the present paper.
(ii) The first line in (3.9) follows by Lemma 3.3 in the present paper, the

second line by the fact that U∗ extends Jbd
κ and true cofinalities are preserved

when ideals are extended, and the last line follows by [7, Lemma 3.1]. �

The small value of u(κ) is then obtained as a follow-up of [7] in [8], with
[8, Theorem 1.4] being the key ingredient. For concreteness let us assume

3In fact, only two specific sequences in V are actually required for the main theorem
(the sequence of measurables κ̄ satisfying GCH and its successors; see below).

4The proof of this abuses the notation and treats Pδ as defined with respect to this
single θ̄; to handle all the relevant θ̄’s, we need to ensure that each θ̄ appears cofinally
often below δ in Pδ.
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that cf(δ) = κ+. As we reviewed above, if E is any ultrafilter extending the
dual of Jbd

ω (and E∗ the dual prime ideal), we have in V [Pδ ∗QU ]:

(3.10) tcf(
∏
n<ω

αn, <E∗)
V [Pδ∗QU ] = tcf(

∏
n<ω

α+
n , <E∗)

V [Pδ∗QU ] = κ+.

Let us restate [8, Theorem 1.4] with specific paramaters for our case:

Theorem 3.5 ([8]). Assume that:
(i) κ is a singular strong limit cardinal with countable cofinality.
(ii) E is a uniform ultrafilter on ω and E∗ its dual.
(iii) κ̄ = 〈κn |n < ω〉 is a sequence of regular cardinals converging to κ.
(iv) Un is a uniform ultrafiter on κn for each n < ω.
(v) For every n < ω there is a ⊆∗-decreasing sequence 〈An,α |α < θn〉 for

some θn which generates Un (let θ̄ = 〈θn |n < ω〉).
(vi) χκ̄ = tcf(

∏
n<ω κn, <E∗), χθ̄ = tcf(

∏
n<ω θn, <E∗).

Then u(κ) ≤ χκ̄ · χθ̄.
By setting κ̄ = 〈αn |n < ω〉 and θ̄ = 〈α+

n |n < ω〉 in Theorem 3.5 and
realizing that αn is measurable in V [Pδ ∗QU ] and 2αn = α+

n so that (v) holds,
we have the desired

(3.11) u(κ) = κ+.

Remark 3.6. The iteration in [7] has a singular cardinal length δ > cf(δ) >
κ with 2κ = δ at the end. However, we can just as easily have 2κ = µ for
some regular µ if we iterate up to an ordinal δ ∈ (µ, µ+) with cofinality κ+

(or greater); then 2κ = µ and the required pcf properties hold in V [Pδ].

4. Countable cofinality

In this section we obtain a singular strong limit cardinal κ with countable
cofinality on which SCH fails, u(κ) = κ+ and the tree property, stationary
reflection and the failure of approachability hold at κ++.

4.1. Definition of forcing

Let κ be a Laver-indestructible supercompact cardinal in the sense of the
discussion in paragraph (3.5) and λ a weakly compact cardinal above κ. Let
us fix some δ ∈ (λ, λ+) of cofinality κ+.5 Let Pδ = 〈(Pξ, Q̇ξ) | ξ < δ〉 be as
in [7], iterated up to δ: the forcing Pδ is a < κ-supported iteration of the
θ̄-dominating forcing Qθ̄ reviewed above, where θ̄’s are chosen so that every
θ̄ ∈ V appears cofinally often below δ. In particular the appropriate form of
(3.7) holds in V [Pδ] for every θ̄ in V :

(4.12) tcf(
∏
α<κ

θα, <Jbd
κ

)V [Pδ] = κ+.

By results in [7], Pδ is κ+-cc (in fact κ+-Knaster) and preserves the su-
percompactness of κ, using the preparation PL (see the paragraph related to
(3.5) for more details).

Let us now define a forcing which will ensure the compactness principles
at κ++ while also ensuring small u(κ). It is a version of the Mitchell forcing:

5Since we will have 2κ = κ++ in the final model, κ+ is the only interesting value of
u(κ). But in principle, the forcing can be iterated up to any ordinal with cofinality > κ.
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it differs from the original Mitchell forcing (denoted M(κ, δ)) in the use of
the forcing Pδ instead of the Cohen forcing Add(κ, δ).

Definition 4.1. P∗δ is a forcing with conditions p = (p0, p1) such that:
• p0 ∈ Pδ,
• p1 is a function with domain dom(p1) of size at most κ such that

(4.13) dom(p1) is included in the set of successor cardinals below λ.

The ordering is the usual Mitchell ordering: (p0, p1) ≤ (p′0, p′1) iff p0 ≤Pδ p
′0

and the domain of p1 extends the domain of p′1 and for all α ∈ dom(p′1),

p0 �α Pα p
1(α) ≤ p′1(α).

Remark 4.2. Let us say a few words about P∗δ and some alternative defini-
tions. To show compactness principles in V [P∗δ ] and V [P∗δ ∗ Q̇U ], the “hands-
on” method usually lifts a certain embedding with critical point λ and gives
an argument about the resulting quotient forcings. To simplify the quotient
argument, it is desirable that P∗δ is uniform in the sense that at many places
below λ it looks like the tail segment of Pδ in interval [λ, δ) (condition (4.13)).
However, in view of the preservation theorems for the tree property (see [13],
and its modification here in Lemma 4.7) and stationary reflection (see Theo-
rem 4.11), it is actually not necessary to prepare for the interval [λ, δ) below
λ because we can deal directly with the forcing P[λ,δ) ∗ Q̇U . In particular
if we changed the definition so that Pδ is the Cohen forcing Add(κ, λ) up
to λ and then continues like P[λ,δ), we would still get the tree property and
stationary reflection (together with small u(κ)) – it is sufficient to apply
the preservation theorems in [13] and Theorem 4.11 over the Mitchell model
V [M(κ, λ)] to the forcing P[λ,δ) ∗ Q̇U . However, the preparation seems to be
necessary for the failure of approachability because the preservation theorem
for non-approachability is only formulated for centered forcings (and P[λ,δ)

is not κ-centered).

For any γ ≤ δ, we denote by P∗γ and Pγ the natural initial stages of the
forcing.

One can show that the usual product analysis in [1] applies to P∗δ : for every
ordinal γ ≤ δ (in fact, only ordinals of cofinality at least κ+ are interesting
for us) there are projections

(4.14) πγ : P∗γ → Pγ and σγ : Pγ × Tγ → P∗γ ,

where Tγ = {(1, p1) | (1, p1) ∈ P∗γ} is a term forcing which is κ+-closed in V .
This analysis carries over to quotients: if Gγ is P∗γ-generic for an inaccessible
γ < λ, and G0

γ is the Pγ-generic derived by means of πγ , then there are
projections

(4.15) πγ,δ : P∗δ/Gγ → Pδ/G0
γ and σγ,δ : Pδ/G0

γ × Tγ,δ → P∗δ/Gγ ,

where Tγ,δ = {(1, p1) | (1, p1) ∈ P∗δ/Gγ} is a term forcing κ+-closed in V [Gγ ].
In particular

(4.16) P∗δ is forcing equivalent to Pδ ∗ Ṙ,
for some Ṙ which is forced to be κ+-distributive. By standard arguments, P∗δ
collapses cardinals exactly in the interval (κ+, λ) and makes 2κ = κ++ = λ.
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The first two lines in (3.9) hold in V [Pδ] for any normal measure U on κ
in V [Pδ], but they also hold in V [P∗δ ] because the quotient Ṙ in (4.16) is κ+-
distributive a hence it does not add new functions into the product

∏
α<κ θα

or new subsets of κ (U therefore remains a normal measure in V [P∗δ ]):

Lemma 4.3. For U as in the previous paragraph and every θ̄ in V ,

(4.17) κ+ = tcf(
∏
α<κ

θα, <Jbd
κ

)V [P∗δ ] = tcf(
∏
α<κ

θα, <U∗)
V [P∗δ ].

Proof. By (4.16), Ṙ does not add new functions to
∏
α<κ θα, and so every

sequence witnessing the true cofinality in V [Pδ] witnesses the same fact in
V [P∗δ ]. �

Let U be any normal measure in V [Pδ] on κ, and let Q̇U be the Prikry
forcing defined with respect to U in V [P∗δ ] (note that QU is an element of
V [Pδ]).

Definition 4.4. Let R denote the forcing P∗δ ∗ Q̇U .

We are going the prove the following theorem:

Theorem 4.5. Let κ be Laver-indestructible in the sense of (3.5) and λ a
weakly compacty cardinal above κ. Then in V [R], 2κ = κ++ = λ, κ is a
singular strong limit cardinal of countable cofinality and the following hold:
(i) u(κ) = κ+.
(ii) TP(κ++), SR(κ++) and ¬AP(κ++).

The proof will be given in a sequence of lemmas in three subsections.

4.2. Small ultrafilter number

Lemma 4.6. u(κ) = κ+ holds in V [R].

Proof. This follows the same way as for V [Pδ][Q̇U ] in [7, 8]: by Lemma
4.3, the relevant pcf facts are still true in V [P∗δ ], and so [7, Lemma 3.1]
can be applied over V [P∗δ ]. The result follows by [8, Theorem 1.4] – which
we reviewed in Theorem 3.5 – applied in V [R] = V [P∗δ ][Q̇U ] (notice that
Theorem 3.5 is a ZFC theorem). �

4.3. Tree property

In [13], we proved that over the Mitchell model, the tree property at λ
is indestructible under all κ+-cc forcings living in the intermediate model
V [Add(κ, λ)].

We indicate how to modify the argument from [13] to be applicable in the
present context.

Lemma 4.7. TP(κ++) holds in V [R].

Proof. Let us fix a Pλ-name Q̇ for the two-step iteration P[λ,δ) ∗ Q̇U over
V [P∗λ] (this can be done because P[λ,δ) ∗ Q̇U is already added by Pλ because
we assume that U , and hence QU , are elements of V [Pδ]).

We will show that the κ+-cc of Q̇ is enough to argue that

(4.18) P∗δ ∗ Q̇U ≡ P∗λ ∗ Q̇
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forces the tree property, without using any other properties of the Prikry
forcing Q̇U .

Suppose for contradiction there is a λ-Aronszajn tree T in V [R] and let
us fix a name Ṫ for T (we view T a tree on λ). Let us fix a weakly compact
embedding j : M → N with critical point λ such thatM has size λ, is closed
under < λ-sequences and contains all relevant parameters, in particular Ṫ
and the forcing (Pλ×Tλ)∗Q̇. We can further assume that j itself is an element
of N which implies – by the λ-cc of (Pλ × Tλ) ∗ Q̇ – that j � (Pλ × Tλ) ∗ Q̇)
is a regular embedding in N .

By (4.14), we know there is a projection σλ : Pλ × Tλ → P∗λ. Let (G̃0 ×
G̃1) ∗ h∗ be j((Pλ × Tλ) ∗ Q̇)-generic filter over V (and hence also over N).
Since (Pλ × Tλ) ∗ Q̇ is λ-cc, j restricted to (Pλ × Tλ) ∗ Q̇ sends maximal
antichains to maximal antichains, and therefore (G̃0 × G̃1) ∗ h∗ generates
an M -generic filter (G0 × G1) ∗ h for (Pλ × Tλ) ∗ Q̇; furthermore, G̃0 × G̃1

generates an N -generic filter G∗ for j(P∗λ) and an M -generic filter G for P∗λ
such that j lifts in V [(G̃0 × G̃1) ∗ h∗] to:

(4.19) j : M [G][h]→ N [G∗ ∗ h∗] = N [G][h][GQ],

where GQ is a generic filter for the quotient Q = j(P∗λ ∗ Q̇)/G ∗ h.
We will to show that over N [G][h],

(4.20) there is a projection onto Q from j(Pλ ∗ Q̇))/(G0 ∗ h)× Tλ,j(λ),

where Tλ,j(λ) is the term forcing of j(P∗λ)/G (it is composed of conditions of
the form (1j(Pλ), p

1)). We will further show that j(Pλ ∗ Q̇)/(G0 ∗ h) is κ+-cc
over N [G][h] and Tλ,j(λ) is κ+-closed in N [G] which will allow us to finish
the argument as in [13].

Since j is the identity on the conditions in G, we have

(4.21) j′′(G ∗ h) = {(p, j(q̇)) | p ∈ G and q̇G ∈ h}.

Let us write explicitly the relevant quotients we are going to use:

(4.22) Q = {(p∗, q̇∗) ∈ j(P∗λ ∗ Q̇) |N [G][h] |= “(p∗, q̇∗)

is compatible with j′′(G ∗ h)”},

where we can assume that q̇∗ depends by elementarity only on j(Pλ). Fur-
ther,

(4.23) j(Pλ ∗ Q̇)/(G0 ∗ h) = {(p∗0, q̇∗) ∈ j(Pλ ∗ Q̇) |N [G0][h] |=
“(p∗0, q̇∗) is compatible with j′′(G0 ∗ h)”}.

Lastly,

(4.24) Tλ,j(λ) = {(1j(Pλ), p
∗1) |

N [G] |= “(1j(Pλ), p
∗1) is compatible with j′′G = G”}.

Let us define a function π : j(Pλ ∗ Q̇))/(G0 ∗ h)× Tλ,j(λ) → Q by

(4.25) π((p∗0, q̇∗), p∗1) = (p∗, q̇∗),

where p∗ = (p∗0, p∗1).
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Claim 4.8. π is a projection from j(Pλ ∗ Q̇)/G0 ∗ h× Tλ,j(λ) onto Q.

Proof. First notice that π is correctly defined: if (p∗0, q̇∗) is compatible with
j′′(G0 ∗h), and (1j(Pλ), p

∗1) is compatible with G, then (p∗, q̇∗) is compatible
with j′′(G ∗ h).

If ((p∗0, q̇∗), p∗1) ≤ ((r∗0, ṡ∗), r∗1), then clearly p∗ ≤ r∗; moreover, p∗0 
q̇∗ ≤ ṡ∗ implies p∗  q̇∗ ≤ ṡ∗ because p∗ = (p∗0, p∗1). It follows (p∗, q̇∗) ≤
(r∗, ṡ∗), and hence π is order-preserving.

Suppose now (p∗, q̇∗) ≤ π((r∗0, ṡ∗), r∗1) = (r∗, ṡ∗) are given. We wish
to find a condition extending ((r∗0, ṡ∗), r∗1) whose π-image extends (p∗, q̇∗).
First notice that p∗  q̇∗ ≤ ṡ∗ implies p∗0  q̇∗ ≤ ṡ∗ because of our conven-
tion that q̇∗ and ṡ∗ depend only on Pλ. Now we use a standard trick with
names: Consider conditions (p∗0, q̇∗) and p∗1′ where the name p∗1′ interprets
as p∗1 below p∗0 and as r∗1 otherwise; then ((p∗0, q̇∗), p∗1

′
) is as required. �

Finally, we need the following Claim:

Claim 4.9. (i) Tλ,j(λ) is κ+-closed in N [G].
(ii) j(Pλ ∗ Q̇)/G0 ∗ h is κ+-cc over N [G][h].
(iii) Q̇G0 ∗ j(Pλ ∗ Q̇)/G0 ∗ ḣ is κ+-cc over N [G], where j(Pλ ∗ Q̇)/G0 ∗ ḣ

denotes a Q̇G0-name for the quotient.

Proof. (i) This a standard fact (see for instance [1]).
(ii) By elementarity,

(4.26) j(Pλ ∗ Q̇) is κ+-cc over N .

The term forcing Tλ is κ+-closed over N . By Easton’s lemma

(4.27) j(Pλ ∗ Q̇) is κ+-cc over N [G1].

Since j restricted to Pλ ∗ Q̇ is a regular embedding, j(Pλ ∗ Q̇) factors over N
(and then also over N [G1]) as

(4.28) (Pλ ∗ Q̇) ∗ j(Pλ ∗ Q̇)/Ġ0 ∗ ḣ,
where j(Pλ∗Q̇)/Ġ0∗ḣ is an Pλ∗Q̇-name for the quotient. It follows by (4.27),
and properties of two-step iterations, that over N [G1], the κ+-cc forcing
Pλ ∗ Q̇ forces that j(Pλ ∗ Q̇)/Ġ0 ∗ ḣ is κ+-cc. In particular, j(Pλ ∗ Q̇)/G0 ∗ h
is κ+-cc over N [G1][G0 ∗ h].

Since there is a natural projection from (Pλ ∗ Q̇)×Tλ onto P∗λ ∗ Q̇ (analo-
gously to the projection π mentioned above), it follows that j(Pλ ∗ Q̇)/G0 ∗h
is κ+-cc over N [G][h] as desired (since the chain condition is preserved down-
wards).

(iii) Recall that Q̇G0 is κ+-cc in N [G] by our initial assumptions. By (ii)
of the present Claim, Q̇G0 forces over N [G] that j(Pλ ∗ Q̇)/G0 ∗ ḣ is κ+-cc.
By general forcing properties this means the two-step iteration Q̇G0 ∗ j(Pλ ∗
Q̇)/G0 ∗ ḣ is κ+-cc in N [G]. �

We assume for contradiction there is in M [G][h] a λ-Aronszajn tree T .
By standard arguments, we can assume that T is also in N [G][h] (and is
Aronszajn here), and T has a cofinal branch in N [G][h][GQ] because of the
lifted embedding j in (4.19). We will argue that the forcing Q cannot add a
cofinal branch to T , which is a contradiction.
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Working over N [G][h], λ = (κ++)N [G][h] and therefore by Fact 2.5(ii) and
Claim 4.9(ii), j(Pλ∗Q̇)/G0∗h cannot add a cofinal branch to the λ-Aronszajn
tree T . Using the fact that 2κ = λ in N [G], and Fact 2.6 applied over N [G]

to the κ+-closed forcing Tλ,j(λ) and to the κ+-cc forcing Q̇G0∗j(Pλ∗Q̇)/G0∗ḣ
(see Claim 4.9(iii)), it follows that Tλ,j(λ) cannot add a cofinal branch to T
over a generic extension of N [G][h] by the quotient j(Pλ ∗ Q̇)/G0 ∗ h. Thus,
the product

(4.29) Tλ,j(λ) × j(Pλ ∗ Q̇)/G0 ∗ h
does not add cofinal branches to T over N [G][h]. However, by Claim 4.8,
there is a projection onto the quotient Q from the product (4.29), and there-
fore Q cannot add a cofinal branch to T . It follows that T has no cofinal
branch in N [G][h][GQ] which is the desired contradiction.

This ends the proof of Lemma 4.7. �

4.4. Stationary reflection

It is standard to show that stationary reflection holds at κ++ in V [P∗λ], so it
remains to show that the κ+-cc forcing P[λ,δ) ∗ Q̇U preserves SR(κ++) over
V [P∗λ]. This follows from Theorem 4.11 with λ = κ+.

Remark 4.10. We should stress that unlike the tree property argument,
we do not need that P[λ,δ) ∗ Q̇U should live already in V [Pλ] – the reason is
that the preservation Theorem 4.11 for stationary reflection is much stronger
than the preservation theorem for the tree property.

Theorem 4.11. Suppose λ is a regular cardinal, SR(λ+) holds and Q is
λ-cc. Then SR(λ+) holds in V [Q].

Proof. Suppose for contradiction there are p0 ∈ Q and Ṡ such that p0 forces
that Ṡ is a non-reflecting stationary subset of λ+ ∩ cof(< λ). Set

(4.30) Up0 = {γ ∈ λ+ ∩ cof(< λ) | ∃p ≤ p0 p  γ ∈ Ṡ}.

Up0 is a stationary set: for every club C ⊆ λ+, p0 forces C ∩ Ṡ 6= ∅, and
because p0 also forces Ṡ ⊆ Up0 , it forces C ∩ Up0 6= ∅, which is equivalent to
C∩Up0 being non-empty in V . By SR(λ+) there is some α < λ+ of cofinality
λ such that

(4.31) Up0 ∩ α is stationary.

By our assumption

(4.32) p0  Ṡ ∩ α is non-stationary.

We will argue that (4.31) and (4.32) are contradictory, which will finish the
proof.

First recall that by the λ-cc of Q, every club subset of an ordinal α of
cofinality λ in V [Q] contains a club in the ground model. It follows by (4.32)
that there is a maximal antichain A below p0 such that for every p ∈ A there
is some club D in α in the ground model with p  Ṡ ∩D = ∅. Let us fix for
each p ∈ A some Dp such that p  Ṡ ∩Dp = ∅.

Set

(4.33) C =
⋂
{Dp | p ∈ A}.
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C is a club subset of α because A has size < λ and α has cofinality λ. It
holds

(4.34) p0  Ṡ ∩ C = ∅
because conditions forcing Ṡ ∩ C = ∅ are dense below p0: for every q ≤ p0

there is some p ∈ A which is compatible with q, and any r ≤ p, q forces
Ṡ ∩Dp = ∅. Since C ⊆ Dp, this implies r ≤ q forces Ṡ ∩ C = ∅.

However, by (4.31) there must be γ ∈ C ∩ Up0 ∩ α, and therefore some
p ≤ p0 such that p  γ ∈ Ṡ ∩ C. This contradicts (4.34). �

Let us add a note of general interest. For S ⊆ λ+, let Ref(S) denote the
set of points of cofinality λ on which S reflects. A little analysis of the proof
of Theorem 4.11 shows that for every α ∈ Ref(Up0),

(4.35) p0 6 Ṡ ∩ α is non-stationary.

This is sufficient to argue that Q preserves SR(λ+), but it does not seem
in general sufficient for preservation of some stronger forms of stationary
reflection. Recall that club stationary reflection at λ+, CSR(λ+), says that
for every stationary S ⊆ λ+ ∩ cof(< λ) there is a club C ⊆ λ+ such that
C ∩ cof(λ) ⊆ Ref(S) (we say that Ref(S) contains a λ-club). See [18] and
[14] for more information about this concept. With more care, we can show
something about preservation of CSR(λ+) as well.

Theorem 4.12. Suppose λ is a regular cardinal and CSR(λ+) holds. Then
the following hold:
(i) If Q is a λ-cc forcing with a dense subset D of size ≤ λ, then Q preserves

CSR(λ+).
(ii) Suppose λ = κ+ and κ<κ = κ. Then Add(κ, α) preserves CSR(λ+) for

any α.
(iii) Suppose λ = κ+ and κ is measurable (2κ can have any value). Then

QU , the Prikry forcing with respect to a normal measure U on κ, pre-
serves CSR(λ+).6

Proof. (i). Suppose for simplicity that 1Q forces that Ṡ is a stationary subset
of λ+. For every p ∈ D, consider Up defined as in (4.30). By our assumption
every Ref(Up) contains a λ-club, and therefore

(4.36)
⋂
p∈D

Ref(Up) contains a λ-club C.

We will show that 1Q forces that Ṡ reflects on every point in C. Let γ be in
C and suppose for contradiction that there is p which forces Ṡ ∩ γ is disjoint
from some club C∗ in γ. Choose p∗ ≤ p in D: then p∗ does not force that
Ṡ ∩ γ is non-stationary by (4.35) because γ ∈ Ref(Up∗), but it also forces
that it avoids C∗, contradiction.

(ii). By the homogeneity of Cohen forcing, it suffices to show that Q =

Add(κ, λ+) preserves CSR(λ+). Suppose for simplicity that 1Q forces that Ṡ
is a stationary subset of λ+. Let 〈pα |α < λ+〉 be some enumeration of Q.
Then there is a club CQ in λ+ such that for every γ ∈ CQ of cofinality λ,
every condition with its domain included in γ appears as pδ for some δ < γ.

6The proof of (iii) was suggested to us by Menachem Magidor.
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For each α < λ+, let Cα denote a λ-club contained in Ref(Upα) with the
property that

(∗) for every γ ∈ Cα of cofinality λ, if some condition p ≤ pα forces
ξ ∈ Ṡ ∩ γ, then there is some p′ ≤ pα which forces ξ ∈ Ṡ ∩ γ such that
dom(p′) ⊆ γ.

By our assumption

(4.37) C = CQ ∩4α<λ+Cα is a λ-club,

where 4 denotes the diagonal intersection. We show that 1Q forces that Ṡ
reflects on every element in C. Let γ ∈ C be fixed. Suppose for contradiction
that there is p which forces that Ṡ is disjoint from some club C∗ in γ. Then p
restricted to γ appears as pδ for some δ < γ, and there are p′ ≤ pδ and ξ < γ
with p′  ξ ∈ Ṡ ∩C∗ (because γ ∈ Ref(Upδ)). By (∗) we can assume that p′
has its domain included in γ, and so p′ ∪ p is a valid condition extending p
which is a contradiction.

(iii) Let QU denote the Prikry forcing defined with respect to some normal
measure U on κ. Suppose 1QU forces that Ṡ is a stationary subset of κ++ ∩
cof(< κ+). We can assume that there is a fixed stem s such that

(4.38) U = {α < κ++ | ∃Aα (s,Aα)  α ∈ Ṡ}

is stationary. For an and-extension t w s, let us define

(4.39) Tt = {α ∈ U | t \ s ⊆ Aα}.

We say that Tt is good if Tt is stationary. Since there are only κ-many t’s,
there must be some good Tt. We need the following:

(∗) There exists a set Ahom ∈ U such that if t w s and t \ s ⊆ Ahom, then
Tt is good.

Let us prove (∗). Denote B = {α < κ |max(s) < α} ∈ U . By Rowbot-
tom’s theorem, there is a homogeneous set Ahom ∈ U for the partition of
[B]<ω into two colors: (a) x gets color 0 if Ts∪x is good, and (b) x gets color
1 if Ts∪x is not good. We want to show that Ahom is homogeneous in color
0. Suppose for contradiction that Ahom is homogenous in color 1. First note
that

(4.40) U = {α < κ++ | (s,Ahom ∩Aα)  α ∈ Ṡ}.

For t w s, let T ∗t = {α ∈ U | t \ s ⊆ Ahom ∩ Aα} so that T ∗t ⊆ Tt. Since
there are only κ-many such t’s and U is stationary, there must be some t
such that T ∗t is stationary. Let us choose such t. Since we assume that Ahom

is homogeneous in color 1 and t \ s ⊆ Ahom, Tt must be non-stationary. This
contradicts our choice of t.

With (∗) we finish the argument as follows. By CSR(κ++), we can choose
a κ+-club D on which every good Tt reflects. We wish to argue that for
every γ ∈ D,

(4.41) (s,Ahom)  Ṡ ∩ γ is stationary.

Suppose this is not the case for some γ ∈ D. Then there is a club C∗ ⊆ γ and
(t, A) ≤ (s,Ahom) which forces that C∗ ∩ Ṡ is empty. By the homogeneity of
Ahom, Tt is good. By the choice of D, there is some ξ < γ in Tt ∩ C∗. Since
Tt ⊆ U , (s,Aξ)  ξ ∈ Ṡ. By the definition of Tt, t \ s ⊆ Aξ, and therefore
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(t, A ∩ Aξ) is a condition which extends both (s,Aξ) and (t, A) and forces
C∗ ∩ Ṡ is non-empty. This is a contradiction. �

We think it is plausible that arguments as in Theorem 4.12 can be used
to argue that it is consistent to have CSR(κ++) for a singular strong limit κ
with a small u(κ). However, we do not know if a full analogue of Theorem
4.11 holds for CSR(λ+).

Remark 4.13. Some preservation theorems for stationary reflection were
known before: it was known that the Prikry-style forcings at κ preserve
SR(κ++) due to their Prikry property (see for instance [3]) and that in general
κ+-cc forcings of size < κ++ preserve SR(κ++) and the Cohen forcing at ω
of any length preserves SR(ω2) (attributed to Neeman in [9]).

Lemma 4.14. SR(κ++) holds in V [R].

Proof. This follows from Theorem 4.11 and the fact that SR(κ++) holds in
V [P∗λ]. �

4.5. Failure of approachability

Let us first argue that ¬AP(κ++) holds in V [P∗δ ].
Lemma 4.15. ¬AP(κ++) holds in V [P∗δ ].
Proof. This is like the argument from [3] with Pδ instead of Add(κ, δ). Clause
(4.13) from Definition 4.1 ensures that for every inaccessible α < λ, the
quotient forcing P∗δ/Gα, where Gα is P∗α-generic, can be written as

(4.42) P[α,α+) ∗ P∗[α+,δ),

where P[α,α+) adds new fresh subsets of κ without introducing new collapses,
which makes it possible to argue for the non-approachability (see [3] for more
details). �

We will use a theorem from [10, Corollary 2.2.] to argue that the Prikry
forcing QU preserves ¬AP(κ++) over V [P∗δ ]. We phrase the theorem in a
way which is suitable for us (Gitik and Krueger use a different indexation
for AP):

Theorem 4.16 ([10]). Assume ¬AP(κ++) holds and Q is κ-centered. Then
the forcing Q forces ¬AP(κ++).

Lemma 4.17. ¬AP(κ++) holds in V [R].

Proof. This follows by Lemma 4.15 and Theorem 4.16 because QU is κ-
centered over V [P∗δ ] (see Section 2.4 for details). �

This ends the proof of Theorem 4.5.

5. Uncountable cofinalities

In their paper [7], Garti and Shelah prove their theorem for the count-
able cofinality using the Prikry forcing QU , but mention in [7, Remark 3.2]
that the same argument holds when the Prikry forcing is replaced with the
Magidor forcing QMag

~U
from [17]. Since the combinatorial argument in [8,

Theorem 1.4] (reviewed as Theorem 3.5 in our paper for cofinality ω) for the
small ultrafilter number is not specific for the countable cofinality, we get:
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Theorem 5.1. Let κ be Laver-indestructible in the sense of (3.5) and λ a
weakly compact cardinal above κ and let µ < κ be a fixed regular cardinal.
Then there is a forcing notion RMag such that in V [RMag], 2κ = κ++ = λ, κ
is a singular strong limit cardinal of cofinality µ and the following hold:
(i) u(κ) = κ+.
(ii) TP(κ++), SR(κ++) and ¬AP(κ++).

Proof. Let RMag be defined as R in Definition 4.4 with the Magidor forcing
QMag
~U

instead of the Prikry forcing QU . QMag
~U

is defined with respect to a

sequence ~U of length µ (see Section 2.4) and we take care to choose ~U which
is an element of V [Pδ] (κ is supercompact in V [Pδ] by arguments in [7],
reviewed in (3.5), so this is possible). Moreover, by Lemma 2.10, ~U is still a
Mitchell sequence in V [P∗δ ] because P∗δ factors as Pδ ∗ Ṙ for a κ+-distributive
Ṙ. As in (4.18), we get:

(5.43) RMag = P∗δ ∗ Q̇
Mag
~U
≡ P∗λ ∗ Q̇,

where Q̇ = P[λ,δ) ∗Q
Mag
~U

is forced to be κ+-cc and where we assume that Q̇
is a Pλ-name.

The fact that RMag forces u(κ) = κ+ follows as in Lemma 4.6, taking into
account [7, Remark 3.2].

The proof that the tree property holds at κ++ follows by the same argu-
ment as in Lemma 4.7 because it uses just the fact that the forcing is κ+-cc
and lives in V [Pλ]. The arguments for stationary reflection and the failure of
approachability follow by the indestructibility Theorems 4.11 and 4.16. �

6. Open questions

We expect that with little more work, the value of 2κ could be made
arbitrarily large while keeping u(κ) at a prescribed cardinal. However, we
have not verified this in detail, so let us ask the following explicit question:

Question 6.1. Is it consistent to have a singular strong limit cardinal κ with
u(κ) = ν for a regular κ+ < ν < 2κ and with the tree property, stationary
reflection and the failure of approachability at κ++?

In [7], Garti and Shelah say it is plausible that the assumption of a super-
compact cardinal can be weakened to that of a hypermeasurable cardinal.
It would seem that in the present proof the role of supercompactness of κ is
just to make sure that κ stays measurable (or sufficiently large) in V [Pδ], and
it is known that there are methods to ensure this from weaker hypotheses
(see for instance [12]). So it is plausible that the following has an affirmative
answer (especially in view of the recent result in [6]):

Question 6.2. Is the consistency of κ being singular strong limit, u(κ) = κ+,
2κ > κ+ with compactness at κ++ provable from a weaker hypothesis than a
supercompact cardinal?

Can we bring the result down to ℵω or ℵω1? Note that the method of [13]
may not be directly applicable here because the Prikry forcing with collapses
is not necessarily definable in the right intermediate model to apply the tree
property preservation argument.
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Question 6.3. Is it consistent to have ℵω strong limit with 2ℵω > ℵω+1,
u(ℵω) = ℵω+1 and the tree property at ℵω+2? Can a similar result be obtained
for ℵω1?

It is also possible to consider compactness at κ+, for instance:

Question 6.4. Is it consistent to have a singular strong limit cardinal κ with
2κ > κ+, u(κ) = κ+ and the tree property at κ+?
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