Weak Theories and Essential Incompleteness

Vítězslav Švejdar

Dept. of Logic, Faculty of Arts and Philosophy, Charles University,
www.cuni.cz/~svejdar/

Logica 07, Hejnice, June 2007

Outline

Introduction: Essential Incompleteness, Essential Undecidability

Essential Incompleteness of Robinson’s Q

Q^-, TC, and R as Weak Alternatives to Q
Essential Incompleteness and Essential Undecidability

Motivation
Which is the weakest axiomatic theory that is recursively axiomatizable and essentially incomplete?

Methods of essential incompleteness proofs
Essential incompleteness can be proved directly, or using interpretability.

Canonical source
The notions of essential incompleteness and essential undecidability, as well as the notion of interpretability, were introduced in [TMR53].

Robinson’s Arithmetic Q

Axioms
Q1: \(\forall x \forall y (S(x) = S(y) \rightarrow x = y) \).
Q2: \(\forall x (S(x) \neq 0) \).
Q3: \(\forall x (x \neq 0 \rightarrow \exists y (x = S(y))) \).
Q4: \(\forall x (x + 0 = x) \).
Q5: \(\forall x \forall y (x + S(y) = S(x + y)) \).
Q6: \(\forall x (x \cdot 0 = 0) \).
Q7: \(\forall x \forall y (x \cdot S(y) = x \cdot y + x) \).

Extensions and properties
Ordering can be defined by \(x \leq y \) iff \(\exists v (v + x = y) \).
Numerals: \(0, S(0), S(S(0)), \ldots \) are denoted \(0, 1, 2, \ldots \).
General facts, like \(\forall x \forall y (x + y = y + x) \), are mostly unprovable.
\(Q \vdash \forall x (x \leq n \rightarrow x = \overline{0} \lor \ldots \lor x = \overline{n}), Q \vdash \overline{n} + \overline{m} = \overline{n + m} \).

A Structural Incompleteness Proof

Let \(T \) be a consistent recursively axiomatized extension of Q.
- Take a pair \(A, B \) of disjoint recursively inseparable r.e. sets:

\[
\begin{align*}
A & \quad X \\
Y & \quad B
\end{align*}
\]

- Let \(\varphi(x) \) be a formula like in the condition (1) above.
- Put \(X = \{ n ; T \vdash \varphi(\overline{n}) \} \). We have \(A \subseteq X \) and \(X \) is r.e.
- Put \(Y = \{ n ; T \vdash \neg \varphi(\overline{n}) \} \). Again \(B \subseteq Y \) and \(Y \) is r.e.
- Also \(X \cap Y = \emptyset \).
- Fix \(n_0 \notin X \cup Y \). Such an \(n_0 \) must exist, otherwise \(X \) and \(Y \) would be mutually complementary, and so \(X \) would be a recursive superset of \(A \) that is disjoint with \(B \). Then \(T \nvdash \varphi(\overline{n_0}) \) and \(T \nvdash \neg \varphi(\overline{n_0}) \). So \(T \) is incomplete.

Ingredients of essential incompleteness proofs
A proof of essential incompleteness of a theory like Q usually uses
(i) definability of r.e. sets by \(\Sigma \)-formulas,
(ii) \(\Sigma \)-completeness (every true \(\Sigma \)-sentence is provable in Q),
plus one of additional conditions like:
(1) For each pair \(A, B \) of recursively enumerable sets there exists a \(\Sigma \)-formula \(\varphi(x) \) such that \(Q \vdash \varphi(\overline{n}) \) for \(n \in A \setminus B \), and \(Q \vdash \neg \varphi(\overline{n}) \) for \(n \in B \setminus A \).
(2) Weak representability of recursive functions.
(3) The self-reference theorem.

Note
Proofs of additional conditions (1)–(3) usually use Rosser trick. None of these conditions is needed if incompleteness is to be proved only for all \(\Sigma \)-sound extensions of Q.
The theory \(Q^- \)

has the language \(\{0, S, A, M\} \), where 0 and S play the same role as in Q, and \(A \) and \(M \) are ternary relation symbols for addition and multiplication. Axioms Q1–Q7 are replaced by variants saying that \(A \) and \(M \) are graphs of binary functions that satisfy some conditions but may be non-total. For example, axiom Q7 becomes if \(u \) is a product of \(x \) and \(y \) and \(w \) is a sum of \(u \) and \(x \), then the product of \(x \) and \(S(y) \) exists and equals \(w \).

Theorem

\(Q \) is interpretable in \(Q^- \). So \(Q^- \) is essentially incomplete.

Proof

Using the Solovay’s method of shortening of cuts.

The theory \(TC \)

has a binary symbol \(\sim \) for concatenation, two constants \(a \) and \(b \) for two irreducible strings (i.e. one letter words) and some more or less obvious axioms like \(\forall x \forall y \forall z (x \sim (y \sim z) = (x \sim y) \sim z) \).

History

Axioms were formulated by Tarski, some ideas go back to Quine.

Theorem ([GZ07])

TC is essentially undecidable.

Problem

Is TC equi-interpretable with Q?

The Theory R

\(\Omega_1: \overline{n} \neq \overline{m}, \) for \(n \) different from \(m \),

\(\Omega_2: n + \overline{m} = \overline{n + m}, \)

\(\Omega_3: \overline{n \cdot m} = \overline{n \cdot m}, \)

\(\Omega_4: \forall x (x \leq \overline{n} \equiv x = \overline{0} \lor \ldots \lor x = \overline{n}), \)

\(\Omega_5: \forall x (x \leq \overline{n} \lor \overline{n} \leq x). \)

R is the theory with schemata \(\Omega_1–\Omega_5 \), \(R_0 \) has only \(\Omega_1–\Omega_4 \).

Theorem

(a) \(Q \) is not interpretable in \(R \) (Hájek).

(b) \(R \) is interpretable in \(R_0 \) (Cobham, discussed in [JS83]).

Theorem

The self-reference theorem is true already for \(R_0 \).

Remarks

The schema \(\Omega_2 \) can be omitted from \(R_0 \) ([Rob49]),

The connective \(\equiv \) cannot be replaced by \(\to \) in \(\Omega_4 \).

References